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7.3 Perturbations of the crystal-field system

In this section, we shall discuss various effects of the surrounding medium
on a crystal-field system. The first subject to be considered is the mag-
netoelastic coupling to the lattice. Its contribution to the magnetic-
excitation energies may be described in terms of frequency-dependent,
anisotropic two-ion interactions, and we include a short account of the
general effect of such terms. We next consider the coupling to the con-
duction electrons, which is treated in a manner which is very parallel
to that used for spin-wave systems in Section 5.7. Finally, we discuss
the hyperfine interaction between the angular momenta and the nuclear
spins, which becomes important at the lowest temperatures, where it
may induce an ordering of the moments in an otherwise undercritical
singlet-ground-state system.

7.3.1 Magnetoelastic effects and two-ion anisotropy

The magnetoelastic interactions which, in the kind of system we are
considering, primarily originate in the variation of the crystal-field pa-
rameters with lattice strain, produce a number of observable phenomena.
The lattice parameters and the elastic constants depend on temperature
and magnetic field, the crystal-field excitation energies are modified, and
these excitations are coupled to the phonons. In addition, the magneto-
elastic coupling allows an externally applied uniaxial strain to modify
the crystal-field energies. All these magnetoelastic effects have their
parallel in the ferromagnetic system discussed in Section 5.4 and, in the
RPA, they may be derived by almost the same procedure as that pre-
sented there, provided that the spin-wave operators are replaced by the
standard-basis operators, introduced in eqn (3.5.11).

In the paramagnetic phase in zero external field, only those strains
which preserve the symmetry, i.e. the α-strains, may exhibit variations
with temperature due to the magnetic coupling. The lowering of the
symmetry by an applied external field may possibly introduce non-zero
strains, proportional to the field, which change the symmetry of the
lattice. In both circumstances, the equilibrium strains may be calculated
straightforwardly within the MF approximation. As an example, we
shall consider the lowest-order magnetoelastic γ-strain Hamiltonian

Hγ =
∑
i

[1
2cγ(ε

2
γ1 + ε2γ2)−Bγ2

{
O2

2(Ji)εγ1 +O−2
2 (Ji)εγ2

}]
, (7.3.1)

corresponding to eqn (5.4.1) with Bγ4 = 0. The equilibrium strain εγ1,
for instance, is determined in the presence of an external magnetic field
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and external stresses by

1

N

〈∂Hγ

∂εγ1

〉
= cγεγ1 −Bγ2〈O2

2〉 − (t11 − t22) = 0,

with t = (V/N)T , where T is the usual stress-tensor. Introducing the
equilibrium condition into the Hamiltonian, we get

Hγ(sta) = −
∑
i

Bγ2

{
O2

2(Ji)εγ1 +O−2
2 (Ji)εγ2

}
+H0

γ , (7.3.2a)

where

H0
γ = N

[1
2cγ(ε

2
γ1 + ε2γ2)− (t11 − t22)εγ1 − 2t12εγ2

]
. (7.3.2b)

The thermal averages have to be calculated self-consistently, which im-
plies that the static magnetoelastic Hamiltonian, (7.3.2), must itself
be included in the total magnetic MF Hamiltonian, which determines
the thermal averages such as 〈O2

2〉 in the equilibrium equation. The
magnetoelastic coupling changes the magnetic-excitation energies if the
crystal is strained, because the extra crystal-field term in (7.3.2a), in-
troduced by Hγ(sta), directly modifies χ

o
(ω). In the (J = 1)-model

corresponding to Pr, O±2
2 (Ji) couples the two doublet states, and thus

the degeneracy of this level is lifted in proportion to the γ-strains.
Having included the contributions of Hγ(sta) to the single-ion sus-

ceptibility, we continue by discussing the influence of the coupling be-
tween the magnetic excitations and the phonons, as determined by the
dynamic part of the magnetoelastic Hamiltonian Hγ(dyn), given by eqn
(5.4.6) with Bγ4 = 0. As an example, we consider the coupling to the
transverse phonons propagating in the a- or the b-direction, with the
polarization vector in the basal-plane, which is derived from

∆Hγ(dyn) = −Bγ2

∑
i

{
O−2

2 (Ji)− 〈O−2
2 〉}εi

= −Bγ2

∑
i

∑
νµ

Nνµaνµ(i)εi, (7.3.3)

where εi is a shorthand notation for εγ2(i)− εγ2, and Nνµ is the matrix
element of the Stevens operator between <ν | and |µ>, cf. eqns (3.5.11–
13). This Hamiltonian introduces an additional term on the l.h.s. of the
equation of motion (3.5.15) for the Green function 〈〈aνµ(i) ; ars(i′)〉〉:

Bγ2

∑
ξ

〈〈{Nµξaνξ(i)−Nξνaξµ(i)
}
εi ; ars(i

′)〉〉 �

Bγ2(nν − nµ)Nµν〈〈εi ; ars(i′)〉〉, (7.3.4)
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where the approximate result follows from the usual RPA decoupling
introduced by eqn (3.5.16). According to eqn (5.4.25),

εi =
∑
k

(ikFk/2)(βk + β+
−k)exp(ik ·Ri),

where we assume, for simplicity, only one phonon mode. From the equa-
tions of motion determining the two Green functions 〈〈βq ; ars(i

′)〉〉 and
〈〈β+

−q ; ars(i
′)〉〉, we obtain

〈〈βq + β+
−q ; ars(i

′)〉〉 =
Bγ2

∑
i

∑
νµ

(iqFq/2)D(q, ω)e−iq·RiNνµ〈〈aνµ(i) ; ars(i′)〉〉, (7.3.5)

where D(q, ω) is the phonon Green function for the mode considered:

