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MAGNETIC STRUCTURES

The mean-field theory introduced in the previous section is used in this
chapter as a basis for examining some of the magnetic structures as-
sumed by the rare earth metals. The theory is presented at length in
the first section. Beginning with the expression for the free energy, some
general results are established for the magnetization, and applied ana-
lytically to the calculation of the susceptibility in the high-temperature
limit. The mean-field approximation is then developed, and a numerical
method for solving the resulting equations self-consistently, for magnetic
structures which are commensurable with the lattice, is described. The
Landau expansion of the free energy in terms of the order parameters
of the magnetic system provides the starting point for a discussion of
a number of the periodic magnetic structures which arise as a result
of the long range of the indirect-exchange interaction. The ordering
temperatures are calculated by analytical means, and the relative sta-
bility of different structures compared. In the following section, the
important extension by Callen and Callen of the Zener power-law for
the temperature dependence of the magnetic anisotropy is derived. The
thermal expectation values 〈Om

l 〉 of the Stevens operators are calcu-
lated and their dependence on the magnetization determined. From the
free energy, the magnetic anisotropy and the magnetoelastic coefficients
are deduced. We conclude with a detailed discussion of some magnetic
structures, using the aforementioned analytical methods, supplemented
by numerical calculations, to help identify those characteristics of the
magnetic interactions which lead to the stability of different moment-
configurations under various conditions. This account is illustrated by
various examples, with emphasis on the the diverse magnetic phases of
Ho. Among other structures, we consider the ferromagnet, the cone, the
helix, the longitudinal wave, the cycloid, and commensurable spin slips.
The effect of a magnetic field in stabilizing fan and helifan structures,
and the ordering of thin films and superlattices, are also discussed.

2.1 Mean-field theory of magnetic ordering

The simplest form of Hamiltonian which is adequate to explain the oc-
currence of most of the observed magnetic structures is

H =
∑

i

Hcf(i) − 1

2

∑
ij

J (ij)Ji ·Jj + HZ, (2.1.1a)
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where the first sum is the single-ion crystal-field Hamiltonian

Hcf(i) =
∑

l=2,4,6

B0
l O

0
l (Ji) +B6

6O
6
6(Ji), (2.1.1b)

the two-ion term is assumed to be isotropic, and the Zeeman term is

HZ = −
∑

i

µi ·Hi. (2.1.1c)

The field may vary spatially, so that we must specify its value on each
site, writing Hi ≡ H(Ri), and the magnetic moment on the ith ion is
µi = gµBJi.

The static-susceptibility tensor may be derived as the second deriva-
tive of the free energy, and we shall therefore begin by recapitulating a
few basic thermodynamic results. The free energy is

F = U − TS = − 1

β
lnZ, (2.1.2)

where U is the internal energy, S the entropy, and β = (kBT )−1. The
partition function is

Z = Tr
{
e−βH}

=
∑

p

e−βEp . (2.1.3)

Tr indicates the trace over a complete set of states, and the final sum-
mation may be performed if the eigenvalues Ep of the Hamiltonian are
known. The expectation value of an operator A is

〈A〉 = 1

Z
Tr

{
Ae−βH}

. (2.1.4)

The derivative of the free energy with respect to a variable x is

∂F

∂x
= − 1

βZ

∂Z

∂x
=

1
Z

Tr
{
∂H
∂x

e−βH
}

=
〈∂H
∂x

〉
. (2.1.5)

This expression is obtained by utilizing the invariance of the trace to the
basis used, assuming it to be independent of x and a cyclic permutation
of the operators, thus allowing a conventional differentiation of the ex-
ponential operator, as may be seen by a Taylor expansion. This result is
general, but the exponential operator can only be treated in this simple
way in second derivatives if ∂H/∂x commutes with the Hamiltonian,
which is usually not the case. However, we may be interested only in
the leading-order contributions in the limit where β is small, i.e. at high
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temperatures. Expanding in powers of β, we may use the approximation
exp{−βH} � 1 − βH + 1

2β
2H2. In this case, we may proceed as above,

and the result is

∂2F

∂x∂y
=

〈 ∂2H
∂x∂y

〉
+ β

(〈∂H
∂x

〉〈∂H
∂y

〉 − 〈∂H
∂x

∂H
∂y

〉)

−β
2

2
〈[∂H
∂x

,
∂H
∂y

]
H〉

+ O(β3),
(2.1.6)

where the second- and higher-order terms vanish if one of the derivatives
of H commutes with H itself.

In many instances, it is more convenient to consider the angular
momentum rather than the magnetic moment, with a corresponding
field variable hi = gµBHi, so that the Zeeman term (2.1.1c) becomes

HZ = −
∑

i

µi ·Hi = −
∑

i

Ji · hi. (2.1.7)

Since the exchange and anisotropy terms in H do not depend explicitly
on the field, ∂H/∂Hiα = −µiα and, using eqn (2.1.5), we have

〈µiα〉 = −∂F/∂Hiα or 〈Jiα〉 = −∂F/∂hiα. (2.1.8)

Next, we define the non-local susceptibilities

χµ
αβ(ij) = ∂〈µi〉/∂Hjβ = −∂2F/∂Hiα∂Hjβ , (2.1.9a)

and similarly

χJ
αβ(ij) = (gµB)−2χµ

αβ(ij) = −∂2F/∂hiα∂hjβ , (2.1.9b)

and the corresponding Fourier transforms, e.g.

χJ
αβ(q) = 1

N

∑
ij

χJ
αβ(ij)e−iq·(Ri−Rj) =

∑
j

χJ
αβ(ij)e−iq·(Ri−Rj).

(2.1.9c)
The final equality only applies in a uniform system. If the field is in-
creased by an infinitesimal amount δH(q)exp(iq ·Ri), the individual
moments are changed by

δ〈µiα〉 =
∑

j

∑
β

χµ
αβ(ij)δHβ(q)eiq·Rj , (2.1.10a)

according to (2.1.9). Hence the added harmonically-varying field intro-
duces one Fourier component in the magnetization:

δMα(q) = 1

V

∑
i

δ〈µiα〉e−iq·Ri = N

V

∑
β

χµ
αβ(q)δHβ(q), (2.1.10b)
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proportional to the susceptibility at the wave-vector considered. The
usual definition of the susceptibility components (per unit volume),
as used in Chapter 1, is δMα(q)/δHβ(q). The susceptibility used in
(2.1.10b) differs from this by the factor V/N , i.e. we are here considering
the susceptibility per atom instead of per unit volume. Furthermore,
since we shall not make any further use of χµ

αβ(q), we shall reserve the
notation χαβ(q) for the q-dependent susceptibility χJ

αβ(q), introduced
in eqn (2.1.9b), throughout the rest of the book. So in terms of the
susceptibility per atom, ‘in units of (gµB)2’, the above equation may be
written

δ〈Jα(q)〉 = 1

N

∑
i

δ〈Jiα〉e−iq·Ri =
∑

β

χαβ(q)δhβ(q), (2.1.10c)

with the upper index J in χJ
αβ(q) being suppressed from now on.

2.1.1 The high-temperature susceptibility
In order to calculate χ(q) in zero field, we shall first use the approxi-
mation (2.1.6) to the derivative of the free energy, valid at high temper-
atures. In this limit 〈Ji〉 = 0, and only one term in the expansion is
non-zero:

χαβ(ij) = βTr
{
JiαJjβ(1 − βH)

}/
Tr

{
1 − βH}

, (2.1.11)

to second order in β. The commutator in the third term on the right-
hand side of (2.1.6) is either zero or purely imaginary (if i = j and
α �= β), showing immediately that the expectation value of this term
must vanish in all cases. To first order in β, we obtain from (2.1.11)

χαβ(ij) � βTr
{
JiαJjβ

}/
Tr

{
1
}

= 1
3J(J + 1)βδαβδij ,

using the product of the eigenvectors of Jiα as the basis, and recalling
that ∑

m2 = 1
3J(J + 1)(2J + 1),

when m runs from −J to J . In order to calculate the second-order
contribution, we shall utilize the general tensor properties of the Stevens
operators, which satisfy the orthogonality condition:

Tr
{
Om

l (Ji)Om′
l′ (Jj)

}
= δijδll′δmm′Tr

{
[Om

l (Ji)]2
}

and Tr
{
Om

l (Ji)
}

= 0,
(2.1.12)

when l and l′ are both non-zero. O0
0 is just the identity operator. Jiα is

a linear combination of Om
1 (Ji), m = −1, 0, 1, and (2.1.12) then implies
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that the trace of the Hamiltonian (2.1.1) vanishes, and hence that the
denominator in (2.1.11) is Tr{1} = (2J + 1)N . For the second-order
term in the numerator, we find

Tr
{
JiαJjβH

}
= δijB

0
2Tr

{
JiαJiβO

0
2(Ji)

} − J (ij)Tr
{
JiαJjβJi ·Jj

}
= δijδαβB

0
2 Tr

{
J2

iα[3J2
iz − J(J + 1)]

} − δαβJ (ij)Tr
{
J2

iαJ
2
jα

}
,

utilizing that JiαJjβ is a linear combination of second- and lower-rank
tensors for i = j, and a product of first-rank tensors for i �= j. When
α = z (or ζ), we may readily calculate the first trace, using

∑
m4 = 1

15J(J + 1)(2J + 1)(3J2 + 3J − 1).

