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1.5 Rare earth magnetism

The interactions discussed in the preceding section are the origin of the
characteristic magnetic properties of the rare earth metals. The long-
range and oscillatory indirect exchange gives rise to incommensurable
periodic structures, the crystal fields and anisotropic two-ion coupling
induce a magnetic anisotropy which may require fields up to hundreds
of tesla to overcome, and the magnetoelastic interactions cause magneto-
strictive strains which may approach one per cent. In the following, we
shall give a brief description of some features of rare earth magnetism, as
a prelude to a more detailed discussion of selected structures in the next
chapter, and as a necessary basis for our later treatment of magnetic
excitations. We have emphasized general principles, with appropriate
illustrations, and have not attempted an exhaustive description of the
magnetic properties of each element. This task has been accomplished by
McEwen (1978), following earlier surveys by Rhyne (1972) and Coqblin
(1977), and we shall refer to his comprehensive review article for further
details, while quoting more recent investigations where appropriate.

Below the critical temperatures, listed in Table 1.6 on page 57, the
rare earth metals form magnetically ordered phases. In the heavy ele-
ments, the maximum moment of gµBJ per ion is approached in moderate
fields at low temperatures. As is also apparent from Table 1.6, there is an
additional contribution from the conduction electrons, which is almost
10% of the total moment in Gd, and appears to fall with S, as expected
from (1.3.23). In their ordered phases, all the moments in a particular
plane normal to the c-axis are aligned but, as illustrated in Fig. 1.19,
their relative orientations may change from plane to plane. The mag-
netic structures of the heavy rare earths, which have been thoroughly
reviewed by Koehler (1972) and Sinha (1978), derive basically from two
different configurations of moments. In the helix, the expectation values
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of the moments take the form:

〈Jiξ〉 = 〈J⊥〉 cos(Q·Ri + ϕ)
〈Jiη〉 = 〈J⊥〉 sin(Q·Ri + ϕ)
〈Jiζ〉 = 0,

(1.5.1)

while the longitudinal wave, sometimes known in the heavy rare earths
as the c-axis modulated structure or CAM, is described by

〈Jiζ〉 = 〈J‖〉 cos(Q·Ri + ϕ), (1.5.2)

with the two other components being zero. The wave-vectors Q are along
the c-axis, and the associated wavelength 2π/Q does not necessarily bear
any simple relationship to the lattice spacing.

Fig. 1.19. Magnetic structures of the heavy rare earths. The moments
in a particular hexagonal layer are parallel, and the relative alignments
of different planes are illustrated. From left to right; the basal-plane

ferromagnet, the helix, the cone, and the longitudinal-wave structure.
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A helix is formed at the Néel temperature in Tb, Dy, and Ho, while
the longitudinal-wave structure is preferred in Er and Tm. If the Q-
vectors are zero, a ferromagnetic structure results, with the ordered mo-
ment along some specified direction. In Tb and Dy at low temperatures,
the easy direction of magnetization lies in the plane, while in Gd, which
has a very small magnetic anisotropy, it is along the c-axis just below
the Curie temperature, but is tilted about 30◦ towards the b-axis at low
temperatures. If a ferromagnetic component in the c-direction is added
to the helix, the moments rotate on the surface of a cone with its axis
in the c-direction. This conical structure is stable in both Ho and Er
at the lowest temperatures, but the cone angle between the c-axis and
the moments at 4K is large (about 80◦) in the former, and small (about
30◦) in the latter. If the plane of the moments in the helix is rotated
about an axis in the hexagonal plane, so that its normal makes a non-
zero angle with Q, the structure becomes the tilted helix, which may be
regarded as a combination of a helix and a longitudinal wave, with the
same Q-vectors. This structure has not been definitively identified in
the elements in zero field. The moments in the hexagonal plane of Er
do order below 52K, with the same period as the c-axis modulation, but
they are most probably confined to the a–c plane, in an elliptically polar-
ized cycloidal structure (Miwa and Yosida 1961; Nagamiya 1967) in the
whole temperature interval between 52K and the transition to the cone
(Jensen 1976b). As the temperature is reduced, in the modulated c-axis
phases, the moments on the individual sites approach their saturation
values, resulting in a squaring of the longitudinal wave which manifests
itself in higher odd harmonics. This phenomenon is observed in both Er
and Tm and, in the latter, results in a low-temperature ferrimagnetic
square-wave structure in which alternately four layers of moments point
up and three layers point down.