Dν(q, ω) =
2ωνq

h̄
(
ω2 − ω2

νq

) . (7.3.6)

If this is introduced into (7.3.4), and the resulting expression is added
to the l.h.s. of (3.5.18), the procedure leading to eqn (3.5.21) yields the
equivalent result

χ(q, ω)− χ
o
(ω)J (q, ω)χ(q, ω) = χ

o
(ω). (7.3.7)

However, these quantities are now four-dimensional matrices in the vec-
tor space defined by the operators Jix, Jiy , Jiz, and O−2

2 (Ji), or more
accurately by these operators minus their expectation values. The only

extra element in J (q, ω), in addition to the normal Cartesian compo-
nents Jαβ(q), is

J44(q, ω) = N
( i
2
qFqBγ2

)2
D(q, ω). (7.3.8)

The excitation energies are determined by the condition∣∣1− χ
o
(ω)J (q, ω)

∣∣ = 0.

When q is along an a- or b-direction, and the external fields are applied

in the basal plane, parallel or perpendicular to q, then J (q) and the
3 × 3 Cartesian components of χ

o
(ω), at low frequencies, are diagonal

with respect to the (ξηζ)-axes. In this case, the most phonon-like pole
is found at a frequency determined by∣∣1−χ

o
(ω)J (q, ω)

∣∣/∏
α

[
1−χ o

αα(ω)Jαα(q)
]
= 1−Ξ(q, ω)J44(q, ω) = 0,

(7.3.9a)
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where α = ξ, η, and ζ, and

Ξ(q, ω) = χ o
44(ω) +

∑
α

χ o
α4(ω)χ

o
4α(ω)Jαα(q)

1− χ o
αα(ω)Jαα(q)

. (7.3.9b)

At long wavelengths, this pole determines the velocity of the magneto-
acoustic sound waves, as measured in an ultrasonic experiment, and
expressing this velocity in terms of the corresponding elastic constant,
we find

c∗66
c66

= 1− Ξ(q, 0)B2
γ2/cγ , (7.3.10)

by combining the above relation with eqns (5.4.24b) and (5.4.34). This
result is valid when q is along the ξ- or η-axes, provided that the exter-
nal field is applied along one of the principal axes. In the general case,
it is necessary to include the coupling to the other phonon branches in
eqn (7.3.7), and also to take into account possible off-diagonal terms in
the Cartesian part of the matrices, but these complications may be in-
cluded in the above calculations in a straightforward fashion. One ques-
tion raised by (7.3.10) is whether the magneto-acoustic sound velocities,
measured at non-zero frequencies, depend on possible purely-elastic con-
tributions to the RPA susceptibilities. That these should be included
in (7.3.7), at ω = 0, can be seen by the argument used in deriving
(3.5.22). In the preceding section, we found that the coupling between
the angular momenta broadens the elastic RPA response into a diffusive
peak of width 2Γ, as in (7.2.11b), proportional to T 1/2 at low temper-
atures. Unless this coupling is very weak, Γ is likely to be much larger
than the applied h̄ω in an ultrasonic experiment, in which case the total
elastic contribution to Ξ(q, 0) in (7.3.10) should be included. A more
detailed investigation of this question is given by, for instance, Elliott
et al. (1972), in a paper discussing systems with Jahn–Teller-induced
phase transitions.

In the paramagnetic phase without any external magnetic field, the
susceptibility components χ o

α4(ω) all vanish in the zero frequency limit,
due to the time-reversal symmetry of the system. Replacing t by −t
generates the transformation χ o

α4(ω) → χ o
αT 4T (−ω), where the time-

reversed operators are JT
iα = −Jiα, and O−2

2 (Ji)
T = O−2

2 (Ji). These re-
sults follows from the symmetry properties of the axial tensor operators,
discussed after eqn (5.5.14), recalling that the operators are Hermitian,
of rank l = 1 and l = 2 respectively. Hence, because of the time-reversal
symmetry, χ o

α4(ω) = −χ o
α4(−ω) = −(

χ o
α4(ω

∗)
)∗
, where the last result

follows from (3.2.15), and we assume implicitly that all poles lie on the
real axis. This quantity must therefore vanish at zero frequency, and
the reactive and absorptive components are either zero or purely imag-
inary at non-zero frequencies. If there is no ordered moment and no
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external magnetic field, the coupling between the dipolar crystal-field
excitations and the long-wavelength phonons must therefore vanish by
symmetry, within the present approximation, and Ξ(q, 0) = χ o

44(0) in
eqn (7.3.10). In the presence of an external magnetic field, the mixed
dipolar–quadrupolar susceptibility-components may become non-zero,
and hence produce a direct coupling of the elastic waves and the dipo-
lar excitations. In this case, the magnetic dipole coupling, which gives
rise to a directional dependence of Jαα(q), as discussed in Section 5.5,
leads to different values of c∗66 (as determined from the transverse sound
velocity in the b(η)-direction), depending on whether the field is parallel
to the ξ- or the η-axis or, if the field is fixed along one of these two axes,
whether q is along the ξ- or the η-direction. As mentioned earlier, this
anisotropy is similar to that introduced by rotational invariance, and
has a comparable magnitude in paramagnetic systems (Jensen 1988b).