The traces with α = x or α = y must be equal, and using this equality
in the case α = x, for instance, we may replace J2

x in the trace by
1
2 (J2

x + J2
y ) → 1

2J(J + 1) − 1
2J

2
z . As the constant term multiplied by

3J2
z − J(J + 1) does not contribute (as Tr{3J2

z − J(J + 1)} = 0), the
trace with α = x or y is equal to −1/2 times that with α = z. Only the
single-ion terms contribute to the trace when i = j (J (ii) is assumed to
be zero), and of these only the lowest-rank term B0

2 appears, to leading
order. The two-ion coupling only occurs in the trace, and hence in
χαβ(ij), when i �= j, and this contribution may be straightforwardly
calculated. To second order in β, the off-diagonal terms are zero, whereas

χαα(ij) = δij
1
3J(J + 1)β

[
1 − 2

5 (3δαζ − 1)B0
2(J − 1

2 )(J + 3
2 )β

]
+

[1
3J(J + 1)β

]2J (ij).

Introducing the Fourier transform of the two-ion coupling,

J (q) =
∑

j

J (ij)e−iq·(Ri−Rj), (2.1.13)

we find that, to the order considered, the inverse of the q-dependent
susceptibility may be written

1/χαα(q) =
3kBT

J(J + 1)
+(3δαζ −1)

6(J − 1
2 )(J + 3

2 )
5J(J + 1)

B0
2 −J (q)+O(1/T ).

(2.1.14)
The inverse susceptibility in the high-temperature limit thus increases
linearly with the temperature, with a slope inversely proportional to the
square of the effective paramagnetic moment (∝ {J(J + 1)}1/2). The
susceptibilities determined experimentally by magnetization measure-
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Fig. 2.1. The inverse susceptibility, in atomic units, in Tm above TN .
The full lines depict the results of a mean-field calculation and the dashed
lines are extrapolations of the high-temperature limit. Experimental val-
ues are also shown. The MF theory predicts a deviation from the high-
temperature expression as the ordering temperature is approached from

above, because of crystal-field anisotropy effects.

ments are the bulk values at zero wave-vector. The straight lines found
at high temperatures for the inverse-susceptibility components 1/χαα(0)
versus temperature may be extrapolated to lower values, as illustrated in
Fig. 2.1. The values at which these lines cross the temperature axis are
the paramagnetic Curie temperatures θ‖ and θ⊥, determined respectively
when the field is parallel and perpendicular to the c-axis (ζ-axis). The
high-temperature expansion then predicts these temperatures to be

kBθ‖ = 1
3J(J + 1)J (0) − 4

5 (J − 1
2 )(J + 3

2 )B0
2 , (2.1.15a)

and

kBθ⊥ = 1
3J(J + 1)J (0) + 2

5 (J − 1
2 )(J + 3

2 )B0
2 . (2.1.15b)

Hence the paramagnetic Curie temperatures are determined by the
lowest-rank interactions in the Hamiltonian, i.e. those terms for which
l+ l′ = 2. The difference between the two temperatures depends only on
B0

2 , because of the assumption that the two-ion coupling is an isotropic
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Heisenberg exchange. The mean temperature (θ‖+2θ⊥)/3 is determined
by J (0) which, from (2.1.13), is the algebraic sum of the isotropic two-
ion interactions, and this temperature may be measured directly with a
polycrystalline sample. The two basal-plane components are found to
be equal. This is not just due to the assumption of high temperatures,
but is generally valid as long as there is no ordered moment in the basal-
plane. In this case, the c-axis is a three-fold symmetry axis, or effectively
a six-fold axis, due to the symmetry of the basal-plane anisotropy B6

6 in
the Hamiltonian. The susceptibility is a second-rank tensor, according
to (2.1.9), and it cannot therefore vary under rotation about a three- or
six-fold axis.

2.1.2 The mean-field approximation
The high-temperature expansion may be extended to higher order in β,
but the calculations rapidly become more complex, so we shall instead
adopt another approach, the mean-field approximation. In this method,
the correlated fluctuations of the moments around their equilibrium val-
ues are neglected. In order to introduce 〈Ji〉 into the Hamiltonian, we
utilize the identity

Ji · Jj = (Ji − 〈Ji〉) · (Jj − 〈Jj〉) + Ji · 〈Jj〉 + Jj · 〈Ji〉 − 〈Ji〉 · 〈Jj〉.

The MF approximation then consists in neglecting the first term on
the right-hand side, which is associated with two-site fluctuations, since
i �= j. The Hamiltonian (2.1.1) is then effectively decoupled into a sum
of N independent terms for the single sites; H � ∑

i HMF(i), where

HMF(i) = Hcf(i) − Ji · hi −
(
Ji − 1

2 〈Ji〉
) · ∑

j

J (ij)〈Jj〉, (2.1.16)

in the presence of an external magnetic field hi = gµBHi. Introducing
the effective field

heff
i = hi +

∑
j

J (ij)〈Jj〉, (2.1.17a)

we may write the MF Hamiltonian

HMF(i) = Hcf(i) − Ji · heff
i + 1

2 〈Ji〉 · (heff
i − hi). (2.1.17b)

Self-consistent solutions of the MF equations may sometimes be obtained
analytically, but numerical methods may be used more generally, pro-
vided that the periodicity of the magnetic structure is commensurable
with that of the lattice. For an assumed distribution of 〈Jj〉, the effec-
tive field and hence the MF Hamiltonian for the ith site is calculated.
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Diagonalizing this Hamiltonian, we may derive the partition function
Zi, the free energy Fi, and the expectation value 〈Ji〉 for this site. The
last term in (2.1.17b) just adds a constant contribution to Fi, without
affecting 〈Ji〉. Performing this calculation for all the different ions, we
determine the various values of 〈Jj〉, and the total free energy is the
sum of the Fi. The derived values of 〈Jj〉 are used as the input for
a new MF Hamiltonian, and this iterative procedure is repeated un-
til self-consistency is attained. The self-consistent solution of the MF
Hamiltonian may be one in which 〈Ji〉 is non-zero even in zero field, thus
describing the occurrence of a spontaneous ordering of the moments.

Having found the self-consistent solution for the angular momenta,
we may proceed to calculate the susceptibility. The MF Hamiltonian for
the ith site has been diagonalized, and we shall denote the (2J+1) eigen-
states by | p >, with corresponding energy eigenvalues Ep. If the effec-
tive field is changed by a small amount δheff

β , the Zeeman term −Jiβδh
eff
β

must be added to the Hamiltonian, and E(1)
p = Ep− <p | Jiβ | p> δheff

β ,
to first order in the perturbation, provided that | p > is a set which di-
agonalizes the perturbation within the possibly degenerate subspaces of
the zero-field Hamiltonian. The new eigenstates are

| p(1) > = | p> −δheff
β

∑
p′

′| p′><p′ | Jiβ | p> /(Ep − Ep′),

where the terms for which Ep = Ep′ vanish. Using (2.1.3) and (2.1.4),
we then have, to first order in δheff

β ,

〈J (1)
iα 〉 =

∑
p

<p(1) | Jiα | p(1) > n(1)
p =

∑
p

<p | Jiα | p> n(1)
p

− δheff
β

∑
pp′

′
<p | Jiα | p′><p′ | Jiβ | p> np/(Ep − Ep′)

− δheff
β

∑
pp′

′
<p | Jiβ | p′><p′ | Jiα | p> np/(Ep − Ep′),

where the last two sums extend over states for which Ep �= Ep′ . The
population factor of the pth level at δheff

β = 0 is np = exp(−βEp)/Zi,

and n(1)
p is the corresponding factor at the field δheff

β . By differentiation,
we find

∂n(1)
p /∂(δheff

β ) =
{
<p | Jiβ | p> −

∑
p′

<p′ | Jiβ | p′> np′
}
βnp

=
{
<p | Jiβ | p> − 〈Jiβ〉

}
βnp.