The hexagonal anisotropy B6
6 tends to distort the helical structure,

by deflecting the moments towards the nearest easy axis. In a helix
which is incommensurable with the lattice periodicity, this effect may be
treated by perturbation theory, which predicts a change of the energy
in second order. However, in Ho at low temperatures, B6

6 is so large
that the magnetic structure is forced to be commensurable with the lat-
tice, so that Q has the magnitude π/3c, and the turn angle between the
moments in successive planes averages 30◦. It was verified experimen-
tally by Koehler et al. (1966) that, under these circumstances, the large
hexagonal anisotropy causes the helix to distort so that the moments in
the plane bunch about the b-directions, as illustrated in Fig. 1.20. This
bunched helix is described by

〈Jiξ〉 = 〈J⊥〉(u sinQ·Ri − v sin 5Q·Ri)

〈Jiη〉 = 〈J⊥〉(u cosQ·Ri + v cos 5Q·Ri),
(1.5.3a)



1.5 RARE EARTH MAGNETISM 53

where

u = cos(π/12 − φ) ; v = sin(π/12 − φ), (1.5.3b)

and any moment deviates from the nearest b-axis by the bunching angle
φ. At 4K, φ in Ho is 5.8◦, and it increases monotonically with temper-
ature towards the value 15◦ which characterizes the uniform commen-
surable helix. An increase in temperature also causes an increase in Q,
but it was shown by Gibbs et al. (1985) that this change does not oc-
cur smoothly and continuously. Instead, the magnetic periodicity tends
to lock in to values commensurable with the lattice, and they proposed
that this is a manifestation of spin-slip structures, in which the moments
are arranged in a pattern in which one of the planes in regularly spaced
members of the bunched doublets of Fig. 1.20 is omitted, while the re-
maining plane of the pair orients its moments along the adjacent easy
axis. We shall discuss such structures in more detail in the next chapter.

Fig. 1.20. The 4f contribution to the magnetization of Ho at 4K,
calculated by a self-consistent mean-field theory and compared with ex-
perimental values. The zero-field structure is a bunched cone, comprising
the illustrated bunched helix in the plane, and a small moment in the
c-direction. The value of the c-axis moment, deduced from neutron-

diffraction measurements, is indicated by the arrow.
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The aforementioned magnetic structures may readily be understood
as the result of the co-operation and competition between the oscillatory
indirect exchange, which is relatively strong in the heavy rare earths, be-
cause (g−1)J is generally large, and the crystal-field and magnetoelastic
anisotropy forces. The origin of the periodic structures can be explained
by writing (1.4.21) in the form

Hff = −N

2

∑
q

J (q)J(q)·J(−q), (1.5.4)

where the Fourier transform of the magnetic structure is

J(q) = 1

N

∑
i

Jie
−iq·Ri . (1.5.5)

In order to minimize the energy of the magnetic system, this term will
favour a Q vector which corresponds to the maximum in J (q). The
maxima shown in Fig. 1.17 thus reflect the observed Q values in the
heavy rare earths through their position, and the relative stability of the
periodic structures through their magnitude. The isotropic exchange
does not in itself specify any orientation of the moments relative to
the crystal axes. The normal to a planar helix can, for example, be
rotated into an arbitrary direction without altering the exchange energy.
This flexibility is realized in Eu, where the crystal-field anisotropy is
very small because, like Gd, it has no ionic orbital moment. Neutron-
diffraction studies of a single crystal by Millhouse and McEwen (1973)
showed a first-order transition to a helical structure, and magnetization
measurements indicate that the plane of the helical structure is always
normal to the direction of a moderate applied field, even though Q
remains along a four-fold axis of the bcc structure.