The dynamic coupling between the magnetic and elastic excitations
in Pr has been studied in the long-wavelength limit by Palmer and Jensen
(1978), who measured the elastic constant c66 by ultrasonic means, as a
function of temperature and magnetic field. At 4K, it was found to be
very sensitive to a field applied in the basal plane, but insensitive to a
field along the c-axis, reflecting the anisotropy of the susceptibility. At
non-zero fields in the basal plane, there is furthermore a considerable
anisotropy, due to B6

6 . Using the crystal-field level scheme illustrated in
Fig. 1.16, and a value of Bγ2 consistent with that deduced from the field
dependence of the magnetic excitations (Houmann et al. 1979), they
were able to obtain a very good fit to the observed dependence of c66 on
field, shown in Fig. 7.5, and on temperature.

The above theory is also valid at non-zero frequencies. However, if
q is no longer small, we must take account of the discreteness of the lat-
tice and replace q in (7.3.8) by a sinusoidal function of q and the lattice
parameters, as in (5.4.43) in Section 5.4. Except for the change in the
q-dependence of J44(q, ω), eqn (7.3.7) still applies, and it predicts hy-
bridization effects between the phonons and the crystal-field excitations,
equivalent to those derived from the linear magnon–phonon coupling in
Section 5.4. The time-reversal symmetry of the paramagnetic system in
zero magnetic field does not exclude the possibility that the phonons at
non-zero frequencies are coupled to the crystal-field dipolar excitations
and, in the case of Pr, the doublet excitations are allowed to interact
with the transverse phonons, when q is in the c-direction. Neverthe-
less, the application of a magnetic field will generally introduce new
interactions via χ o

4α(ω), leading to hybridization effects proportional to
the field, as observed in Pr by Houmann et al. (1979) and interpreted
by Jensen (1976a). Interactions between crystal-field excitations and
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Fig. 7.5. The field dependence of the elastic constant c66 in Pr at
4K, relative to the value at zero field. The elastic constant was deter-
mined from the velocity of the transverse sound waves propagating in an
a-direction, and the open and closed symbols indicate the experimental
results when the field was applied respectively in the a- or the perpen-
dicular b-direction. The solid lines show the calculated field dependence.

the phonons are further discussed by Thalmeier and Fulde (1975), Fulde
(1979), and Aksenov et al. (1981).

The coupling (5.4.50), quadratic in the magnon operators, also has
its counterpart in crystal-field systems. Such interactions arise when, in-
stead of applying the RPA decoupling in the first step, as in eqn (7.3.4),
we proceed to the next step in the hierarchy of Green functions. The
most important effect of these terms is to replace the crystal-field param-
eters by effective values, which might be somewhat temperature depen-
dent, corresponding to an averaging of the effective crystalline field expe-
rienced by the 4f electrons over the finite volume spanned by the thermal
vibration of the ions. As in the spin-wave case, these extra higher-order
contributions do not lead to the kind of hybridization effects produced
by the linear couplings. However, if the density of states of the phonons,
weighted with the amplitude of the coupling to the crystal-field exci-
tations, is particularly large at certain energies, resonance-like bound-
states due to the higher-order terms may be observed in the magnetic
spectrum. The dynamic Jahn–Teller effect observed in CeAl2 (Loewen-
haupt et al. 1979) seems to be due to these higher-order effects, according
to the calculation of Thalmeier and Fulde (1982).

The expression (7.3.7) for the interaction of the crystal-field system
with the phonons has essentially the same form as that derived from any
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general two-ion coupling. Referring to (5.5.14), in which is introduced a

general two-ion Hamiltonian in terms of the tensor operators Õlm(Ji),
we may write

HJJ = −1

2

∑
ij

Jp
i ·J p(ij) ·Jp

j , (7.3.11)

where Jp ≡ (Jx, Jy, Jz, O
−2
2 , Õlm, · · ·) is a generalized p-dimensional mo-

ment operator, and the {lm}-set of operators comprises the tensor cou-
plings from the original Hamiltonian, except those between the first
four components. It is then immediately clear that the final RPA sus-
ceptibility is given by an expression equivalent to (7.3.7), in terms of
the p × p susceptibility-matrix with Jαβ(q, ω) = J p

αβ(q), except that

(at long wavelengths) J44(q, ω) = N(iqFqBγ2/2)
2D(q, ω) + J p

44(q). If
the frequency is not near a pole in D(q, ω), the effect of the coupling
to the phonons on the magnetic excitations is therefore similar to that
stemming from the corresponding quadrupole–quadrupole interaction.
If J p

44(0) is non-zero, the ultrasonic velocities are influenced by this cou-
pling, as we now have

c∗66
c66

=
1− Ξ(q, 0)J44(0, 0)

1− Ξ(q, 0)J p
44(0)

= 1− Ξ(q, 0)

1− Ξ(q, 0)J p
44(0)

B2
γ2/cγ , (7.3.12)

where the sum over α in (7.3.9b) comprises all the (p − 1) components

for which α �= 4, under the same condition that χ
o
(ω) and J (q, ω)

are both diagonal for α �= 4. In general, χ o
4α(0) may be non-zero, in

the paramagnetic phase in zero magnetic field, if the α-component is
an even-rank tensor, and these interactions may contribute to Ξ(q, 0),
whereas the odd-rank couplings are prevented from affecting the phonons
in the zero-frequency limit by time-reversal symmetry.