Introducing this result in the equation above, and interchanging p and
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p′ in the last sum, we obtain finally:

χ o
αβ(i) = ∂〈Jiα〉/∂heff

β =
Ep �=Ep′∑

pp′

<p | Jiα | p′><p′ | Jiβ | p>
Ep′ − Ep

(np − np′)

+ β

Ep=Ep′∑
pp′

<p | Jiα | p′><p′ | Jiβ | p> np − β〈Jiα〉〈Jiβ〉. (2.1.18)

The second summation is transformed in such a way that it is no longer
necessary for Jiβ to be diagonal within the degenerate subspaces, as re-
quired initially. The first term in the susceptibility is the Van Vleck con-
tribution, which becomes constant at zero temperature, whereas the sec-
ond term, the Curie contribution, diverges as 1/T in the low-temperature
limit. The susceptibility deduced above is that determining the response
due to a change of the effective field, δ〈Ji〉 = χ

o(i)δheff
i , whereas we wish

to know the response due to a small change of the external field. If a
small harmonically-varying field δhqexp(iq ·Ri) is applied, the effective
field, according to (2.1.17a), is

δheff
i = δhqe

iq·Ri +
∑

j

J (ij)χ o(j)δheff
j .

This equation may be solved by a Fourier transformation if χ o(i) = χ
o

is site-independent, which it is so long as 〈Ji〉 is independent of i, as
in the high-temperature paramagnetic phase, for example, where 〈Ji〉 =
0. Neglecting any site-dependence of χ o, and introducing the notation
δheff

i = δheff
q exp(iq ·ri), we get

δheff
q =

{
1 − χ

oJ (q)
}−1

δhq,

or, by the definition of the susceptibility,

χ(q) =
{
1 − χ

oJ (q)
}−1

χ
o
. (2.1.19a)

In the following, we shall assume that the external magnetic field is
zero. With this restriction, χ(q) is diagonal in the (ξηζ)-coordinate
system, and the reciprocal susceptibility, in the MF approximation, may
be written

1/χαα(q) = 1/χ o
αα − J (q). (2.1.19b)

In the degenerate case, (2.1.18) implies that χ o
αα = βJ(J + 1)/3. How-

ever, if Hcf is non-zero, the expression (2.1.18) for the susceptibility be-
comes quite complex. A drastic simplification is achieved by assuming a
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small value of β. In this high temperature limit, χ o may be calculated
by a procedure equivalent to that used in deriving (2.1.14), except that
J (ij) = 0. Hence, to second order in β, we have

χ o
αα � 1

3J(J + 1)β
[
1 − 2

5 (3δαζ − 1)(J − 1
2 )(J + 3

2 )B0
2β

]
. (2.1.20)

Introducing (2.1.20) in (2.1.19), we obtain the same result as previously
derived in (2.1.14), demonstrating that the MF approximation is cor-
rect in the high-temperature limit. Although the thermal fluctuations
increase when the temperature is raised, they also become increasingly
uncorrelated. It is the latter effect which is the most pronounced, and
the correction to the MF value of the free energy, proportional to the cor-
relation energy of the two-site fluctuations J (ij){〈Ji ·Jj〉 − 〈Ji〉 · 〈Jj〉},
decreases with temperature at high temperatures. In the other limit
of zero temperature, the correlation effects are much stronger, but the
fluctuations themselves are small. We may therefore also expect the
MF approximation to be accurate in this limit, and to provide a useful
interpolation at intermediate temperatures.

χ
o increases steadily with decreasing temperature. If the crystal-

field ground state is degenerate, the second sum in (2.1.18) is non-zero
and χ o diverges in the zero-temperature limit. Because of the Kramers
degeneracy, the ground state is always at least doubly degenerate if 2J is
odd. When J is an integer, the ground state may be a singlet, in which
case χ o saturates at a constant value at zero temperature. Except in this
special case, it is always possible to find a temperature where 1/χαα(q)
is zero, corresponding to an infinite χαα(q). The largest value of the
q-dependent susceptibility is found at the wave-vector Q at which J (q)
has its maximum. Of the three non-zero components of χ(Q), the cc-
component is the largest if B0

2 is negative. If B0
2 is positive, on the

other hand, the two equal basal-plane components are the largest. It
is the maximum component of the susceptibility at q = Q which first
diverges when the system is cooled. This divergence signals that the
paramagnetic ground-state becomes unstable against the formation of
an ordered state in which the moments are modulated with the wave-
vector Q, and point along or perpendicular to the c-direction, depending
on whether B0

2 is respectively negative or positive. Hence, a second-order
phase transition takes place at this critical temperature, called the Curie
temperature, TC , or the Néel temperature, TN , depending on whether
Q = 0 or Q �= 0. Just below TN , the ordered moment 〈Ji〉 is small, and
the free energy of the ith ion may be expanded in powers of this moment.
In order to establish this expansion, we first consider the Hamiltonian
H′(i) = Hcf(i) − Ji · h. The corresponding free energy may be written

F ′
i = F0/N − 〈Ji〉 · h +

∑
α

Aα〈Jiα〉2 +
∑
αβ

Bαβ〈Jiα〉2〈Jiβ〉2 + · · · .
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Except for the field term, this expansion only includes products of com-
ponents in which the sum of the exponents is even, because of time-
reversal symmetry. Using the equilibrium condition ∂F ′

i/∂〈Jiα〉 = 0,
and recalling that 〈Jiα〉 = χ o

αα(σ = 0)hα to leading order, in the zero-
field limit, we obtain

Aα =
{
2χ o

αα(σ = 0)
}−1

, (2.1.21a)

where χ o
αα(σ = 0) is the MF susceptibility (2.1.18), in the limit of zero

magnetization (field). The susceptibility decreases with increasing mag-
netization (or field), as described by the fourth-order terms. An order-
of-magnitude estimate of Bαβ may be obtained by neglecting Hcf(i). In
this case, the magnetization as a function of the field is given by the
Brillouin function (1.2.31):

〈Jiα〉 = JBJ (βJhα) � 1
3J(J + 1)βhα

{
1 − 1

15 (J2 + J + 1
2 )β2h2

α

}
,

which, in combination with the equilibrium condition for the free energy,
determines Bαα. The off-diagonal terms may be obtained straightfor-
wardly by utilizing the condition that, when Hcf(i) is neglected, the free
energy should be invariant with respect to any rotation of the magneti-
zation vector, implying that all the coefficients Bαβ are equal, or

Bαβ ≈ 9
20
J2 + J + 1

2

J3(J + 1)3
kBT. (2.1.21b)

The introduction of the crystal-field terms of course modifies this result,
but rather little in the high-temperature limit. Under all circumstances,
the effective six-fold symmetry around the c-axis implies that Bαβ is
symmetric, Bξξ = Bηη = Bξη, and Bξζ = Bηζ , and it also eliminates
the possibility that any other fourth-order terms may contribute. The
expansion of the free energy of the total system, when the external
field is zero, is obtained from the expansion of F ′

i , summed over i, by
substituting the exchange field heff

i =
∑

j J (ij)〈Jj〉 for h, and adding
the ‘constant’ 1

2 〈Ji〉 · heff
i , so that

F = F0− 1

2

∑
ij

J (ij)〈Ji〉·〈Jj〉+
∑

i

[∑
α

Aα〈Jiα〉2+
∑
αβ

Bαβ〈Jiα〉2〈Jiβ〉2
]

(2.1.22)
to fourth order in the magnetization. This expansion of the free energy
in terms of the order parameter(s) is called the Landau expansion.