It is the magnetic anisotropy which fixes the magnetic structure rel-
ative to the crystal axes. As may be seen from eqn (1.4.4), the two-fold
axial anisotropy (proportional to J2

ζ ) is also proportional to the Stevens
factor α. If A0

2 is negative throughout the heavy rare earths, as we shall
see is the case, the values in Table 1.4 immediately explain why Tb and
Dy have easy axes in the hexagonal plane, while the moments in Tm
are strongly bound to the c-axis. In Ho and Er the higher-order axial
anisotropy is important, but the values of α are consistent with the re-
spectively large and small cone angles. Similarly, the alternation in the
sign of γ in the series of the heavy elements is reflected in the easy direc-
tions of magnetization in the hexagonal plane. The competition between
the exchange and the anisotropy is manifested in the low-temperature
magnetic structures. In the ferromagnetic phases of Tb and Dy, the



1.5 RARE EARTH MAGNETISM 55

anisotropy and magnetoelastic forces, which are averaged out or ineffec-
tive in the helical structure, are strong enough to overcome the relatively
weak tendency to periodic ordering. In Tm, on the other hand, a com-
promise obtains, by which the moments take their maximum value along
the c-axis, but alternate in direction so as to take advantage of the large
peak in J (q). In Ho, the balance is so delicate that the weak classical
dipolar interaction plays a crucial role, as we shall discuss in Section 2.3.

In order to explain the temperature dependence of the structures,
it is necessary to determine the configuration of the moments which
minimizes the free energy, taking into account the influence of increasing
temperature and magnetic disorder on the interactions. Provided that
the magnitude |〈Ji〉| of the ordered moment is the same on all sites, the
entropy term is independent of the details of the ordering (Elliott 1961),
so the stable structure has the minimum energy. In exchange-dominated
systems, like the heavy rare earths, the ordered moment approaches its
saturation value at low temperature. As the temperature is increased,
the structure which has the lowest energy may change as the effective
interactions renormalize. This may occur either through a second-order
transition, in which some order-parameter goes continuously to zero or,
more commonly, discontinuously through a first-order transition. At
elevated temperatures, the entropy may favour a structure, such as the
longitudinal wave, in which the degree of order varies from site to site.

A conceptually simple but powerful means of calculating magnetic
properties, and their dependence on the temperature, is provided by the
molecular-field approximation or mean-field theory. We shall describe
this method in some detail in the next chapter, but it is convenient to
introduce it here in order to establish a few elementary results. The
essential feature of the theory is the approximation of the two-ion in-
teractions by effective single-ion terms, by replacing the instantaneous
values of the J operators on the surroundings of any particular ion by
their thermal averages. The effect of the exchange interaction (1.4.21)
with the surrounding ions on the moment at Ri may then be written

Hff(i) � −(Ji − 1
2 〈Ji〉) ·

∑
j

J (ij)〈Jj〉, (1.5.6)

which in turn may be written in terms of an effective magnetic field

Heff(i) = (gµB)−1
∑

j

J (ij)〈Jj〉, (1.5.7)

plus a constant contribution to the energy. If the sum of the applied and
effective fields is small, which will generally be true in the paramagnetic
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phase (but not if spontaneous ordering occurs), the magnetic moment
of the system per unit volume, neglecting the anisotropy, is given by
Curie’s law (1.2.32):

M =
g2µ2

BJ(J + 1)
3kBT

N

V
(H + Heff). (1.5.8)

For a uniform system, we may write

Heff =
1

g2µ2
B

V

N

∑
j

J (ij)M =
J (0)
g2µ2

B

V

N
M, (1.5.9)

recalling that

J (q) =
∑

j

J (ij) e−iq·(Ri−Rj), (1.5.10)

and the susceptibility is therefore

χMF =
g2µ2

BJ(J + 1)
3kBT

N

V

[
1 − J (0)J(J + 1)

3kBT

]−1

≡ C

T − θ
, (1.5.11)

where C is the Curie constant (1.2.32), and the paramagnetic Curie
temperature is

θ =
J (0)J(J + 1)

3kB

. (1.5.12)

From the Curie–Weiss law (1.5.11) it is apparent that, if nothing else
happens, the susceptibility diverges at θ, which is therefore also the
Curie temperature TC at which spontaneous ferromagnetism occurs in
this model.