In our discussion of crystal-field excitations, we have only been con-
cerned with the excitation spectrum derived from the time variation of
the dipole moments. There are two reasons for this. Most importantly,
the coupling between the dipolar moments expressed in eqn (7.1.1) is
normally dominant in rare earth systems, so that the collective phenom-
ena are dominated by the dipolar excitations. The other reason is that
the magnetic response, including the magnetic susceptibility and the
(magnetic) neutron scattering cross-section, is determined exclusively by
the upper-left 3×3 part of χ(q, ω), in the generalized p-dimensional vec-
tor space introduced through eqn (7.3.11). However, strong quadrupolar
interactions may lead to collective effects and to an ordered phase of the
quadrupole moments. The quadrupolar excitations are not directly vis-
ible in neutron-scattering experiments, but may be detected indirectly
via their hybridization with the dipole excitations, in the same way as
the phonons, or via their hybridization with the phonons, as measured



7.3 PERTURBATIONS OF THE CRYSTAL-FIELD SYSTEM 341

by the nuclear scattering of the neutrons. In a paramagnetic system in
zero field, the p × p susceptibility-matrix partitions into two indepen-
dent blocks, at zero frequency, the one depending only on the even-rank
couplings and the other only on the odd-rank couplings. If one of the
two parts of χ(q, 0) diverges at some temperature T ∗, it signals the oc-
currence of a second-order phase transition at this temperature. If it
is the block determined by the even-rank couplings which diverges, the
order parameter below T ∗ is associated with the quadrupole moments,
assuming the lowest-rank terms to be dominant. If there is any coupling
between this order parameter and one of the phonon modes, the transi-
tion is accompanied by a softening of these phonons, provided that the
pure quadrupolar excitations have higher energies than the phonons at
the ordering wave-vector. If this vector Q is zero, the corresponding
elastic constant vanishes at the transition. In the case where Q �= 0, the
situation corresponds to that considered in the magnetic case, and the
phonon mode shows soft-mode behaviour according as there are pure
elastic contributions to the (RPA) susceptibility or not. A quadrupolar
phase-transition involving the phonons is usually referred to as being
induced by the Jahn–Teller effect, and a more detailed discussion and
relevant examples may be found in, for instance, Elliott et al. (1972).
The presence of a non-zero quadrupole moment does not destroy the
time-reversal symmetry, and an ordering of the dipole moments may
follow only after an additional phase transition. In TmZn (Morin et al.
1980) an ordering of the quadrupole moments occurs below a first-order
transition at TQ = 8.6K, and this phase is disrupted by the onset of
ferromagnetic ordering at TC = 8.1K. In the opposite case of order-
ing of the dipole moments, the breaking of the time-reversal symmetry
allows a direct coupling between the dipole and quadrupole moments,
so that the latter are forced to order together with the dipoles, giving
rise to, for example, crystal-field-induced magnetostriction effects, and
the dipolar ordering will normally quench any tendency toward a purely
quadrupolar-ordered phase.

In this chapter, we have formulated the various RPA results in terms
of the generalized-susceptibility matrices. The results apply in param-
agnetic as well as in ordered systems, so long as the order parameter
is uniform throughout the crystal. They agree with the more explicit
results derived previously in the case of a weakly-anisotropic ferromag-
netic system. In a paramagnet or a strongly-anisotropic ferromagnet,
the results above may also be given a more transparent and explicit
form, but only if the number (2J + 1) of different angular-momentum
states can be taken as small; else the matrix-equations themselves are
well-suited for solution by numerical methods. The reduction of the
matrix-equations in, for instance, the (J = 1)-case is straightforward
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and the results, corresponding to Pr in the limit T = 0, are given by
Jensen (1976a).

In the present approximation, the sound velocities are not affected
by the interaction between the dipoles, in the paramagnetic phase at
zero magnetic field. However, in the vicinity of a second-order transi-
tion to a ferromagnetic phase, strong softening of the long-wavelength
phonons may be observed, depending on the symmetry properties, and
this behaviour cannot be explained within the RPA. We have seen that,
according to eqns (5.4.15) and (5.4.38), c∗66 vanishes in the basal-plane
ferromagnet when a field equal to the critical field Hc is applied along
the hard basal-plane direction. When TC is approached from below, Hc

vanishes rapidly, resulting in a strong softening of c∗66 even in zero field,
and it seems likely that similar behaviour should be observed when TC

is approached from above, considering that just above TC there will be
large domains of nearly constant magnetization, allowing an ‘RPA’ cou-
pling between the dipole moments and the sound waves similar to that
occurring in the ferromagnetic phase. Clear indications of this kind of
behaviour have been seen in for example Tb (Jensen 1971b), indicating
that the RPA is not even qualitatively trustworthy when the fluctuations
are a dominating feature of the system.

7.3.2 Conduction-electron interactions

The sf-exchange Hamiltonian (5.7.6) was derived without making any
special assumptions about the rare earth metal involved, and it there-
fore applies equally well to a metallic crystal-field system. For the
weakly-anisotropic ferromagnet considered in Section 5.7, this Hamil-
tonian leads to a Heisenberg two-ion coupling, J̃ (q, ω), which to a
first approximation is instantaneous, and is thus effectively J (q) =

J̃ (q, 0) − (1/N)
∑

q′ J̃ (q′, 0), as given by eqn (5.7.28). This remains
true in crystal-field systems, as may be demonstrated by expanding the
angular-momentum operators in (5.7.6) in terms of the standard-basis
operators, and then calculating the corresponding Green functions which
determine χ(q, ω), utilizing an RPA decoupling of the coupled Green
functions.