Assuming the ordered phase to be described by a single wave-vector,
we may write

〈Jiα〉 = Jσα cos(q ·Ri + ϕα), (2.1.23)
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where σα = σα(q) is the relative magnetization at the wave-vector q.
Introducing this into the free-energy expression, and utilizing the condi-
tion that

∑
i cos(q′ ·Ri + ϕ) = 0, if q′ is not a reciprocal lattice vector,

we find

f = (F−F0)/N = 1
4J

2
∑
α

{2Aα − J (q)}σ2
α

+ 1
8J

4
∑
αβ

Bαβ{2 + cos 2(ϕα − ϕβ)}σ2
ασ

2
β , (2.1.24)

if 4q is different from a reciprocal lattice vector. The coefficients of
the second power are thus ∝ {2Aα − J (q)} = 1/χαα(q, σ = 0), where
the susceptibility is evaluated at zero magnetization. As long as all the
second-order coefficients are positive, at any value of q, the free energy
is at its minimum when σα = 0, i.e. the system is paramagnetic. The
smallest of these coefficients are those at q = Q, where J (q) has its
maximum. In the heavy rare earths, with the exception of Gd, Q is
non-zero and is directed along the c-axis. Depending on the sign of
B0

2 , the magnetic structures occurring in the heavy rare earths may be
divided into two classes, which we will discuss in turn.

2.1.3 Transversely ordered phases
When B0

2 > 0, as in Tb, Dy, and Ho, the two basal-plane components
of χ(Q) both diverge at the same critical temperature TN . Using the
approximate high-temperature value (2.1.20) for the susceptibility, we
find that 1/χξξ(Q, σ = 0) = 1/χηη(Q, 0) = 2Aξ − J (Q) vanishes at the
temperature determined by

kBTN � 1
3J(J + 1)J (Q)

[
1 + 2

5 (J − 1
2 )(J + 3

2 )B0
2/kBTN

]
. (2.1.25)

Below TN , both σξ and ση are generally non-zero at the wave-vector Q,
and the free energy f , given by (2.1.24) with σζ = 0, is minimized when
σξ(Q) = ση(Q) = σQ, and

σQ =
(J (Q) − 2Aξ

4J2Bξξ

)1/2

; ϕξ − ϕη = ±π
2
, (2.1.26a)

corresponding to the helical ordering:

〈Jiξ〉 = JσQ cos (Q ·Ri + ϕ)

〈Jiη〉 = ±JσQ sin (Q ·Ri + ϕ).
(2.1.26b)

The length of the angular-momentum vector is JσQ, independent of the
site considered. There are two energetically-degenerate configurations,
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a right- or a left-handed screw, depending on the choice of sign. From
the condition 1/χξξ(Q, 0) ∝ (T − TN), sufficiently close to TN , we get
the usual MF result that the order parameter σQ ∝ (TN − T )1/2. Al-
though 1/χξξ(Q, 0) becomes negative below TN , the inverse of the actual
susceptibility, 1/χξξ(Q) = 1/χξξ(Q, σQ), does not. Analogously to the
derivation of Aα in (2.1.21a), it may be seen that 1/χξξ(Q) is a second
derivative of the free energy, i.e.

1/χξξ(Q) = ∂2f/∂(JσQ)2

� 1/χξξ(Q, σ = 0) + 12J2Bξξσ
2
Q = −2/χξξ(Q, σ = 0).

Hence, 1/χξξ(Q) is non-negative, as it must be to ensure that the system
is stable, as is also the case for any other component of the susceptibility.

Because |〈Ji〉| is constant, the umklapp contributions to the free
energy in (2.1.24), for which 4Q is a multiple of the reciprocal-lattice
parameter 4π/c, cancel. The free energy of the helix is therefore inde-
pendent of the lattice, at least to the fourth power in the magnetization.
If the anisotropy terms in Hcf can be neglected, the helix is the most
stable configuration satisfying the condition that |〈Ji〉| = Jσ is constant.
With this constraint, only the two-ion interaction term in the free en-
ergy (2.1.22) may vary, and this may be minimized by the method of
Lagrange multipliers (Nagamiya 1967). We will begin with the weaker
constraint;

∑
i〈Ji〉2 = N(Jσ)2 is constant, which means that we have

to minimize the energy expression

U = −1

2

∑
ij

J (ij)〈Ji〉 · 〈Jj〉 + λ
∑

i

(〈Ji〉2 − (Jσ)2
)

= N
∑
q

{ − 1
2J (q) + λ

}〈J(q)〉 · 〈J(−q)〉 −Nλ(Jσ)2,
(2.1.27a)

where the introduction of 〈Ji〉 =
∑

q〈J(q)〉exp(iq ·Ri), as in (2.1.10c),
yields the second form. Minimizing this expression with respect to
〈J(−q)〉, we obtain the following equation:

∂U/∂〈J(−q)〉 = N
{ − J (q) + 2λ

}〈J(q)〉 = 0,

assuming J (−q) = J (q). For a given value of λ, this condition is only
satisfied if either 〈J(q)〉 = 0, or if q = qλ, where J (qλ) = 2λ, which
implies that only 〈J(qλ)〉 may be non-zero. Introducing this condition
in U , we find

U = −Nλ(Jσ)2 = −1
2NJ (qλ)(Jσ)2, (2.1.27b)
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which is then minimized with respect to q when qλ = Q, at which
wave-vectorJ (q) has its maximum. Hence the two-ion energy attains its
minimum when only the two Fourier components 〈Ji(±Q)〉 are non-zero.
The stronger constraint that |〈Ji〉| should be constant is then met only by
the helix (2.1.26). In the zero-temperature limit, this constraint derives
from the fact that the moments attain their saturation value, |〈Ji〉| = J ,
immediately the exchange field is not identically zero, since χ o

αα(σ = 0)
diverges in this limit when Hcf = 0. At elevated temperatures, it is
clear that the sum of the single-ion terms in the free energy (the A-
and B-terms in (2.1.22)) is most effectively minimized if the minimum
condition is the same for all the ions. When Hcf = 0, there are no
restrictions on the plane in which the moments spiral; it may be rotated
freely, without change in energy, as long as |Ji| is constant and all the
components vary with the wave-vector Q. This behaviour is analogous
to that of the Heisenberg ferromagnet, which may be considered as a
helically ordered system with Q = 0. If Q is not perpendicular to the
plane in which the moments lie, the structure is called the tilted helix
(Elliott 1971; Sherrington 1972) and the extreme case, with Q in the
plane of the moments, is the cycloidal structure. When B0

2 > 0, the
orientation of the plane is stabilized to be perpendicular to the c-axis,
and with Q along this axis we obtain the true helical structure.

If B0
2 > 0 is the only crystal-field parameter of importance, the

regular helix is the stable structure in the whole temperature interval
between zero and TN . If the Landau expansion (2.1.22) is continued to
the sixth power in the magnetization, a term appears proportional to
B6

6 , distinguishing between the a- and b-directions in the basal-plane.
Instead of using this expansion, we shall consider the alternative expres-
sion for the free energy, to leading order in B6

6 ,

F � F1 − 1

2

∑
ij

J (ij)〈Ji〉 · 〈Jj〉 +
∑

i

B6
6〈O6

6(Ji)〉

= F1 − 1

2

∑
ij

(Jσ)2J (ij) cos (φi − φj) +
∑

i

κ6
6 cos 6φi,

(2.1.28)

where Ji = Jσ(cosφi, sinφi, 0) and F1 is the part independent of φi.
The expectation values are those obtained in the limit B6

6 = 0, i.e. σ
and κ6

6 are assumed to be independent of the angle φi. The presence
of the six-fold anisotropy term distorts the helix. In order to solve the
equilibrium equation

∂F/∂φi = (Jσ)2
∑

j

J (ij) sin (φi − φj) − 6κ6
6 sin 6φi = 0,

we introduce the expansion

φi = ui + γ sin 6ui + · · · ; ui = Q ·Ri, (2.1.29a)
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using the series

exp[i(u+ γ sin 6u)]
= J0(γ)eiu + J1(γ)

(
ei7u − e−i5u

)
+ J2(γ)

(
ei13u + e−i11u

)
+ · · ·

� eiu +
γ

2
(
ei7u − e−i5u

)
, (2.1.29b)

where Jn(x) are the Bessel functions. To leading order in γ, the equi-
librium equation then gives

γ =
12κ6

6

(Jσ)2
{
2J (Q) − J (5Q) − J (7Q)

} , (2.1.30a)

and the free energy is reduced proportionally to γ2:

F/N = F1/N − 1
2 (Jσ)2J (Q) − 1

8 (Jσ)2
{
2J (Q) − J (5Q) − J (7Q)

}
γ2.