The bulk magnetic properties of the rare earths are summarized
in Table 1.6, where the moments are given in units of µB/ion, and the
temperatures in K. The theoretical paramagnetic moments per ion are
µ = g{J(J + 1)}1/2µB, and are compared with values deduced from
the linear magnetic susceptibilities in the paramagnetic phases, using
(1.5.11). The theoretical saturation moments per ion are gµBJ , from
(1.2.30), and are compared with low-temperature values, in fields high
enough essentially to saturate the magnetization, or in the highest fields
in which measurements have been made (McEwen et al. 1973). θ‖ and θ⊥
are the paramagnetic Curie temperatures, deduced from measurements
with a field applied respectively parallel and perpendicular to the c-
axis, and using (1.5.11). As we shall see in Section 2.1.1, there are
corrections to this expression at finite temperatures, which give rise to a
non-linearity in the inverse susceptibility. A simple linear extrapolation
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therefore gives values for the paramagnetic Curie temperatures which
depend on the highest temperature of the measurements. The fit to
the experimental results for Tm illustrated in Fig. 2.1, for example, in
which the mean-field corrections are taken into account, gives θ‖ and
θ⊥ as respectively 52K and −3K, which differ significantly from the
values deduced from a linear extrapolation of the same results, given in
Table 1.6. A similar analysis for Er yields 69K and 46K. The ordering
temperatures are determined either from bulk measurements or neutron
diffraction. TN and TC denote transition temperatures to magnetically-
ordered states without and with a net moment respectively, and values
are given for sites of both kinds of symmetry, in the light rare earths.

Table 1.6. Magnetic properties of rare earth metals.

Metal Para.moment Sat.moment θ‖ θ⊥ TN TC

µ Obs. gJ Obs. hex. cub.

Ce 2.54 2.51 2.14 0.6 13.7 12.5
Pr 3.58 2.56 3.20 2.7a 0.05
Nd 3.62 3.4 3.27 2.2a 19.9 8.2
Pm 2.68 2.40
Sm 0.85 1.74 0.71 0.13a 106 14.0
Eu 7.94 8.48 7.0 5.1a 90.4
Gd 7.94 7.98 7.0 7.63 317 317 293
Tb 9.72 9.77 9.0 9.34 195 239 230 220
Dy 10.65 10.83 10.0 10.33 121 169 179 89
Ho 10.61 11.2 10.0 10.34 73 88 132 20
Er 9.58 9.9 9.0 9.1 62 33 85 20
Tm 7.56 7.61 7.0 7.14 41 −17 58 32

a Values measured at 38 tesla.

A straightforward generalization of the above argument (see Sec-
tion 2.1) gives the response of the ions in the paramagnetic phase to a
spatially varying magnetic field with wave-vector q. The corresponding
susceptibility tensor (not to be confused with that for the conduction-
electron gas) is

χMF(q) =
g2µ2

BJ(J + 1)
3kBT

N

V

[
1 − J (q)J(J + 1)

3kBT

]−1

=
C

T − TN

.

(1.5.13)
Spontaneous ordering is therefore predicted to occur at the wave-vector
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Q for which J (q) has its maximum value, and the Néel temperature is

TN =
J (Q)J(J + 1)

3kB

. (1.5.14)

Since, from (1.4.22), J (q) varies as (g − 1)2, the critical temperature is
expected to be proportional to the de Gennes factor (g − 1)2J(J + 1),
provided that the susceptibility of the conduction-electron gas is con-
stant. As may be seen from Tables 1.1 and 1.6, this relationship is
rather accurately obeyed for the heavy rare earths, though not so well
in the light elements. The crystal-field interactions influence the criti-
cal temperatures significantly, especially in the light end of the series,
and both the electronic susceptibility and the matrix elements of the
sf -exchange coupling, which together determine the indirect spin–spin
interaction JS(q), change through the series. The scaling of the critical
temperature with the de Gennes factor is therefore more precise than
would have been anticipated. The mean-field theory is known to be in-
adequate in the vicinity of the critical temperature, but as the rare earth
metals are three-dimensional systems with long-range interactions, the
transition temperature itself is rather well determined by this approxi-
mation. The theory is valid at high temperatures, and should describe
the static magnetic structures adequately in the low-temperature limit.
The discussion of the dynamical behaviour requires a time-dependent
generalization of the mean-field, accomplished by the random-phase ap-
proximation. We shall later describe how low-temperature corrections to
the mean-field properties may be derived from the magnetic-excitation
spectrum, determined within the random-phase approximation. The
discussion of the detailed behaviour close to the critical temperature,
i.e. the critical phenomena, is however beyond the scope of this book,
and we refer instead to the recent introduction to the subject by Collins
(1989), and to the specialist literature on the application of statistical
mechanics to phase transitions.