In the ordered phase, Jzz(q, ω) may actually differ from the two
other components of the exchange coupling, due to the polarization of
the conduction electrons. However, in the paramagnetic phase in zero
field, the coupling is isotropic, within the approximation made in Sec-
tion 5.7. This may be seen by analysing the full expression (5.7.27) for

J̃ (q, ω), or the simpler result (5.7.26), in which the susceptibility of the
conduction electrons becomes a scalar:

χαβ
c.el.(q, ω) =

1
2χ

+−
c.el.(q, ω) δαβ . (7.3.13)
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Here the reactive and absorptive parts of χ+−
c.el.(q, ω), still given by

(5.7.26b), are both real and even in q, while the reactive part is even
with respect to ω, whereas the absorptive part is odd. When considering
the frequency dependence of the susceptibility, we must distinguish two
separate regimes, defined by the parameter

ϑ = −ηq/2kF = (h̄ω/2εF )(kF /q) = (2/3ν)N (εF )h̄ω(kF /q),

where η is the parameter introduced in (5.7.31c) (with ∆(c.el.) = 0). If
|ϑ| is small compared to one,

χ+−
c.el.(q, ω) = N (εF )

{
F( q

2kF

)
+ i

π

2
ϑ
}

; |ϑ| � 1, (7.3.14)

where the correction to the real part, of the order ϑ2, may be neglected.
This is the same result as obtained in the ordered phase, eqns (5.7.32)
and (5.7.36), when the small frequency-dependent term in the former is
neglected. When |ϑ| becomes larger than 1 (or q > 2kF ), the imaginary
part vanishes, as shown in the calculations leading to (5.7.36), and the
real part becomes strongly dependent on ω, vanishing for large values of
ϑ as ϑ−2 ∝ ω−2. If h̄ω = 1–10meV, then ϑ = (10−4 – 10−3)kF /q in the
rare earth metals, so that the corrections to (7.3.14) are only important
in the immediate neighbourhood of q = 0. The physical origin of this
particular effect is that the susceptibility of the free-electron gas is purely
elastic in the limit q = 0, and it does not therefore respond to a uniform
magnetic field varying with a non-zero frequency. In the polarized case,
the contributions to the transverse susceptibility are all inelastic at long
wavelengths, so this retardation effect does not occur when the polar-
ization gap ∆(c.el.) is large compared to |h̄ω|. The exchange coupling,
in the limit q = 0, includes both the elastic and inelastic contribu-
tions, as in (5.7.26c), and the abnormal behaviour of the elastic term
may be observable in paramagnetic microwave-resonance experiments,
where the anomalies should be quenched by a magnetic field. On the
other hand, it may not be possible to study such an isolated feature in
q-space by inelastic neutron-scattering experiments. Leaving aside the
small-q regime, we have therefore that the effective exchange-coupling is

J (q, ω) = J (q) + iζ(q)h̄ω, (7.3.15)

where ζ(q) is given by (5.7.37b), and J (q) is the reduced zero-frequency
coupling given above, or by (5.7.28).

In the case of the weakly-anisotropic ferromagnet, the frequency
dependence of the exchange coupling affects the spin-wave excitations
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in the same way as results when J (q) is replaced by J (q, ω) in the usual
RPA expression for the susceptibility, i.e.

χ(q, ω) =
{
1− χ

o
(ω)J (q, ω)

}−1
χ

o
(ω). (7.3.16)

In order to establish that this procedure is valid in general, to leading
order in 1/Z, we must appeal to the 1/Z-expansion discussed in Section
7.2. It is clear that the usual RPA decoupling (3.5.16), aνξ(i)aν′µ′(j) �
〈aνξ(i)〉aν′µ′(j) + aνξ(i)〈aν′µ′(j)〉, is not a good approximation if i = j,
and in (3.5.15) it is only applied in cases where i �= j, as J (ii) = 0 by
definition. Here, however, J (q, ω) does contain a coupling of one ion
with itself, since J (ii, ω) = iζ0h̄ω, where

ζ0 =
1

N

∑
q

ζ(q) = 2π〈|j(q)|2〉N 2(εF ), (7.3.17)

as is obtained by replacing |j(q)| in (5.7.37b) by a constant averaged
value in the integral determining ζ0. This indicates that it is also nec-
essary to rely on the RPA decoupling when i = j, in order to obtain
the result (7.3.16) when ζ0 is not zero. On the other hand, the RPA
decoupling may work just as well if only the time arguments of the two
operators are different, which is the case as J (ii, t = 0) = 0 indepen-
dently of ζ0. Only when t = 0, is aνξ(i, t)aν′µ′(i, 0) equal to aνµ′(i, 0)δξν′ ,
in direct conflict with the RPA decoupling. This indicates that it may
not be necessary to consider separately the effects of ζ(q) − ζ0 and of
ζ0. This point is treated more precisely by the 1/Z-expansion proce-
dure developed in Section 7.2. Since J (q, ω) replaces J (q), it makes no
difference whether J (q, ω) is frequency-dependent or not, nor whether
J (ii, ω) �= 0, and this procedure leads immediately to the result (7.3.16),
in the zeroth order of 1/Z. If J (q, ω) contains a constant term, result-
ing from J (ii, t) ∝ δ(t), it is removed automatically in the next order
in 1/Z, according to the discussion following eqn (7.2.9). The argument
for subtracting explicitly any constant contribution to J (q, ω), in eqn
(7.3.16), is then that this procedure minimizes the importance of the
1/Z and higher-order contributions. The modifications of the 1/Z con-
tributions are readily obtained by substituting J (q, ω) for J (q) in the
expression (7.2.7c), which determines K(ω), i.e.