(2.1.30b)
The hexagonal anisotropy introduces harmonics, of equal magnitude,
in the basal-plane moments at the wave-vectors 6Q± Q and, in higher
order, at the wave-vectors 6mQ±Q. If κ6

6, and thus also γ, are negative,
the easy directions in the plane are the a-axes. In the special case
where the angle ui = π/12, i.e. the unperturbed ith moment is half-way
between an easy and a hard direction, the largest change φi − ui = γ
occurs in the orientation of the moments, and the angle to the nearest
easy direction is reduced, since ui lies between 0 and π/6, and κ6

6 is
negative. The moments in the helix are therefore distorted so that they
bunch around the easy axes.

The above calculation is not valid if Q is 0 or 2π/c, when the hexag-
onal anisotropy may be minimized without increasing the exchange en-
ergy, as it may also if the (average) turn angle ω of the moments from
one hexagonal plane to the next is a multiple of 60◦, so that 6Q is an
integer times 4π/c. The products of the fifth and seventh harmonics
introduce additional umklapp contributions to the free energy if 12Q is
a multiple of the effective reciprocal-lattice spacing 4π/c, implying that
the cases where ω is p30◦ and p = 1, 3, 5 are also special. In higher
order, corrections appear whenever m12Q = p4π/c, where m and p are
integers and 0 ≤ p ≤ 6m, i.e. at any commensurable value of Q, but
the corrections decrease rapidly with m, excluding cases where m and p
have common factors. In contrast to the result found above, the com-
mensurable contributions depend on the absolute phase ϕ in (2.1.26b),
and an adjustment of this phase will quite generally allow the system to
reduce the anisotropy energy through the umklapp terms. This change
in energy may compensate for the increase in the exchange energy when
the ordering wave-vector Q is changed from its value Q = Q0, at which
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J (q) has its maximum, to a nearby commensurable value Qc. Hence
the hexagonal anisotropy couples the helical magnetic structure to the
lattice, and it may induce continuous or abrupt changes of the ordering
wave-vector as a function of temperature, as discussed, for instance, by
Bak (1982). In Ho, 12Q0 is close to 4π/c, and the hexagonal anisotropy
is large at low temperatures. Experimental investigations have shown
that a number of commensurable values of Q are stabilized in this sys-
tem, as we shall discuss in more detail in the last section of this chapter.

2.1.4 Longitudinally ordered phases
When B0

2 is negative, as in Er and Tm, χζζ(Q) is the component of the
susceptibility which diverges at the highest temperature, and the high-
temperature expansion predicts that 2Aζ − J (Q) vanishes at a critical
temperature determined by

kBTN � 1
3J(J + 1)J (Q)

[
1 − 4

5 (J − 1
2 )(J + 3

2 )B0
2/kBTN

]
. (2.1.31)

Just below this temperature, only the component σζ at the wave-vector
Q is non-zero and, from the free energy expansion (2.1.24), ∂f/∂σζ = 0
determines the relative magnetization as

σζ(Q) = σQ =
(J (Q) − 2Aζ

3J2Bζζ

)1/2

. (2.1.32)

The free energy is independent of the phase ϕ = ϕζ , so we set ϕ = 0. If
we add another Fourier component with q �= ±Q:

〈Jiζ〉 = JσQ cos (Q ·Ri) + Jσq cos (q ·Ri + ϕ′) (2.1.33)

then, if mQ ± nq is different from a reciprocal lattice vector, where m
and n are integers and m+ n = ±4, the free energy is

f = 1
4J

2
[{2Aζ − J (Q)}σ2

Q + {2Aζ − J (q)}σ2
q

]
+ 1

8J
4Bζζ

[
3σ4

Q + 3σ4
q

+ 12σ2
Qσ

2
q + 4σ3

Qσqδq,±3Q cosϕ′ + 4σQσ
3
qδ3q,±Q cos 3ϕ′].

(2.1.34)
This result shows that, if q = 3Q or q = 1

3Q, there is an extra fourth-
order contribution to the free energy (q → −q represents the same
structure with ϕ′ → −ϕ′). Of these two special cases, the one where
q = 3Q is the most interesting, because the extra term is linear in σ3Q.
This means that the third harmonic appears simultaneously with the
basic Fourier component at Q. Minimizing the free energy given by
(2.1.34), we find

σ3Q =
J2Bζζ

J (Q) − J (3Q)
σ3
Q ; ϕ′ = ϕ+ π, (2.1.35a)
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neglecting a term proportional to σ2
Q in the denominator. The 3Q-

component is thus proportional to σ3
Q, and hence to (TN − T )3/2. De-

noting the wave-vector at which J (q) has its maximum by Q0, we con-
clude that the appearance of the third harmonic implies that f has its
minimum at a value of Q slightly different from Q0. Minimizing the free
energy with respect to Q along the c-axis, by requiring ∂f/∂Q = 0, we
obtain to leading order

Q = Q0 − 3
J ′(3Q0)
J ′′(Q0)

(
σ3Q

σQ

)2

. (2.1.35b)

J ′′(Q0) is negative, so the shift Q− Q0 has the same sign as J ′(3Q0)
and is proportional to (TN − T )2. The other special case, 3q = Q, re-
flects the possibility that, if J (Q0/3) is close to J (Q0), the system may
reduce its energy by making a first order transition to a state where
Q � Q0/3 is the fundamental wave-vector, with the third harmonic be-
ing close to Q0. The presence of a term in the free energy cubic in the
order parameter, σQ/3 in this case, implies that the transition becomes
of first order, so that the order parameter changes discontinuously from
zero to a finite value. The Q0/3-transition appears to be of no impor-
tance in real systems, so we shall return to the discussion of the other
case. If the free energy is expanded to higher (even) powers in the rel-
ative magnetization, it is clear that the (2n+ 2)-power term leads to a
contribution proportional to σ(2n+1)Qσ

2n+1
Q which, in combination with

the term quadratic in σ(2n+1)Q, implies that the ordering at the fun-
damental wave-vector Q induces a (2n + 1)-harmonic proportional to
σ2n+1
Q ∝ (TN − T )(2n+1)/2. Starting as a pure sinusoidally modulated

wave at TN , the moments approach the square wave

〈Jiζ〉 =
4J
π

(
cosx− 1

3 cos 3x+ 1
5 cos 5x− 1

7 cos 7x+ · · · )
x=Q·Ri+ϕ

,

(2.1.36a)
in the limit of zero temperature where 〈Jiζ〉 = ±J , neglecting strong
anisotropy effects. Although the behaviour of the angular momentum
is simple, the dependence of the free energy on the wave-vector is com-
plicated. It is only when the ordering is incommensurable, i.e. mQ is
different from any multiple of the length 4π/c of the reciprocal-lattice
vector along the c-axis, that the energy of the square-wave structure at
T = 0 is

f(0) = 〈Hcf〉 − 4J2

π2

{J (Q) + 1
9J (3Q) + 1

25J (5Q) + · · ·}. (2.1.36b)

An infinitesimal change of the ordering wave-vector from Q, which min-
imizes f(0), to Qc may make it commensurable with the lattice, so that
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mQc = p(4π/c) and additional umklapp terms contribute to the free
energy. Again these contributions depend on the absolute phase ϕ, and
there will always be values of Qc close to Q leading to a lower free energy
than that obtained in the incommensurable case. In the low-temperature
limit, the modulation of the c-axis moment is therefore locked to the
lattice periodicity. This tendency is already apparent close to TN . In
the expansion of the free energy considered above for m = 4, umklapp
terms modify the fourth-power coefficient, and analogous effects occur in
higher powers of the magnetization. This indicates that the system may
stay commensurable even near TN although, in the close neighbourhood
of TN , the critical fluctuations neglected here may oppose this tendency.
The optimal value of Qc may change as a function of temperature, in
which case the system will exhibit a number of first-order, or possibly
continuous, transitions from one commensurable structure to another.
Of these structures, those for which Qc = 3Qc = 5Qc = · · ·, i.e. Qc = 0
or 2π/c, are particularly stable, as they only involve one wave-vector,
so that f(0) = 〈Hcf〉 − 1

2J
2J (Qc) (in this connection, we note that

1 + 1
9 + 1

25 + · · · = π2/8). The anisotropic Ising-model with competing
interactions, the so-called ANNNI model, is a simplified version of the
above, and it shows a rich variety of different incommensurable, com-
mensurable, and chaotic ordered structures as a function of temperature
and the coupling parameters (Bak 1982).