In mean-field theory, the exchange energy varies like σ2, where the
relative magnetization σ(T ) is |〈J〉|/J . However, the anisotropy energy
generally changes more rapidly with magnetization. The crystal-field
parameters Bm

l in (1.4.6) are generally assumed to vary only slightly
with temperature, but the thermal average 〈Om

l (J)〉 is very dependent
on the degree of ordering. By treating the deviation in the direction of
the moment on a particular site from the perfectly ordered state as a
random walk on a sphere, Zener (1954) showed that〈

Om
l (J)

〉
T

=
〈
Om

l (J)
〉

T=0
σl(l+1)/2. (1.5.15)

We shall discuss the derivation of this thermal average by mean-field
theory in Section 2.2, and show that Zener’s result is indeed correct at
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low temperatures. Since the anisotropy energy is very small just below
the critical temperature, the exchange dominates and gives rise to peri-
odic magnetic structures in the heavy rare earths, except in Gd where
the peak in J (q) occurs at q = 0. As the temperature is lowered, the
anisotropy forces become relatively more important, and phase transi-
tions occur to structures in which their influence is apparent. A less
obvious but nevertheless important effect is that J (q) itself changes
substantially with temperature. As was mentioned in the last section,
the peak reflects a maximum in the conduction-electron χ(q), which is
determined by the form of the Fermi surface. Because of the interaction
(1.3.23) between the local moments and the spins of the conduction elec-
trons, the latter experience a potential with a period which is generally
different from that of the lattice, and therefore generates extra energy
gaps in the band structure. These magnetic superzone gaps, which we
shall discuss in more detail in Section 5.7, may be of the order of 10mRy
and therefore perturb the energy spectrum of the conduction electrons
significantly. In particular, the regions of the Fermi surface responsible
for the peak in J (q) are severely modified, as has been verified through
calculations on Tm by Watson et al. (1968). The result is that both
the position of the peak is changed and its magnitude is reduced. As a
consequence, periodic magnetic structures tend to be self-destructive; as
they become established they try to eliminate the characteristic of the
exchange which ensures their stability. These effects were studied by
Elliott and Wedgwood (1964), who used a free-electron model to ex-
plain the variation of Q in the heavy metals. Although their model is
greatly over-simplified, it illustrates the essential features of the prob-
lem. We shall see in Chapters 2 and 5 that this variation in J (q) is
necessary to explain the change in both the magnetic structures and
excitations with temperature.

Whereas the magnetic structures of the heavy rare earths can be
accounted for by recognizing the dominant role of the exchange, and
considering the crystal fields and magnetoelastic effects as perturbations,
whose essential role is to establish favoured directions for the moments
in the lattice, the balance in the light elements is not so clear-cut. Since
g is generally close to 1, the exchange is relatively weak, and the larger
values of 〈rl〉 towards the beginning of the series are expected to make
crystal-field effects relatively important. As a result, the latter are able
to hinder the moments from attaining their saturation values of gµBJ ,
even in high fields at low temperatures, as illustrated in Table 1.6.

The most remarkable manifestation of the influence of the crystal
fields is found in Pr, where they are able effectively to frustrate the efforts
of the exchange to produce a magnetically ordered state. As illustrated
in Fig. 1.16, the ground state on the hexagonal sites is the |Jζ = 0 >



60 1. ELEMENTS OF RARE EARTH MAGNETISM

singlet which, in common with all singlet states, carries no moment. The
first term in (1.2.24) therefore gives no contribution to the susceptibility,
but the mixing of the | ± 1 > excited doublet into the ground state by
the field gives a Van Vleck susceptibility at low temperatures which, if
we neglect the exchange, has the form

χ =
2g2µ2

BM2
α

∆
N

V
, (1.5.16)

where M2
α = |<±1| Jα|0> |2 is the square of the matrix element of the

component of J in the field direction, and ∆ is the energy separation
between the ground state and the first excited state. Since Mα is zero
when the field is applied along the c-axis, no moment is initially gen-
erated on the hexagonal sites, as confirmed by the neutron diffraction
measurements of Lebech and Rainford (1971), whereas the susceptibility
in the basal plane is large. An applied field in the c-direction changes
the relative energies of the crystal-field levels however, and at 4.2K a
field of 32 tesla induces a first-order metamagnetic transition to a phase
with a large moment (McEwen et al. 1973), as shown in Fig. 7.13. This
is believed to be due to the crossing of the ground state by the second
excited state, as illustrated in Fig. 7.12.