K̃(ω) = K(ω) +
1

N

∑
q

iζ(q)h̄ωG(q, ω)
/
G(ω) = K(ω) + i〈ζ(ω)〉h̄ω,

(7.3.18a)
and the self-energy is then obtained as

Σ(q, ω) = iζ(q)h̄ω + Σ̃(ω), (7.3.18b)
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where Σ̃(ω) is the previous function with K(ω) replaced by K̃(ω). The
most interesting effects of the scattering of the magnetic excitations
against the electron-hole pair excitations of the conduction electrons de-
rive from the first term in the self-energy, which already appears in the
‘RPA’ in (7.3.16). The lifetime of the excitations becomes q-dependent
and remains finite in the zero-temperature limit, whereas the imagi-
nary part of Σ(ω), and therefore also of Σ̃(ω), vanishes exponentially at
low temperatures, in the order 1/Z. The importance of the higher-order
contributions associated with this scattering mechanism, as compared to
those of the intrinsic processes, i.e. the relative magnitudes of 〈ζ(ω)〉h̄ω
and K(ω), may depend on the system considered, but in Pr, for exam-
ple, Im

[
K(ω)

]
is much the dominant term at frequencies lying within

the excitonic band. Hence, 〈ζ(ω)〉 may be neglected in K̃(ω) at temper-
atures where the linewidths are still somewhat smaller than the overall
bandwidth.

In Pr, the effect of the conduction electrons on the linewidths at
low temperatures only becomes visible due to the strong increase in the
value of ζ(q) in the limit of small q, where it is approximately propor-
tional to 1/q. Houmann et al. (1979) were thus able to observe the
remarkable broadening of the acoustic modes illustrated in Fig. 7.6, as q
was reduced at 6K. The width at q = 0.2 Å is only slightly greater than
the experimental resolution, but the peak has become very broad by
0.05 Å, and it has almost vanished into the background at q = 0, even
though the integrated intensity is expected to increase as the energy
decreases. This behaviour is in sharp contrast to that observed in Tb
where, as shown in Fig. 5.13 on page 269, the width at small q is greatly
reduced by the spin-splitting of the Fermi surface, in accordance with
eqn (5.7.37). Since the spin-splitting of the Pr Fermi surface becomes
very substantial in a large field, as illustrated in Fig. 1.10, the scattering
of the long-wavelength magnetic excitations by the conduction electrons
should be quenched by the application of a field. A careful study of
this phenomenon would allow a detailed investigation of the interaction
between the conduction electrons and the 4f moments.

The modification of K̃(ω) also contributes to the broadening of the
diffusive peak and, instead of (7.2.11), the result for J = 1 is now

G(ω) = G(0)
iΓ1h̄ω − Γ2

(h̄ω + iΓ)2
, (7.3.19a)

with

Γ1 = 2〈ζ(0)〉/β and Γ = Γ1 +
√
2K(0)/β. (7.3.19b)

The term linear in 〈ζ(0)〉, introduced in (7.2.10), predicts Lorentzian
broadening, if K(0) is neglected. The intrinsic contribution may also
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Fig. 7.6. Neutron-scattering spectra from the acoustic branch of the
magnetic excitations propagating along the c-axis on the hexagonal sites
of Pr at 6K. The observed values of Γ, the full width at half maximum,
increase rapidly as q decreases, due to scattering by the conduction elec-
trons, and at q = 0 it is difficult to distinguish the peak from the back-

ground. The experimental energy resolution is about 0.35meV.

here dominate at most temperatures, but it is clear that this cannot hold
true in the high-temperature limit, where Γ1 increases proportionally
to T , whereas K(0)/β approaches a constant value. So, in the high-
temperature limit, (7.3.19) leads to the Korringa law (Korringa 1950)
for the linewidth:

G(q, ω) � G(ω) � G(0)
iΓ1

h̄ω + iΓ1
, with

Γ1 = 2〈ζ(0)〉kBT = 4π〈|j(q)|2〉N 2(εF )kBT, (7.3.20)

since 〈ζ(0)〉 = ζ0 in this limit. We argued above that 〈ζ(ω)〉 could
be neglected, in comparison with the intrinsic effects, at relatively low
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temperatures but, in the high-temperature limit, 〈ζ(ω)〉 is the dominant
term. Becker et al. (1977) have deduced the influence of the electron-
hole-pair scattering on the crystal-field excitations, with an accuracy
which corresponds to the results obtained here to first order in 1/Z, using
an operator-projection technique. They performed their calculations for
an arbitrary value of J , but without including the intrinsic damping
effects which, as pointed out above, may be more important, except in
the high-temperature limit.

The effects of the sf-exchange Hamiltonian on the effective mass and
the heat capacity of the conduction electrons in a crystal-field system
may be derived in an equivalent way to that used for the spin-wave
system. The mass-enhancement, m∗/m = 1 + λCF, is deduced to be
given by (White and Fulde 1981; Fulde and Jensen 1983):

λCF = N (εF )
1

2k2F

∫ 2kF

0

dq

∫
dΩq

4π
q|j(q)|2

∑
α

χαα(q, ω → 0)

=
1

N

∑
q

ζ(q)

2πN (εF )

∑
α

χαα(q, ω → 0),

(7.3.21a)
and is a generalization of eqn (5.7.50), valid in the paramagnetic phase.
The term χαα(q, ω → 0) is the zero-frequency susceptibility, omitting
possible elastic contributions, assuming the broadening effects to be
small. At non-zero temperatures, it is found that excitations with ener-
gies small compared to kBT do not contribute to the mass-enhancement,
and therefore, even in the low-temperature limit considered here, the
purely elastic terms in χαα(q, ω) do not influence the effective mass.
This is also one of the arguments which justifies the neglect to leading
order of the effect on m∗ of the longitudinal fluctuations in a ferro-
magnet, which appear in χzz(q, ω). In contrast, the elastic part of the
susceptibility should be included in eqn (5.7.57), when the magnetic ef-
fects on the resistivity are derived in the general case, as in Section 5.7.
In systems like Pr, with long-range interactions, the dispersive effects
due to the q-dependence of χ(q, ω) are essentially averaged out, when
summed over q. In this case, we may, to a good approximation, re-
place χ(q, ω) in sums over q by its MF value χ

o
(ω). The correction to

the MF value of the low-temperature heat capacity in Pr, for example,
is minute (Jensen 1982b). In the eqns (7.3.18–20) above, this means
that, to a good approximation, 〈ζ(ω)〉 � 1