2.1.5 Competing interactions and structures
The complex behaviour of the longitudinally ordered phase is a conse-
quence of the competition between the single-ion part of the free energy,
which favours a structure in which the magnitude of the moments varies
as little as possible, particularly at low temperature, and the two-ion
contributions, which prefer a single-Q ordering. When B0

2 is positive,
helical ordering satisfies both tendencies without conflict. This points
to another alternative which the longitudinal system may choose. Al-
though χζζ(Q) decreases below TN , the two perpendicular components
continue to increase, and they may therefore diverge at a lower temper-
ature T ′

N . Assuming the expansion (2.1.24) of the free energy still to be
valid at T ′

N , and neglecting the third and higher harmonics of 〈Jiζ〉, we
may write it:

f = f(σQ)+1
4J

2
∑

α=ξ,η

[
2Aξ − J (Q) +Bξζ(JσQ)2{2 + cos 2(ϕα − ϕ)}]σ2

α

+1
8J

4Bξξ

[
3σ4

ξ + 3σ4
η + 2{2 + cos 2(ϕξ − ϕη)}σ2

ξσ
2
η

]
. (2.1.37)

The effective coefficient of σ2
α (α = ξ or η) is smallest when ϕα = ϕ± π

2 ,
meaning that the basal-plane moments appearing just below T ′

N , where
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this coefficient vanishes, are locked to be out of phase by 90◦ with the
c-axis component. This phase difference arises because the transverse
MF susceptibility χ o

ξξ for the single sites increases as the c-axis exchange
field falls. Using the estimate (2.1.21b) for the B-tensor, and the high-
temperature value for Aξ, we find the transition temperature to be

kBT
′
N � 1

3J(J + 1)J (Q)
[
1 + 2

5 (J − 1
2 )(J + 3

2 )B0
2/kBT

′
N

− 3
20{1 + 1

2 (J + 1)−2}σ2
Q

]
.

(2.1.38)

A slightly better estimate may be obtained by calculating the MF value
of the transverse susceptibility directly, in the presence of a non-zero
exchange field, which just causes the replacement of σQ in (2.1.38) by
3σQJ (Q)/[J(J + 1)kBT

′
N ] (Miwa and Yosida 1961). However, both re-

sults are based on the high-temperature expansion, which ceases to be
valid at low temperatures. In the zero-temperature limit, χ o

ξξ of the ith
site remains finite, being of the order J/heff

iζ . This saturation implies
that the transition does not necessarily occur. If the c-axis is favoured
too strongly by the anisotropy terms, the basal-plane components re-
main disordered at low temperatures, as is observed in Tm. When the
basal-plane moments order, as in Er, eqn (2.1.38) may give a reasonable
estimate of the transition temperature. As mentioned previously, the
modulation of the basal-plane moments, just below T ′

N , is locked at 90◦

out of phase with that of the c-axis component. Since this applies to
both components, only a linearly-polarized moment can develop at the
transition temperature, with a relative magnitude σ⊥ = (σ2

ξ + σ2
η)1/2,

in a specified but arbitrary direction in the plane. If the sixth-power
terms are included in the free energy, B6

6 favours either the a- or the
b-directions, but there are still six equivalent but different directions of
the moments in the basal plane with equal energies. To be specific, we
may assume that B6

6 is negative and that the ordered moments in the
basal plane establish themselves along the ξ-axis. In this case, the mo-
ments all lie in the ξ–ζ plane in an elliptic cycloidal structure. Displaced
to a common origin, the hodograph of the moments is an ellipse, with
its principal axes along the ξ- and ζ-axes, as is illustrated, in connection
with our discussion of Er, in Fig. 2.6 on page 120. The c-axis moments
will still show a strong tendency towards squaring up with decreasing
temperature, as long as they are large compared with the basal-plane
moments. Because of the phase-locking between the components, the
higher odd-harmonics in the modulation of the c-axis moments will also
be reflected in the basal-plane.

At high temperatures, B0
2 is the dominant anisotropy parameter,

and its sign determines whether the system orders in a helically or lon-
gitudinally polarized structure, when Q0 is along the c-axis. If B0

2 is still
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the most important axial-anisotropy parameter in the low-temperature
limit, the helix is still a stable structure at T = 0 whereas, in the lon-
gitudinally polarized case, the tendency to minimize the variation of
the lengths of the moments may result in two different paths. Either
the system stays in the longitudinally polarized phase, ending up as a
(commensurable) square-wave structure at T = 0, or it goes through
a transition to an elliptic cycloidal structure. The path which is cho-
sen depends on the magnitude of B0

2 ; if the effective axial anisotropy
−B0

2〈O0
2〉 is sufficiently large, the ordering of the basal-plane moments

is quenched. It has already been mentioned in Section 1.5 that this
anisotropy depends on the magnetization, being proportional approxi-
mately to σ3. We shall discuss this renormalization in more detail in
the next section, but it is worth mentioning here that this behaviour
of the effective anisotropy-parameter means that there is an intermedi-
ate range of B0

2 for which the system makes a transition to the elliptic
cycloidal structure, but leaves it again at a lower temperature, by re-
turning to the longitudinally polarized phase when −B0

2〈O0
2〉 becomes

large enough. When B0
4 and B0

6 are included, a more realistic situation
may occur, in which the low-temperature anisotropy favours an orienta-
tion of the moments making an angle θ with the c-axis, which is neither
0 or π/2 but some, temperature-dependent, intermediate value. In the
case of the helix, this means that there will be a critical temperature
T ′

N (below TN) where the effective axial anisotropy parameter vanishes,
and below which the c-axis moments are ordered. If the ordering wave-
vector for the c-axis component is the same as the helical wave-vector,
the structure adopted is the tilted helix. However the two-ion coupling
between the c-axis moments, J‖(q) with q ‖ c-axis, is not restricted
by any symmetry argument to be equal to the coupling between the
basal-plane moments, J⊥(q) = J (q) with its maximum at q = Q0.
If the maximum of J‖(q) lies at a q �= Q0, the c-component will or-
der at this wave-vector and not at Q0, as the extra energy gained by
the c-component by locking to the basal-plane moments is very small,
being proportional to {B6

6〈O6
6〉/(Jσ)2J (Q)}2. When B0

2 is negative, a
non-zero value of θ favours the elliptic cycloidal structure, compared to
the longitudinally polarized phase. If the system is already in the cy-
cloidal phase, it may undergo a new second-order transition, in which
the plane of the ellipse starts to tilt away from the ξ–ζ plane, in close
correspondence with the behaviour of the helix. Referring back to eqn
(2.1.37), we observe that this transition occurs when the coefficient of
σ2

η, with ϕη = ϕ (+π) = ϕξ ± π/2, becomes zero. The phase-locking en-
ergy, comprising the terms in (2.1.37) involving ϕη, is more important in
this case than in the helix, but it is nevertheless possible that the third
component may order at a wave-vector different from that of the other
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two. If the η-component is locked at the same wave-vector as the two
other components, and if the ellipse is tilted just such an amount that
ση = σξ, the structure is a helix superimposed on a modulated c-axis
moment. If a transition to the tilted cycloidal structure has occurred,
and the hexagonal anisotropy is small, it might be favourable for the
system at a lower temperature to pass directly, via a first-order transi-
tion, to this helical structure in which the c-axis component is no longer
phase-locked to the basal-plane moments.