If the exchange is included in the mean-field approximation, the
q-dependent susceptibility becomes, in analogy with (1.5.13),

χMF(q) = g2µ2
B

N

V

[
∆

2M2
α

− J (q)
]−1

. (1.5.17)

From this expression, it is apparent that the susceptibility diverges, cor-
responding to spontaneous ordering, if

2J (q)M2
α

∆
≥ 1. (1.5.18)

The magnetic behaviour of such a singlet ground-state system is there-
fore determined by the balance between the exchange and the crystal
field. If the exchange is strong enough, magnetic ordering results; oth-
erwise paramagnetism persists down to the absolute zero. In Pr, the
crystal-field splitting is strong enough to preclude magnetic order, but
the exchange is over 90% of that required for antiferromagnetism. We
shall return to the consequences of this fine balance in Chapter 7.

The remaining close-packed light rare earths Ce, Nd, and Sm, which
are amenable to experimental study (radioactive Pm is very intractable),
all have an odd number of 4f electrons and thus, according to Kramers’
theorem, crystal-field levels with even degeneracy and a magnetic mo-
ment. The crystal fields cannot therefore suppress magnetic ordering,
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but they reduce the ordered moment and contribute to the complex-
ity of the magnetic structures (Sinha 1978), which is exacerbated by
the two different site-symmetries in each of the metals. The magnetic
structure of Ce has not been fully determined, but it now seems (Gib-
bons et al. 1987) that commensurable transverse waves are formed on
both the hexagonal and cubic sites, with Q in a b-direction and the mo-
ments pointing along an a-axis in the plane. The magnetic periodicity is
twice that of the lattice. This relatively straightforward structure is in
marked contrast to that of Nd, which displays an extraordinary complex-
ity. An incommensurable longitudinal wave in a b-direction is formed on
the hexagonal sites through a first-order transition at TN , with a sim-
ple antiferromagnetic arrangement of successive hexagonal layers. As
the temperature is lowered, a further first-order transition takes place
within a degree to a double-Q structure (McEwen et al. 1985). At a
still lower temperature, an incommensurable periodic structure in the b-
direction is also formed on the cubic sites. At the lowest temperatures,
the moments assume an elaborate quadruple-Q pattern (Forgan et al.
1989), which we shall discuss in more detail in Chapter 2. The magnetic
structure on the hexagonal sites of Sm comprises pairs of planes with
the moments arranged ferromagnetically in the c-direction (Koehler and
Moon 1972). Adjacent pairs are coupled antiferromagnetically and sep-
arated by the cubic sites. The latter also order antiferromagnetically,
with the moments along the c-axis, at low temperatures, but the nor-
mal to the ferromagnetic sheets is now in the b–c plane. Although the
magnetic structures of the light rare earths are phenomenologically rea-
sonably well described, the explanation of their origin in terms of the
crystal-field and exchange interactions is still at a rudimentary stage.

The application of a magnetic field adds to the Hamiltonian a term

HZ = −gµB

∑
i

Ji · H. (1.5.19)

In a sufficiently large field, the stable configuration is thus an array
of moments gµBJ pointing along the field direction. The intermediate
states between the zero-field structure and the high-field limit may how-
ever be very complex. In Fig. 1.20 on page 53 is shown a relatively simple
example of the magnetization curves which result when a cone structure
undergoes first-order transitions to the almost fully-aligned ferromag-
netic state. We will discuss the effect of a magnetic field on periodic
magnetic structures in some detail in Section 2.3, and therefore restrict
ourselves for the moment to outlining the results of the mean-field treat-
ment of Nagamiya et al. (1962) of the helical structure without planar
anisotropy, to which a field is applied in the plane. The ferromagnetic
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structure is reached at a field

Hc =
J [J (Q) − J (0)]

gµB

, (1.5.20)

but there is an intermediate transition, occurring at approximately Hc/2,
at which the helix transforms abruptly through a first-order transition
to a fan structure, in which the moments make an angle θ with the field
direction, given by

sin
θi

2
=

{
2gµB(Hc − H)

J [3J (Q) − 2J (0) − J (2Q)]

}1/2

sinQ·Ri. (1.5.21)

The opening angle of the fan thus goes continuously to zero at the
second-order transition to the ferromagnetic phase.