N

∑
q ζ(q) = ζ0 even at low

temperatures, and that the mass-enhancement parameter is

λCF � ζ0
2πN (εF )

∑
α

χ o
αα(ω → 0). (7.3.21b)
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Fig. 7.7. The field dependence
of the coefficient γ of the linear elec-
tronic heat capacity of Pr at low
temperatures. The experimental re-
sults of Forgan (1981) are compared
with a theory including the renor-
malization of the mass, due to the in-
teraction of the conduction electrons
with the magnetic excitations, and
also taking into account the phonon
enhancement and the dependence of
the Fermi level on magnetic field.
The dashed line shows the results of
the theory when the change of the
Fermi energy with field is neglected.

The mass-enhancement due to the crystal-field excitations is re-

flected directly in the effective mass measured in the de Haas–van Alphen

effect, and in the linear term in the low-temperature electronic specific

heat, analogously to the spin-wave system. The former effect has been

studied by Wulff et al. (1988), who find that the theory of Fulde and

Jensen (1983) accounts very well for the field dependence of the masses

of several orbits, using the same values of the sf -exchange integral I,

about 0.1 eV, as reproduce the variation of the orbit areas discussed

in Section 1.3. The substantial field dependence of the electronic heat

capacity, measured by Forgan (1981), is shown in Fig. 7.7, and com-

pared with values calculated from eqn (7.3.21b), taking into account the

field dependence of the electronic state density at the Fermi level, calcu-

lated by Skriver (private communication), and the phonon enhancement

(Skriver and Mertig 1990). At higher temperatures, the imaginary part

of J (q, ω) in (7.3.16) gives rise to the same contribution to the magnetic

heat capacity as the extra term in (5.7.52) in the spin-wave case, with

ζ(q)
∑

α χαα(q, ω → 0) replacing 2Γq/E
2
q. This contribution should be

added to the non-linear corrections to the total low-temperature heat

capacity calculated by Fulde and Jensen (1983).
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7.3.3 Coupling to the nuclear spins

The hyperfine coupling to the nuclear spins normally has a negligible
influence on the properties of the electronic magnetic moments. How-
ever, in the special case of a crystal-field system with a singlet ground-
state, where the two-ion coupling is smaller than the threshold value for
magnetic ordering, this minute coupling may become of decisive impor-
tance. Under these circumstances, the hyperfine interaction may induce
a cooperative ordering of the combined system of the electronic and
nuclear magnetic moments at very low temperatures. The Hamiltonian
describing the hyperfine interaction in a rare earth ion has been compre-
hensively discussed by Bleaney (1972) and McCausland and Mackenzie
(1979), and the leading-order term is

Hhf = A I ·J, (7.3.22)

where I is the nuclear spin. For the isotope of Pr with mass number 141,
which has a natural abundance of 100%, I = 5/2 and A = 52.5mK = 4.5
µeV. This coupling modifies the MF susceptibility χ

o
(ω) of the single

ion, and since A is small, we may derive this modification by second-
order perturbation theory. In order to simplify the calculations, we as-
sume that the MF ground-state of the electronic system is a singlet, and
that kBT is much smaller than the energy of the lowest excited J-state,
so that any occupation of the higher-lying J-states can be neglected.
Considering first a singlet–singlet system, with a splitting between the
two states |0 > and |1 > of ∆ 	 |A|, where only Mz =< 0| Jz |1 > is
non-zero, and denoting the combined electronic and nuclear states by
|0,mI > and |1,mI >, where Iz |p,mI >= mI |p,mI >, we find that the
only non-zero matrix elements of Hhf are

< 0,mI | Hhf |1,mI > = < 1,mI | Hhf |0,mI > = mIMzA,

yielding the following modifications of the state vectors:{
|0′,mI > = |0,mI > −(mIMzA/∆)|1,mI >

|1′,mI > = |1,mI > +(mIMzA/∆)|0,mI >,

to leading order. If we neglect the shifts in energy of the different levels,
due to the hyperfine coupling, and the change of the inelastic matrix
element,

< 0′,mI | Jz |1′,mI > = Mz{1− (mIMzA/∆)2} � Mz,

the susceptibility is only modified by the non-zero matrix-element,

< 0′,mI | Jz |0′,mI > = −2mIM
2
zA/∆,
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within the (2I + 1)-ground state manifold, i.e.

δχ o
zz(ω) = β

1

2I + 1

∑
m

I

(
2mIM

2
zA/∆

)2
δω0 = β 1

3I(I+1)A2(2M2
z /∆)2δω0.

