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3.5 The random-phase approximation
Earlier in this chapter, we have demonstrated that many experimentally
observable properties of solids can be expressed in terms of two-particle
correlation functions. Hence it is of great importance to be able to cal-
culate these, or the related Green functions, for realistic systems. We
shall therefore consider the determination of the generalized susceptibil-
ity for rare earth magnets, using the random-phase approximation which
was introduced in the last section, and conclude the chapter by apply-
ing this theory to the simple Heisenberg model, in which the single-ion
anisotropy is neglected.

3.5.1 The generalized susceptibility in the RPA
The starting point for the calculation of the generalized susceptibility
is the (effective) Hamiltonian for the angular momenta which, as usual,
we write as a sum of single- and two-ion terms:

H =
∑

i

HJ(Ji) − 1
2

∑
i�=j

J (ij)Ji ·Jj . (3.5.1)

For our present purposes, it is only necessary to specify the two-ion
part and, for simplicity, we consider only the Heisenberg interaction. As
in Section 2.2, we introduce the thermal expectation values 〈Ji〉 in the
Hamiltonian, which may then be written

H =
∑

i

HMF(i) − 1
2

∑
i�=j

J (ij) (Ji − 〈Ji〉) · (Jj − 〈Jj〉), (3.5.2)

where

HMF(i) = HJ(Ji) −
(
Ji − 1

2 〈Ji〉
) ·∑

j

J (ij)〈Jj〉. (3.5.3)

From the mean-field Hamiltonians HMF(i), we may calculate 〈Ji〉 as
before. The Hamiltonian (3.5.3) also determines the dynamic suscepti-
bility of the ith ion, in the form of a Cartesian tensor χ

o
i (ω), according

to eqns (3.3.4–6), with Â and B̂ set equal to the angular-momentum
components Jiα. We wish to calculate the linear response 〈Ji(t)〉 of
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the system to a small perturbative field hj(t) = gµBHj(t) (the Zeeman
term due to a stationary field is taken as included in HJ(Ji) ). From
(3.5.2), we may extract all terms depending on Ji and collect them in
an effective Hamiltonian Hi , which determines the time-dependence of
Ji. Transformed to the Heisenberg picture, this Hamiltonian is

Hi(t) = HMF(i, t) − (
Ji(t) − 〈Ji〉

) · ( ∑
j

J (ij)(Jj(t) − 〈Jj〉) + hi(t)
)
.

(3.5.4)
We note that a given site i appears twice in the second term of (3.5.2),
and that the additional term 〈Ji〉 · hi has no consequences in the limit
when hi goes to zero. The differences Jj(t) − 〈Jj(t)〉 fluctuate in a vir-
tually uncorrelated manner from ion to ion, and their contribution to
the sum in (3.5.4) is therefore small. Thus, to a good approximation,
these fluctuations may be neglected, corresponding to replacing Jj(t)
in (3.5.4) by 〈Jj(t)〉 (when j �= i). This is just the random-phase ap-
proximation (RPA), introduced in the previous section, and so called
on account of the assumption that Jj(t) − 〈Jj(t)〉 may be described in
terms of a random phase-factor. It is clearly best justified when the
fluctuations are small, i.e. at low temperatures, and when many sites
contribute to the sum, i.e. in three-dimensional systems with long-range
interactions. The latter condition reflects the fact that an increase in the
number of (nearest) neighbours improves the resemblance of the sum in
(3.5.4) to an ensemble average. If we introduce the RPA in eqn (3.5.4),
the only dynamical variable which remains is Ji(t), and the Hamiltonian
becomes equivalent to HMF(i), except that the probing field hi(t) is re-
placed by an effective field heff

i (t). With 〈Ji(ω)〉 defined as the Fourier
transform of 〈Ji(t)〉 − 〈Ji〉, then, according to eqn (3.1.9),

〈Ji(ω)〉 = χ
o
i (ω)heff

i (ω),

where the effective field is

heff
i (ω) = hi(ω) +

∑
j

J (ij)〈Jj(ω)〉. (3.5.5)

This may be compared with the response determined by the two-ion
susceptibility functions of the system, defined such that

〈Ji(ω)〉 =
∑

j

χ(ij, ω)hj(ω). (3.5.6)