Instead of basing our analysis on the Hamiltonian (2.1.1), we may
use symmetry arguments for deriving the most general behaviour of the
magnetic ordering in hcp crystals. We have already indicated that J‖(q)
may differ from J⊥(q) and mentioned some of the consequences. The
assumption that the c-axis is effectively a six-fold axis of the lattice leads
to the strong restriction that the expansion of the free energy, (2.1.22) or
(2.1.24), only involves even powers of each of the Cartesian components,
when q is along this axis. This has the consequence, for example, that
all the main transitions, at TN or T ′

N , are predicted to be of second
order, excluding those involving changes of the same component, i.e.
transitions between different commensurable structures. However, there
are two-ion terms which reflect the fact that the c-axis is only a three-fold
axis. The term of lowest rank has the form

H3(i ∈ s’th plane) = (−1)sK3

[
(Jiζ − 1

2 〈Jiζ〉)
〈
O−3

3 (Js+1) −O−3
3 (Js−1)

〉

+(O−3
3 (Ji) − 1

2 〈O−3
3 (Ji)〉)

〈
Js+1,ζ − Js−1,ζ

〉]
, (2.1.39)

in the MF approximation, where only interactions between neighbouring
planes are included. O−3

3 = (J3
+ − J3

−)/2i, and Js±1 denotes a moment
in the (s±1)th plane. The contribution of this coupling to the expansion
(2.1.22) of the free energy to the fourth power is found by adding

∑
i〈H3〉

to F , using the approximation 〈O−3
3 (Ji)〉 ∝ 〈Jiη〉(3〈Jiξ〉2 − 〈Jiη〉2) =

〈J⊥〉3 sin 3φi. One remarkable effect is that this coupling introduces a
term linear in 〈Jiζ〉 in the helix. If the basal-plane moments are ordered
with the wave-vector Q, they induce a c-axis moment modulated with
a wave-vector along the c-axis of length 2π/c − 3Q, provided that 6Q
is not a reciprocal lattice vector. In the elliptic cycloidal structure, this
coupling induces an ordering of the η-component at the two wave-vectors
of length 2π/c−Q and 2π/c− 3Q, when the ellipse is assumed to lie in
the ξ–ζ plane and only the fundamental at Q is considered. Although
this additional coupling may not change the nature of the transitions at
TN or T ′

N , it has qualitative consequences for the magnetic structures,
and it may introduce new effects associated with commensurability. For
instance, the three-fold symmetrical interaction will favour the commen-
surable structure with Q = π/2c (an average turn angle of 45◦). In the
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case of a helix with this particular period, the coupling induces a modu-
lation of the c-axis moments with the same wave-vector, 2π/c−3Q = Q,
causing a tilting of the plane of the helix.

2.1.6 Multiply periodic structures
We have so far only considered order parameters which are specified by
two Q-vectors (±Q), or one Q plus a phase. This is a consequence of
the assumption that Q is along the c-axis. If Q is in the basal-plane,
as in the light rare earths Pr and Nd, there are six equivalent ordering
wave-vectors, ±Q1, ±Q2, and ±Q3, where the three vectors make an
angle of 120◦ with each other. This leads to the possibility that the
ordered structure is a multiple-Q structure, where

〈Ji〉 = J1 cos (Q1 ·Ri + ϕ1)+J2 cos (Q2 ·Ri + ϕ2)+J3 cos (Q3 ·Ri + ϕ3)
(2.1.40)

referred to as single-, double-, or triple-Q ordering, depending on the
number of vectors Jp which are non-zero. The transition at TN will
generally involve only a single real vector Jp for each Qp, as implic-
itly assumed in (2.1.40). We will not therefore consider multiple-Q cy-
cloidal/helical structures, but restrict the discussion to configurations
which correspond to the type observed in Pr or Nd. We furthermore
neglect the complications due to the occurrence of different sublattices
in the dhcp crystals, by assuming the lattice to be primitive hexagonal.
This simplification does not affect the description of the main features
of the magnetic structures. On the hexagonal sites of Pr and Nd, the
ordered moments below TN lie in the basal plane. This confinement is
not primarily determined by the sign of B0

2 , but is decisively influenced
by the anisotropic two-ion coupling

Han = 1

2

∑
ij

K(ij)
[
(JiξJjξ −JiηJjη) cos 2φij +(JiξJjη +JiηJjξ) sin 2φij

]
,

(2.1.41)
where φij is the angle between the ξ-axis and the projection of Ri −Rj

on the basal plane. This anisotropic coupling, which includes a minor
contribution from the classical dipole–dipole interaction, is known from
the excitation spectrum to be of the same order of magnitude as the
isotropic coupling in Pr, as we shall discuss in Chapter 7, and must
be of comparable importance in Nd. We define the coupling parameter
K(q) = K0(q) + K6(q) cos 6ψq, where ψq is the angle between q (in the
basal plane) and the ξ-axis, and K0(q)±K6(q) is the Fourier transform
of ±K(ij) cos 2φij when q is respectively parallel or perpendicular to
the ξ-axis. Introducing Jp = Jσp, and assuming the moments to be
perpendicular to the c-axis, we find the mean-field free energy of second
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order in σp to be

f2(σp) = 1
4J

2
∑

p

[{2Aξ − J (Qp)}σ2
p + K(Qp){2(σp ·Q̂p)2 − σ2

p}
]
,

(2.1.42)
where Q̂p = Qp/Qp. In Pr and Nd, the maximum of J (q) ± K(q) is
found at q = Q along the η-axis, or the other equivalent b-axes, with Q
being about one fourth of the distance to the Brillouin-zone boundary,
and K(Q) is negative. The transition between the paramagnetic phase
and a phase described by (2.1.40), with Jp lying in the hexagonal plane,
then occurs when the coefficient 2Aξ −J (Q)+K(Q) vanishes, at which
temperature the corresponding factor for the c-component of the mo-
ments, 2Aζ −J (Q), is still positive in Pr and Nd. Besides confining the
moments to the hexagonal planes, K(Q) also removes the degeneracy
between the two states in which Jp is parallel or perpendicular to Qp.
With a negative K(Q), the anisotropic coupling favours a longitudinal
ordering of the moments at TN , with Jp parallel to Qp. Just below TN ,
the magnitude of the ordered moments is determined by f2(σp), together
with the fourth-order contributions. When the moments lie in the basal
plane (B = Bξξ = Bηη = Bξη), we obtain, from eqn (2.1.22),

f4(σp) = B
1

N

∑
i

(〈Ji〉 · 〈Ji〉
)2

= BJ4
[

3
8

∑
p

σ4
p + 1

4

∑
p�=p′

{
σ2

pσ
2
p′ + 2(σp ·σp′)2

}]
.

(2.1.43)

Introducing the effective order parameter σ, defined by σ2 =
∑

p σ
2
p, we

obtain further:

f � f2(σp)+f4(σp) = 1
4J

2
{
2Aξ−J (Q)+K(Q)

}
σ2+ 3

8J
4B σ4, (2.1.44)

assuming Jp parallel to Qp along the three b-axes making an angle of
120◦ with each other (Q̂p · Q̂p′ = −1/2 when p �= p′). Hence the free
energy, in this approximation, is independent of whether the ordering is
single-, double- or triple-Q. Instead of utilizing (2.1.22), we may appeal
to symmetry arguments, by which the fourth-order term may readily be
seen to have the general form

f4(σp) = u
∑

p

σ4
p + 1

2v
∑
p�=p′

σ2
pσ

2
p′ , (2.1.45a)

as long as the angles between the different σp vectors remain at 120◦

(Bak and Lebech 1978). Introducing the parameter w ≡ v−2u, we may
write this:

f4(σp) = u
( ∑

p

σ2
p

)2 + 1
2w

∑
p�=p′

σ2
pσ

2
p′ = (u+ γw)σ4, (2.1.45b)
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where γ = 0, 1/4, or 1/3 respectively, in a single-, double-, or triple-
Q structure. If only an isotropic two-ion coupling and the crystal-field
terms are included, 2u = v or w = 0, and the different multiple-Q
structures are degenerate to the fourth power of the order parameter.
This situation is not changed by the anisotropic dipole coupling K(q)
introduced above (as long as σp is parallel to Qp). However, two-ion
quadrupole couplings may remove the degeneracy. For example, the
coupling K2(ij)J2

i+J
2
j− makes a contribution proportional to

w ∼ 3K2(0) + K2(2Q) − 2K2(Q) − 2K2(Q1 − Q2). (2.1.46)

Depending on the detailed q-dependence of this coupling, it may lead
to a positive or a negative contribution to w. If w is positive, the single-
Q structure is stable, and conversely a negative w leads to a triple-Q
structure just below TN . The Landau expansion for this case has been
discussed by Forgan (1982), Walker and McEwen (1983) and McEwen
and Walker (1986), who all take the possible contributions to w as being
of magnetoelastic origin. In Pr, the dominating magnetoelastic interac-
tion is known to be due to the γ-strain coupling, and a rough estimate
(including both the uniform and modulated γ-strain) indicates that v
is unaffected, whereas the reduction of u proportional to B2

γ2/cγ , with
the parameters of (1.5.27), is about 10%, corresponding to a positive
contribution to w of about 0.2u, or to an energy difference between the
single- and double-Q structures of ∼ 0.05uσ4. If the other quadrupolar
contributions are unimportant, as is indicated by the behaviour of the
excitations in Pr (Houmann et al. 1979), we should expect the single-Q
structure to be favoured in Pr and Nd, at least close to TN .