(7.3.23)
This result may be straightforwardly generalized to an arbitrary level
scheme, including non-zero matrix elements of the other J-components,
as the different contributions are additive. The susceptibility may then
be written

χ o
αβ(ω) = χJ

αβ(ω) +A2
∑
γγ′

χJ
αγ(ω)χ

I
γγ′(ω)χJ

γ′β(ω), (7.3.24)

to leading order in A, which is valid as long as the general assumptions
made above are satisfied. χJ

αβ(ω) is the MF susceptibility for the elec-
tronic system alone, when the extra term δHJ(MF) = A〈I〉·J is included
in its MF Hamiltonian. In order to derive the effective MF Hamiltonian
HI(MF), determining the susceptibility of the nuclear spins χI

αβ(ω), we
must consider the possibility, neglected above, that Hhf may lift the
(2I + 1)-fold degeneracy of the ground-state manifold. Calculating the
energies of the ground-state levels, in the presence of an external field,
by second-order perturbation theory, we find straightforwardly that the
equivalent Hamiltonian, describing the splitting of these levels, is

HI(MF) = −gNµNH · I+A
{〈J〉 +A〈I〉 · χJ(0)

} · I− 1
2A

2I · χJ(0) · I.
(7.3.25a)

This result can be interpreted as expressing the ability of J to follow
instantaneously any changes of I. The molecular field due to 〈J〉 is
subtracted from the response to I, which then instead gives rise to the
last quadrupolar term. This quadrupolar contribution is the only effect
which is missing in a simple RPA decoupling of the interactions intro-
duced through Hhf . If χJ (0) is not a scalar, the last term gives rise
to a quadrupole-splitting of the ground-state manifold, and the zero-
frequency susceptibility is then, to leading order in this term,

χI
αα(0) =

1

3
I(I +1)β

[
1+ 1

15A
2β(I + 3

2 )(I − 1
2 )
{
3χJ

αα(0)−
∑
γ

χJ
γγ(0)

}]
(7.3.25b)

if χJ (0) is diagonal. The results above were first obtained and anal-
ysed by Murao (1971, 1975, 1979), except that he replaced χJ

αα(0) in
(7.3.25) by (1/N)

∑
q χ

J
αα(q, 0) which, according to the above inter-

pretation, is to be expected in order 1/Z. For the hexagonal ions in
Pr-metal, AχJ

αα(0) = 0.026 for the two basal-plane components, but is
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zero for the cc-component, which implies that the induced quadrupolar-
interaction is a factor of about seven larger than the intrinsic value of
the electric-quadrupole hyperfine-interaction for the ion (< 0 | HQ |0>=

(5/7)P‖(I2ξ + I2η ), with P‖ = −0.128mK, using the notation of Bleaney
(1972)). In any case, the quadrupole contribution to (7.3.25b) only
makes a 1.5% correction at the transition temperature TN ≈ 50mK in
Pr. The induced quadrupole interaction, due to the highly anisotropic
fluctuations of the electronic moments, may be important in nuclear-
magnetic-resonance (NMR) experiments. The most important effect
in NMR is, however, the strong enhancement of the Zeeman splitting
between the nuclear levels by the hyperfine coupling. Introducing
HI(MF) = −gNµNHeff

I · I in (7.3.25a), we find an enhancement

|Heff
I /H | � |1− (gµB/gNµN )Aχzz(0, 0)|, (7.3.26)

which, for the hexagonal ions in Pr, gives a factor of about 40 in the low-
temperature limit, when the field is applied in the basal-plane, but unity
if H is along the c-axis. In addition to the hyperfine interactions consid-
ered above, the nuclear spins may also interact directly with the conduc-
tion electrons, leading to an extra Knight shift and Korringa broadening
of the NMR-levels. The most important NMR-linewidth effect is, how-
ever, due to the fluctuations of the localized electronic moment. If J = 1,
corresponding to Pr, these fluctuations lead to a Lorentzian broadening,
so that χI

ξξ(0) → χI
ξξ(0)

[
iΓN/(h̄ω + iΓN)

]
, with

ΓN = 10(n0n1/n01)M
2
ξ Im

[
K̃(ω = ∆/h̄)

]
,

to first order in 1/Z. In the case of Pr, this gives ΓN � exp(−β∆)× 1.0
meV (Jensen et al. 1987).

The magnetization and the neutron-scattering cross-section are de-
termined in the RPA by the usual susceptibility expression (7.1.2), with
χ

o
(ω) now given by (7.3.24), provided that we neglect the contribu-

tions of the small nuclear moments. This means that, even though the
electronic system has a singlet ground-state, the hyperfine interaction
induces an elastic contribution, and assuming the electronic system to
be undercritical, so that R(0) < 1 in (7.1.6), we obtain in the low tem-
perature limit, where kBT � ∆,

χξξ(q, 0) =
∆2

{
1 +A2χJ(0)χI(0)

}
E2

q − (∆2 − E2
q)A

2χJ(0)χI(0)
χJ (0), (7.3.27)

where χJ(0) = 2M2
ξ /∆, and Eq is given by (7.1.4b), with n01 = 1. If

we introduce the nuclear spin susceptibility, neglecting the quadrupo-
lar contribution, into this expression, it predicts a second-order phase
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transition, at a temperature determined by

kBTN = 1
3I(I + 1)A2χJ(0)

∆2 − E2
Q

E2
Q

= 1
3I(I + 1)A2χJ(0)

R0

1−R0
,

(7.3.28)
to a modulated phase described by the wave-vector Q at which J (q)
has its maximum value, where R0 is the critical parameter defined by
eqn (7.1.6). With ∆ = 3.52meV and EQ = 1.0meV for the hexagonal
excitations in Pr, the electronic system is just undercritical, with a crit-
ical ratio R0 � 0.92. This means that the importance of the hyperfine
interaction is much enhanced, and eqn (7.3.28) predicts TN = 45mK for
the cooperative ordering of the nuclear and electronic moments in Pr.
The transition is no longer accompanied by a soft mode, but there is
rather an elastic peak, with a scattering intensity given by

Sξξ
d (q, ω ≈ 0) = 1

3I(I + 1)A2
(2M2

ξ /Eq)
2

1− χJ(0){1 +A2χJ(0)χI(0)}J (q)
δ(h̄ω),

(7.3.29)
in the paramagnetic phase, which diverges at q = Q when T approaches
TN , analogously to the behaviour of the singlet–triplet case described
by (7.1.13).