The two ways of writing the response should coincide for all hj(ω), which
implies that, within the RPA,

χ(ij, ω) = χ
o
i (ω)

(
δij +

∑
j′

J (ij′)χ(j′j, ω)
)
. (3.5.7)
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This self-consistent equation may be solved under various conditions.
For convenience, we shall consider here only the uniform case of a ferro-
or paramagnet, where HMF(i) is the same for all the ions, i.e. 〈Ji〉 = 〈J〉
and χ

o
i (ω) = χ

o(ω), in which case we get the final result

χ(q, ω) =
{
1 − χ

o(ω)J (q)
}−1

χ
o(ω). (3.5.8)

Here 1 is the unit matrix, and we have used the Fourier transform (3.4.2)
of J (ij)

J (q) =
∑

j

J (ij) e−iq·(Ri−Rj). (3.5.9)

In the RPA, the effects of the surrounding ions are accounted for
by a time-dependent molecular field, which self-consistently enhances
the response of the isolated ions. The above results are derived from a
kind of hybrid MF-RPA theory, as the single-ion susceptibility χ

o
i (ω) is

still determined in terms of the MF expectation values. A self-consistent
RPA theory might be more accurate but, as we shall see, gives rise to fur-
ther problems. At high temperatures (or close to a phase transition), the
description of the dynamical behaviour obtained in the RPA is incom-
plete, because the thermal fluctuations introduce damping effects which
are not included. However, the static properties may still be described
fairly accurately by the above theory, because the MF approximation is
correct to leading order in β = 1/kBT .

The RPA, which determines the excitation spectrum of the many-
body system to leading order in the two-ion interactions, is simple to
derive and is of general utility. Historically, its applicability was ap-
preciated only gradually, in parallel with the experimental study of a
variety of systems, and results corresponding to eqn (3.5.8) were pre-
sented independently several times in the literature in the early 1970s
(Fulde and Perschel 1971, 1972; Haley and Erdös 1972; Purwins et al.
1973; Holden and Buyers 1974). The approach to this problem in the
last three references is very similar, and we will now present it, following
most closely the account given by Bak (1974).

We start by considering the MF Hamiltonian defined by (3.5.3). The
basis in which HMF(i) is diagonal is denoted |νi > ; ν = 0, 1, . . . , 2J ,
and we assume that HMF(i) is the same for all the ions:

HMF(i)|νi > = Eν |νi >, (3.5.10)

with Eν independent of the site index i . The eigenvalue equation defines
the standard-basis operators

aνµ(i) = |νi >< µi |, (3.5.11)
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in terms of which HMF(i) =
∑

ν Eνaνν(i). Defining the matrix-elements

Mνµ = < νi |Ji − 〈Ji〉|µi >, (3.5.12)

we may write
Ji − 〈Ji〉 =

∑
νµ

Mνµ aνµ(i),

and hence

H =
∑

i

∑
ν

Eν aνν(i) − 1

2

∑
ij

∑
νµ

∑
ν′µ′

J (ij)Mνµ · Mν′µ′ aνµ(i) aν′µ′(j).

(3.5.13)
We have expressed H in terms of the standard-basis operators, as we now
wish to consider the Green functions Gνµ,rs(ii′, ω) = 〈〈aνµ(i) ; ars (i′)〉〉.
According to (3.3.14), their equations of motion are

h̄ω Gνµ,rs(ii′, ω) − 〈〈 [ aνµ(i) , H ] ; ars(i′)〉〉 = 〈 [ aνµ(i) , ars(i′) ] 〉.
(3.5.14)

The MF basis is orthonormal, and the commutators are

[ aνµ(i) , ars(i′) ] = δii′{δµraνs(i) − δsνarµ(i)},

so we obtain

{h̄ω − (Eµ − Eν)}Gνµ,rs(ii′, ω)

+
∑

j

J (ij)
∑
ξν′µ′

〈〈{aνξ(i)Mµξ − aξµ(i)Mξν} · Mν′µ′ aν′µ′(j) ; ars(i′)〉〉

= δii′〈δµr aνs(i) − δsν arµ(i)〉. (3.5.15)

In order to solve these equations, we make an RPA decoupling of the
higher-order Green functions:

〈〈aνξ(i) aν′µ′(j) ; ars(i′)〉〉i�=j �
〈aνξ(i)〉〈〈aν′µ′(j) ; ars(i′)〉〉 + 〈aν′µ′(j)〉〈〈aνξ(i) ; ars(i′)〉〉.