If w is relatively small, the single- or triple-Q structures may only be
stable in a narrow temperature range below TN , because the sixth-order
contributions may assume a decisive influence. A number of new effects
appear in this order, but the most important stems from the possibility
that the moments and the wave-vectors may rotate away from the b-
directions, as first considered by Forgan (1982). The (σp ·σp′)2-term in
(2.1.43) may drive such a rotation, because it favours an orthogonal con-
figuration of the different σp vectors, since B is positive. This term does
not appear in the single-Q structure, whereas in the triple-Q case, f4(σp)
is reduced quadratically with θp, where θp is the angle between Jp and
the nearest b-direction. However, the much larger quadratic increase of
f2(σp), due to K(Q), will eliminate any tendency for θp to become non-
zero. In contrast, f4(σp) depends linearly on θp in the double-Q struc-
ture, and the free energy can always be reduced by allowing the two com-
ponents σ1 and σ2 (with σ3 = 0) to rotate towards each other. Defining
J6(Q) equivalently to K6(Q), i.e. J (Q) = J0(Q) + J6(Q) cos 6ψQ, and
using the constraint that the change of ψQ for the pth component must
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have the same sign as θp, we may write the angular-dependent part of
the free energy, to the fourth power of the magnetization, as

f(θ, ψ) = 1
4J

2
[ − J6(Q) + K6(Q) cos 2(θ − ψ)

]
× {σ2

1 cos(π + 6ψ) + σ2
2 cos(5π − 6ψ)}

+1
4J

2K0(Q)(σ2
1 + σ2

2) cos 2(θ − ψ) +BJ4σ2
1σ

2
2 cos2(2π/3 − 2θ).

(2.1.47a)
For definiteness, we have chosen the case where the angle between the
ξ-axis and σ1 or σ2 is respectively π/6 + θ and 5π/6− θ (by symmetry
θ = θ1 = −θ2). Analogously to θ, ψ is the angle between Qp and the
nearest b-axis. Introducing σ2 = 2σ2

1 = 2σ2
2 , and expanding f(θ, ψ) to

second order in the small angles, we obtain

f(θ, ψ) = f0 − 9
2 (Jσ)2{J6(Q) −K6(Q)}ψ2 − 1

2 (Jσ)2K(Q)(θ − ψ)2

− 1
4 (Jσ)4B(

√
3θ − 2θ2). (2.1.47b)

We note that, with the chosen sign conventions, K(Q) = K0(Q)−K6(Q)
and J6(Q) − K6(Q) are both negative. The additional contribution to
the free energy of the double-Q structure is minimized when

θ =
√

3B(Jσ)2

4|K(Q)| + ψ ; ψ =
√

3B(Jσ)2

36|J6(Q) −K6(Q)| , (2.1.48a)

neglecting the small term proportional to Bθ2, in which case

∆f = − 3
32B

2(Jσ)6
(

− 1

K(Q)
− 1

9

1

J6(Q) −K6(Q)

)
. (2.1.48b)

Introducing A = Aξ(T = TN), i.e. J (Q) − K(Q) = 2A, then for Pr we
have: K(Q) � −0.24A, J6(Q) − K6(Q) � −0.05A, and BJ2 � 0.35A.
These values may also provide a reasonable estimate in the case of Nd.
Inserting them in (2.1.48), we find that θ � 3ψ � 1.0σ2, and ∆f �
−0.2BJ4σ6 � −0.5uσ6. So, even though ∆f is of sixth order in σ,
it outweighs the small fourth-order energy difference of wσ4/4 between
the single- and the double-Q structure when σ2 ≈ 0.1, if w � 0.2u as
estimated above. The temperature T ′

N at which this occurs is ∼ 0.97 TN ,
i.e. ∼ 0.9K below TN in Nd. Hence, if w is positive and has the estimated
small magnitude, the system will first undergo a second-order transition
from the paramagnetic phase to a single-Q structure, which will only
be stable as long as σ2 is small. At T ′

N , slightly below TN , the system
will make a first-order transition to a double-Q structure, in which the
moments J1 and J2 are rotated slightly towards each other and away
from the symmetry axes, as also are the ordering wave-vectors Q1 and
Q2. These rotations are proportional to σ2.
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The explicitly sixth-order contribution to the free energy, propor-
tional to (1/N)

∑
i(〈Ji〉·〈Ji〉)3, is somewhat smaller than the estimated

value of ∆f , and it leads to energy differences between the different
multiple-Q structures which are a further order of magnitude smaller.
The hexagonal-anisotropy term, which also appears in this order, is
minute compared to the anisotropy introduced by K(Q) in Pr and Nd,
and its influence on the turn angles ψ and θ should be negligible. The
only other new effect in this order is the appearance of higher harmon-
ics. The mechanism is identical to that discussed in Section 2.1.4 for
the longitudinally-polarized phase, but in addition to the occurrence of
third harmonics at the wave-vectors 3Qp, equivalently to (2.1.35a), they
also appear at all possible combinations of 2Qp ± Qp′ (p �= p′) in the
multiple-Q structures. In the triple-Q structure, one might expect third
harmonics also at Q1±Q2±Q3, but the new wave-vectors derived from
this condition are either 0, which changes the symmetry class of the
system, or twice one of the fundamental wave-vectors, which are ener-
getically unfavourable because they do not contribute to the ‘squaring
up’. These extra possibilities in the triple-Q case are not therefore real-
ized. The appearance of the higher ‘odd’ harmonics is not important for
the energy differences between the different multiple-Q structures, but
they may provide an experimental method for differentiating between
the various possibilities (Forgan et al. 1989). In a neutron-diffraction
experiment, the scattering intensity at the fundamental wave-vectors in
a multi-domain single-Q structure, with an equal distribution of the
domains, is the same as that produced by a triple-Q structure. These
structures may then be distinguished either by removing some of the
domains by applying an external field, or by using scattering peaks at,
for instance, 2Q1±Q2 to exclude the possibility of a single-Q structure.

The discussion of this section has been based exclusively on the MF
approximation, which neglects the important dynamical feature that a
system close to a second-order phase-transition will show strong corre-
lated fluctuations in the components which order at the transition. A
discussion of the effects of the critical fluctuations is beyond the scope
of this book, and we refer instead to the recent introduction to the field
by Collins (1989), in which references may be found to the copious lit-
erature on the subject. Although the MF approximation does not take
into account the contributions to the free energy from the critical fluctua-
tions, it gives a reasonable estimate of the transition temperatures in the
rare earth metals, which can all be characterized as three-dimensional
systems with long-range interactions. The fluctuations contribute to
the free energy on both sides of the transition, and they only suppress
the transition temperature by a few per cent in such systems. The
Landau expansion considered above does not predict the right critical
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exponents, but it is nevertheless decisive for which universality classes
the phase transitions belong to. The transitions which are predicted to
be continuous by the MF theory, i.e. all those considered above which
are not accompanied by a change of Q to a commensurable value, may
be driven into (weak) first-order behaviour by the fluctuations. An im-
portant parameter for determining the nature of the phase transition is
the product (n) of the number of components of the order parameter,
and of the star of the wave-vector (Mukamel and Krinsky 1976; Bak
and Mukamel 1976), the latter being two, corresponding to ±Q, for the
periodically-ordered heavy rare earths. If n ≤ 3, the transition is ex-
pected to remain continuous, which is in accord with the observation by
Habenschuss et al. (1974) of a second-order transition in Er, since n = 2
for the transition between the paramagnetic and the longitudinally or-
dered phase. The transition from the paramagnet to the helix is less
clear-cut, since it belongs to the class n = 4, and a theoretical analysis
by Barak and Walker (1982) suggested that it might be discontinuous.
The bulk of the experimental evidence points towards a continuous tran-
sition (Brits and du Plessis 1988) but some measurements, especially by
Zochowski et al. (1986) on pure Dy, indicate a very weak discontinuity.
In the case of the multiple-Q structures, the fluctuations may drive the
transition to the single-Q structure to be discontinuous, whereas that to
the triple-Q structure, if it is stable, should stay continuous (Bak and
Lebech 1978). In Nd, for example, a single-Q state is formed at TN

and the transition is found to be weakly discontinuous (Zochowski and
McEwen 1986). In accordance with the MF analysis above, a first-order
transition leads to a double-Q structure less than a degree below TN

(McEwen et al. 1985).