The crystal fields manifest themselves in both microscopic and ma-
croscopic magnetic properties. The macroscopic anisotropy parameters
κm

l are defined as the coefficients in an expansion of the free energy in
spherical harmonics, whose polar coordinates (θ, φ) specify the magne-
tization direction relative to the crystallographic axes. For hexagonal
symmetry,

F (θ, φ) = N
[
κ0(T ) + κ0

2(T )P2(cos θ) + κ0
4(T )P4(cos θ)

+ κ0
6(T )P6(cos θ) + κ6

6(T ) sin6 θ cos 6φ
]
,

(1.5.22)

where Pl(cos θ) = (4π/2l + 1)1/2Yl0(θ, φ) are the Legendre polynomials.
Anisotropic two-ion coupling and magnetoelastic strains may introduce
additional higher-rank terms of the appropriate symmetry. If the Hamil-
tonian is written in a representation H(θ, φ) in which the quantization
axis is along the magnetization, the macroscopic and microscopic pa-
rameters are related by

F (θ, φ) = − 1

β
ln Tr

{
e−βH(θ,φ)

}
. (1.5.23)

Transforming the Stevens operators to a coordinate system with the z-
axis along the magnetization direction, and assuming that the isotropic
exchange is the dominant interaction, we find at absolute zero

κ0
2(0) = 2B0

2J (2) κ0
4(0) = 8B0

4J (4)

κ0
6(0) = 16B0

6J
(6) κ6

6(0) = B6
6J (6)

(1.5.24)

where
J (n) ≡ J(J − 1

2 )(J − 1) · · · (J − n−1
2 ). (1.5.25)
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There are a number of different experimental methods for obtain-
ing values for the microscopic and macroscopic anisotropy parameters.
The susceptibility in different directions, or equivalently the torque on
a crystal in a field, can be measured either in the paramagnetic or mag-
netically ordered phases and, as we shall discuss in detail later, much
information may be obtained from the excitation spectrum and its field
dependence. The values of κm

l (0) obtained from these various sources
for the different elements have been reviewed and tabulated by McEwen
(1978).

In order to deduce the crystal-field parameters Bm
l in the absence

of exchange and magnetoelastic effects, Touborg and his collaborators
studied the crystal-field states of dilute alloys of the magnetic rare earths
in the non-magnetic hosts Sc, Y, and Lu, utilizing magnetization mea-
surements and, to a limited extent, neutron spectroscopy. Their results
for heavy rare earth solutes have been reviewed by Touborg (1977) and,
for the light elements, by Touborg et al. (1978). Within the uncertainty
of the measurements and of the interpretation, and with the exception
of Ce in Y, which behaves anomalously, they found that a common set of
parameters Bm

l /αl accounts for the behaviour of all solutes in a particu-
lar host. B0

4/β and B0
6/γ are roughly 10K/ion and 15K/ion respectively

in all cases, while B6
6 is close to the value − 77

8 B0
6 which the point-charge

model would predict. B0
2/α increases from about 30K/ion in Sc, to 45

K/ion in Lu, to 100K/ion in Y, which correlates with the deviation of
the c/a ratio of the host metal (1.592 for Sc, 1.584 for Lu, and 1.573 for
Y) from the ideal value of 1.633 (Orlov and Jensen 1988). It is note-
worthy that the parameters Bm

l /αl show no obvious correlation with
〈rl〉, as would be anticipated from (1.4.4).

The values of Bm
l from these studies of dilute alloys may be com-

pared with those from other sources. In particular, B0
2 may be estimated

for the pure metals by interpolating between the c/a ratios of the non-
magnetic hosts. These values may then be compared with those deduced
from the difference between the paramagnetic Curie temperatures par-
allel and perpendicular to the c-axis, which is shown in Section 2.1 to
be given by

B0
2 =

5kB(θ⊥ − θ‖)
6(J − 1

2 )(J + 3
2 )

. (1.5.26)

The agreement for the heavy rare earths is in all cases good (McEwen
1978), indicating that the crystal fields measured in dilute alloys are re-
lated to those acting in the pure metals. On the other hand, the values
deduced from torque and magnetization measurements at low tempera-
tures in the ferromagnetic state show large discrepancies with those in
the paramagnetic phase. For Tb and Dy, the former are roughly three
times the latter. Despite this discrepancy, which is probably primarily
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due to the anisotropic two-ion coupling in the magnetically ordered
phases, the axial anisotropy parameter κ0

2(T )− 5
2κ0

4(T )+ 35
8 κ0

6(T ), where
κ0

2(T ) is the dominating term, depends on temperature approximately
as predicted by (1.5.15), varying roughly as σ3 in Dy and σ4 in Tb.
We shall return to the question of the anisotropy parameters in the rare
earths when we discuss the structures and excitations.