(3.5.16)

This equation is correct in the limit where two-ion correlation effects
can be neglected, i.e. when the ensemble averages are determined by the
MF Hamiltonian. The decoupling is equivalent to the approximation
made above, when Jj(t) in (3.5.4) was replaced by 〈Jj(t)〉. The thermal
expectation value of a single-ion quantity 〈aνµ(i)〉 is independent of i,
and to leading order it is determined by the MF Hamiltonian:

〈aνµ〉 � 〈aνµ〉0 = 1

Z
Tr

{
e−βH(MF) aνµ

}
= δνµ nν , (3.5.17)
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and correspondingly 〈J〉 in (3.5.12) is assumed to take the MF value 〈J〉0.
Here Z is the partition function of the MF Hamiltonian, and thus nν is
the population factor of the νth MF level. With the two approximations
(3.5.16) and (3.5.17), and the condition that

∑
ν′µ′〈Mν′µ′aν′µ′(j)〉0 =

〈Jj − 〈Jj〉0〉0 = 0 by definition, (3.5.15) is reduced to a closed set of
equations by a Fourier transformation:

{h̄ω − (Eµ − Eν)}Gνµ,rs(q, ω)

+
∑
ν′µ′

J (q)(nν − nµ)Mµν · Mν′µ′ Gν′µ′,rs(q, ω) = (nν − nµ) δµrδνs.

(3.5.18)
We now show that these equations lead to the same result (3.5.8) as
found before. The susceptibility, expressed in terms of the Green func-
tions, is

χ(q, ω) = −
∑

νµ,rs

MνµMrsGνµ,rs(q, ω). (3.5.19)

MνµMrs is the dyadic vector-product, with the (αβ)-component given
by (MνµMrs)αβ = (Mνµ)α(Mrs)β . Further, from eqns (3.3.4–6), the
MF susceptibility is

χ
o(ω) =

Eν �=Eµ∑
νµ

MνµMµν

Eµ − Eν − h̄ω
(nν − nµ) +

Eν=Eµ∑
νµ

MνµMµνβ nν δω0.

(3.5.20)
Multiplying (3.5.18) by MνµMrs/(Eµ − Eν − h̄ω), and summing over
(νµ, rs), we get (for ω �= 0)

χ(q, ω) − χ
o(ω)J (q)χ(q, ω) = χ

o(ω), (3.5.21)

in accordance with (3.5.8). Special care must be taken in the case of
degeneracy, Eµ = Eν , due to the resulting singular behaviour of (3.5.18)
around ω = 0. For ω �= 0, Gνµ,rs(q, ω) vanishes identically if Eµ = Eν ,
whereas Gνµ,rs(q, ω = 0) may be non-zero. The correct result, in the
zero frequency limit, can be found by putting Eµ − Eν = δ in (3.5.18),
so that nν − nµ = nν(1 − e−βδ) � βnνδ. Dividing (3.5.18) by δ, and
taking the limit δ → 0, we obtain in the degenerate case Eν = Eµ:

−Gνµ,rs(q, 0) − β
∑
ν′µ′

J (q)nνMνµ ·Mν′µ′ Gν′µ′,rs(q, 0) = βnν δµr δνs.

(3.5.22)
Since χ(q, ω) does not depend on the specific choice of state-vectors in
the degenerate case, (3.5.22) must also apply for a single level, i.e. when
µ = ν. It then follows that (3.5.18), when supplemented with (3.5.22),
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ensures that (3.5.21) is also valid at ω = 0, as (3.5.22) accounts for
the elastic contributions due to χ

o(ω), proportional to δω0. This zero-
frequency modification of the equations of motion was derived in this
context in a slightly different way by Lines (1974a).

Although eqns (3.5.18) and (3.5.22) only lead to the result (3.5.8),
derived previously in a simpler manner, the equations of motion clarify
more precisely the approximations made, and they contain more infor-
mation. They allow us to keep track in detail of the different transitions
between the MF levels, which may be an advantage when performing ac-
tual calculations. Furthermore, the set of Green functions Gνµ,rs(q, ω)
is complete, and hence any magnetic single- or two-ion response function
may be expressed as a linear combination of these functions.

