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LINEAR RESPONSE THEORY

This chapter is devoted to a concise presentation of linear response the-
ory, which provides a general framework for analysing the dynamical
properties of a condensed-matter system close to thermal equilibrium.
The dynamical processes may either be spontaneous fluctuations, or
due to external perturbations, and these two kinds of phenomena are
interrelated. Accounts of linear response theory may be found in many
books, for example, des Cloizeaux (1968), Marshall and Lovesey (1971),
and Lovesey (1986), but because of its importance in our treatment of
magnetic excitations in rare earth systems and their detection by inelas-
tic neutron scattering, the theory is presented below in adequate detail
to form a basis for our later discussion.

We begin by considering the dynamical or generalized susceptibility,
which determines the response of the system to a perturbation which
varies in space and time. The Kramers–Kronig relation between the
real and imaginary parts of this susceptibility is deduced. We derive
the Kubo formula for the response function and, through its connection
to the dynamic correlation function, which determines the results of a
scattering experiment, the fluctuation–dissipation theorem, which relates
the spontaneous fluctuations of the system to its response to an external
perturbation. The energy absorption by the perturbed system is deduced
from the susceptibility. The Green function is defined and its equation of
motion established. The theory is illustrated through its application to
the simple Heisenberg ferromagnet. We finally consider the calculation
of the susceptibility in the random-phase approximation, which is the
method generally used for the quantitative description of the magnetic
excitations in the rare earth metals in this book.

3.1 The generalized susceptibility

A response function for a macroscopic system relates the change of an
ensemble-averaged physical observable 〈B̂(t)〉 to an external force f(t).
For example, B̂(t) could be the angular momentum of an ion, or the mag-
netization, and f(t) a time-dependent applied magnetic field. As indi-
cated by its name, the applicability of linear response theory is restricted
to the regime where 〈B̂(t)〉 changes linearly with the force. Hence we
suppose that f(t) is sufficiently weak to ensure that the response is lin-
ear. We further assume that the system is in thermal equilibrium before
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the external force is applied.
When the system is in thermal equilibrium, it is characterized by

the density operator

ρ0 = 1

Z
e−βH0 ; Z = Tr e−βH0 , (3.1.1)

where H0 is the (effective) Hamiltonian, Z is the (grand) partition func-
tion, and β = 1/kBT . Since we are only interested in the linear part of
the response, we may assume that the weak external disturbance f(t)
gives rise to a linear time-dependent perturbation in the total Hamilto-
nian H:

H1 = −Â f(t) ; H = H0 + H1, (3.1.2)

where Â is a constant operator, as for example
∑

i Jzi, associated with
the Zeeman term when f(t) = gµBHz(t) (the circumflex over A or B
indicates that these quantities are quantum mechanical operators). As
a consequence of this perturbation, the density operator ρ(t) becomes
time-dependent, and so also does the ensemble average of the operator
B̂:

〈B̂(t)〉 = Tr{ρ(t) B̂}. (3.1.3)

The linear relation between this quantity and the external force has the
form

〈B̂(t)〉 − 〈B̂〉 =
∫ t

−∞
φBA(t − t′) f(t′)dt′, (3.1.4)

where 〈B̂〉 = 〈B̂(t = −∞)〉 = Tr{ρ0 B̂}; here f(t) is assumed to vanish
for t → −∞. This equation expresses the condition that the differential
change of 〈B̂(t)〉 is proportional to the external disturbance f(t′) and
the duration of the perturbation δt′, and further that disturbances at
different times act independently of each other. The latter condition
implies that the response function φBA may only depend on the time
difference t−t′. In (3.1.4), the response is independent of any future per-
turbations. This causal behaviour may be incorporated in the response
function by the requirement

φBA(t − t′) = 0 for t′ > t, (3.1.5)

in which case the integration in eqn (3.1.4) can be extended from t to
+∞.