In the derivation of the RPA result, we utilized two approximate
equations, (3.5.16) and (3.5.17). The two approximations are consistent,
as both equations are correct if two-ion correlation effects are negligible.
However, the RPA Green functions contain implicitly two-ion correla-
tions and, according to (3.3.7), we have in the linear response theory:

〈aνµ(i) ars(j)〉 − 〈aνµ(i)〉〈ars(j)〉 =

1

N

∑
q

eiq·(Ri−Rj)
1
π

∫ ∞

−∞

−1
1 − e−βh̄ω

G′′
νµ,rs(q, ω)d(h̄ω),

(3.5.23)
where, by the definition (3.2.11b),

G′′
νµ,rs(q, ω) =

1
2i

lim
ε→0+

{
Gνµ,rs(q, ω + iε) − Grs,νµ(−q,−ω + iε)

}
.

Equation (3.5.23), with i = j, might be expected to give a better esti-
mate of the single-ion average 〈aνµ〉 than that afforded by the MF ap-
proximation used in (3.5.17). If this were indeed the case, the accuracy of
the theory could be improved by using this equation, in a self-consistent
fashion, instead of (3.5.17), and this improvement would maintain most
of the simplicity and general utility of the RPA theory. Unfortunately,
such an improvement seems to occur only for the Heisenberg ferromagnet
discussed previously, and the nearly-saturated anisotropic ferromagnet,
which we will consider later. Equation (3.5.23) allows different choices
of the Green functions Gνµ,rs(q, ω) for calculating 〈aνν〉, and the results
in general depend on this choice. Furthermore, (3.5.23) may lead to
non-zero values for 〈aνµ(i) ars(i)〉, when µ �= r, despite the fact that
< µi |ri > = 0 by definition. The two-ion correlation effects which are
neglected by the RPA decoupling in (3.5.18) might be as important,
when using eqn (3.5.23) with i = j, as those effects which are accounted
for by the RPA. Nevertheless, it might be possible that certain choices



160 3. LINEAR RESPONSE THEORY

of the Green functions, or a linear combination of them, would lead to
an accurate determination of 〈aνν〉 (the most natural choice would be to
use G′′

ν0,0ν(q, ω) ). However, a stringent justification of a specific choice
would require an analysis of the errors introduced by the RPA decou-
pling. We conclude that a reliable improvement of the theory can only
be obtained by a more accurate treatment of the higher-order Green
functions than that provided by the RPA. General programs for ac-
complishing this have been developed, but they have only been carried
through in the simplest cases, and we reserve the discussion of these
analyses to subsequent sections, where a number of specific systems are
considered.

3.5.2 MF-RPA theory of the Heisenberg ferromagnet
We conclude this chapter by applying the RPA to the Heisenberg model,
thereby demonstrating the relation between (3.5.8) and the results pre-
sented in the previous section. In order to do this, we must calculate
χ

o(ω). The eigenstates of the MF Hamiltonian (3.4.4b) are |Sz = M > ,
with M = −S,−S + 1, · · · , S, and we neglect the constant contribution
to the eigenvalues

EM = −MJ (0)〈Sz〉0 = −M∆ with ∆ = J (0)〈Sz〉0,

denoting the MF expectation-value (3.4.5a) of Sz by 〈Sz〉0. According
to (3.3.4a), we then have (only terms with α = M + 1 and α′ = M
contribute):

χ o
+−(ω) =

S−1∑
M=−S

< M + 1 |S+ |M >< M |S− |M + 1 >

EM − EM+1 − h̄ω
(nM+1 − nM )

= 1

Z

S−1∑
−S

S(S + 1) − M(M + 1)

∆ − h̄ω

(
eβ(M+1)∆ − eβM∆

)

= 1

∆ − h̄ω

1

Z

( S∑
−S+1

{
S(S + 1) − (M − 1)M

}
eβM∆

−
S−1∑
−S

{
S(S + 1) − M(M + 1)

}
eβM∆

)

= 1

∆ − h̄ω

1

Z

S∑
−S

2MeβM∆ =
2〈Sz〉0
∆ − h̄ω

,

as all the sums may be taken as extending from −S to S. Similarly
χ o
−+(ω) = χ o