Because φBA depends only on the time difference, eqn (3.1.4) takes
a simple form if we introduce the Fourier transform

f(ω) =
∫ ∞

−∞
f(t) eiωtdt, (3.1.6a)
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and the reciprocal relation

f(t) =
1
2π

∫ ∞

−∞
f(ω) e−iωtdω. (3.1.6b)

In order to take advantage of the causality condition (3.1.5), we shall
consider the Laplace transform of φBA(t) (the usual s is replaced by
−iz):

χBA(z) =
∫ ∞

0

φBA(t) eiztdt. (3.1.7a)

z = z1 + iz2 is a complex variable and, if
∫ ∞
0

|φBA(t)|e−εtdt is assumed
to be finite in the limit ε → 0+, the converse relation is

φBA(t) =
1
2π

∫ ∞+iε

−∞+iε

χBA(z) e−iztdz ; ε > 0. (3.1.7b)

When φBA(t) satisfies the above condition and eqn (3.1.5), it can readily
be shown that χBA(z) is an analytic function in the upper part of the
complex z-plane (z2 > 0).

In order to ensure that the evolution of the system is uniquely de-
termined by ρ0 = ρ(−∞) and f(t), it is necessary that the external
perturbation be turned on in a smooth, adiabatic way. This may be
accomplished by replacing f(t′) in (4) by f(t′) eεt′ , ε > 0. This force
vanishes in the limit t′ → −∞, and any unwanted secondary effects may
be removed by taking the limit ε → 0+. Then, with the definition of the
‘generalized’ Fourier transform

〈B̂(ω)〉 = lim
ε→0+

∫ ∞

−∞

(
〈B̂(t)〉 − 〈B̂〉

)
eiωt e−εtdt, (3.1.8)

eqn (3.1.4) is transformed into

〈B̂(ω)〉 = χBA(ω) f(ω), (3.1.9a)

where χBA(ω) is the boundary value of the analytic function χBA(z) on
the real axis:

χBA(ω) = lim
ε→0+

χBA(z = ω + iε). (3.1.9b)

χBA(ω) is called the frequency-dependent or generalized susceptibility
and is the Fourier transform, as defined by (3.1.8), of the response func-
tion φBA(t).

The mathematical restrictions (3.1.5) and (3.1.7) on φBA(t) have
the direct physical significance that the system is respectively causal
and stable against a small perturbation. The two conditions ensure that
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χBA(z) has no poles in the upper half-plane. If this were not the case,
the response 〈B̂(t)〉 to a small disturbance would diverge exponentially
as a function of time.

The absence of poles in χBA(z), when z2 is positive, leads to a rela-
tion between the real and imaginary part of χBA(ω), called the Kramers–
Kronig dispersion relation. If χBA(z) has no poles within the contour
C, then it may be expressed in terms of the Cauchy integral along C by
the identity

χBA(z) =
1

2πi

∫
C

χBA(z′)
z′ − z

dz′.

The contour C is chosen to be the half-circle, in the upper half-plane,
centred at the origin and bounded below by the line parallel to the z1-
axis through z2 = ε′, and z is a point lying within this contour. Since
φBA(t) is a bounded function in the domain ε′ > 0, then χBA(z′) must
go to zero as |z′| → ∞, whenever z′2 > 0. This implies that the part
of the contour integral along the half-circle must vanish when its radius
goes to infinity, and hence

χBA(z) = lim
ε′→0+

1
2πi

∫ ∞+iε′

−∞+iε′

χBA(ω′ + iε′)
ω′ + iε′ − z

d(ω′ + iε′).

Introducing z = ω + iε and applying ‘Dirac’s formula’:

lim
ε→0+

1
ω′ − ω − iε

= P 1
ω′ − ω

+ iπδ(ω′ − ω),

in taking the limit ε → 0+, we finally obtain the Kramers–Kronig rela-
tion (P denotes the principal part of the integral):

χBA(ω) =
1
iπ

P
∫ ∞

−∞

χBA(ω′)
ω′ − ω

dω′, (3.1.10)

which relates the real and imaginary components of χ(ω).