+−(−ω), whereas χ o
++(ω) = χ o

−−(ω) = 0, from which we
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obtain

χ o
xx(ω) = χ o

yy(ω) = 1

4

{
χ o

+−(ω) + χ o
−+(ω)

}
=

∆〈Sz〉0
∆2 − (h̄ω)2

, (3.5.24a)

and

χ o
xy(ω) = −χ o

yx(ω) = i

4

{
χ o

+−(ω) − χ o
−+(ω)

}
=

ih̄ω〈Sz〉0
∆2 − (h̄ω)2

. (3.5.24b)

We note here that χ o
xy

′(ω) and χ o
xy

′′(ω), obtained by replacing ω by
ω + iε and letting ε → 0+, are both purely imaginary. Of the remaining
components in χ

o(ω), only χ o
zz(ω) is non-zero, and it comprises only an

elastic contribution

χ o
zz(ω) = β (δSz)2δω0, with (δSz)2 ≡ 〈(Sz)2〉0 − 〈Sz〉20. (3.5.25)

Because χ o
±z(ω) = 0, the RPA equation (3.5.8) factorizes into a 2 × 2

(xy)-matrix equation and a scalar equation for the zz-component. In-
verting the (xy)-part of the matrix {1 − χ

o(ω)J (q)}, we find

χxx(q, ω) =
χ o

xx(ω) − |χ o(ω)|J (q)
1 − {χ o

xx(ω) + χ o
yy(ω)}J (q) + |χ o(ω)|J 2(q)

,

where the determinant is

|χ o(ω)| = χ o
xx(ω)χ o

yy(ω) − χ o
xy(ω)χ o

yx(ω) =
〈Sz〉20

∆2 − (h̄ω)2
.

By a straightforward manipulation, this leads to

χxx(q, ω) =
E0

q〈Sz〉0
(E0

q)2 − (h̄ω)2
, (3.5.26a)

with

E0
q = ∆ − 〈Sz〉0J (q) = 〈Sz〉0{J (0) − J (q)}. (3.5.26b)

The same result is obtained for χyy(q, ω). We note that (3.5.26a) should
be interpreted as

χxx(q, ω) = 1
2 〈Sz〉0 lim

ε→0+

(
1

E0
q − h̄ω − ih̄ε

+
1

E0
q + h̄ω + ih̄ε

)
.

This result is nearly the same as that deduced before, eqns (3.4.10–
11), except that the RPA expectation-value 〈Sz〉 is replaced by its MF
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value 〈Sz〉0, reflecting the lack of self-consistency in this analysis. As a
supplement to the previous results, we find that

χzz(q, ω) =
χ o

zz(ω)
1 − χ o

zz(ω)J (q)
=

β(δSz)2

1 − β(δSz)2 J (q)
δω0, (3.5.27a)

and the corresponding correlation function is

Szz(q, ω) = 2πh̄
(δSz)2

1 − β(δSz)2 J (q)
δ(h̄ω). (3.5.27b)

The zz-response vanishes in the zero-temperature limit and, in this ap-
proximation, it is completely elastic, since (δSz)2 is assumed indepen-
dent of time. However, this assumption is violated by the dynamic
correlation-effects due to the spin waves. For instance, the (n = 1)-sum-
rule (3.3.18b) indicates that the second moment 〈(h̄ω)2〉zz is non-zero,
when q �= 0 and T > 0, which is not consistent with a spectral function
proportional to δ(h̄ω).

Although this procedure leads to a less accurate analysis of the
Heisenberg ferromagnet than that applied previously, it has the advan-
tage that it is easily generalized, particularly by numerical methods, to
models with single-ion anisotropy, i.e. where HJ(Ji) in (3.5.1) is non-
zero. The simplicity of the RPA result (3.5.8), or of the more general
expression (3.5.7), furthermore makes it suitable for application to com-
plex systems. As argued above, its validity is limited to low tempera-
tures in systems with relatively large coordination numbers. However,
these limitations are frequently of less importance than the possibility of
making quantitative predictions of reasonable accuracy under realistic
circumstances. Its utility and effectiveness will be amply demonstrated
in subsequent chapters.