The large magnetoelastic effects have a profound effect on the mag-
netic properties of the rare earths, making a significant contribution to
the anisotropy, playing a decisive role in some instances in determining
the structures, and modifying the excitation spectrum. We here consider
for illustrative purposes a special example, the basal-plane ferromagnet,
exemplified by Tb and Dy. As mentioned previously, the α-strains main-
tain the symmetry and therefore only have the effect of renormalizing the
Bm

l , and if the moments are confined to the plane, the ε-strains vanish.
However, the γ-strains are large and symmetry-breaking, and thereby
cause qualitative modifications in the magnetic behaviour. From (1.4.8)
and (1.4.11), their contribution to the magnetoelastic Hamiltonian may
be written

Hγ =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) − Bγ2{O2

2(Ji)εγ1 + O−2
2 (Ji)εγ2}

− Bγ4{O4
4(Ji)εγ1 − O−4

4 (Ji)εγ2}
]
,

(1.5.27)

where we have included only the lowest ranks (l = 2 and 4 respectively)
of the γ2 and γ4 terms. As shown in Section 2.2, the condition

∂F/∂εγ = 0 (1.5.28)

leads to the equilibrium strains

εγ1 = 1

cγ

(
Bγ2〈O2

2〉 + Bγ4〈O4
4〉

)

εγ2 = 1

cγ

(
Bγ2〈O−2

2 〉 − Bγ4〈O−4
4 〉). (1.5.29)

Transforming the Stevens operators as before, and using (1.5.15) to esti-
mate the magnetization dependence of the thermal averages, we obtain

εγ1 = C cos 2φ − 1
2A cos 4φ

εγ2 = C sin 2φ + 1
2A sin 4φ,

(1.5.30)

where
C = 1

cγ
Bγ2J

(2)σ3

A = − 2

cγ
Bγ4J

(4)σ10
(1.5.31)

are the conventional magnetostriction parameters (Mason 1954), and φ
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is the angle between the a-axis and the magnetization in the plane.
The dominant contribution to the magnetoelastic energy is

〈Hγ〉 = −1
2Ncγ(ε2γ1 + ε2γ2) = −1

2Ncγ(C2 + 1
4A2 − CA cos 6φ). (1.5.32)

The cos 6φ term makes a contribution to the hexagonal anisotropy, which
is in total, from (1.5.24), (1.5.15), and (1.5.31),

κ6
6(T ) = B6

6J (6)σ21 + 1
2cγCA

= B6
6J (6)σ21 − 1

cγ
Bγ2J

(2)Bγ4J
(4)σ13.

(1.5.33)

The hexagonal anisotropy can readily be deduced from the critical field
Hc necessary to rotate the moments from an easy direction to a neigh-
bouring hard direction in the plane (respectively a b-axis and an a-axis
in Tb), which is given by

gµBJσHc = 36|κ6
6(T )|. (1.5.34)

Values of the critical field for Tb are given as a function of σ in Fig. 1.21.

Fig. 1.21. The critical field Hc necessary to rotate the moments from
an easy direction to a neighbouring hard direction in the plane in Tb, as
a function of the reduced magnetization. The closed circles denote the
results of neutron-scattering experiments, and the other signatures are

deduced from macroscopic measurements.
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The observed σ15 dependence on the magnetization indicates that the
magnetoelastic term dominates. As illustrated in Fig. 1.22, C and A
have been accurately determined by Rhyne and Legvold (1965a) from
macroscopic strain-gauge measurements and, since the elastic constant
is known (Jensen and Palmer 1979), the relative magnetoelastic and
crystal-field contributions to (1.5.33) may readily be determined. At
absolute zero, the former is 1.14K/ion and the latter is −0.60K/ion,
rapidly becoming negligible as the temperature is increased. On account
of the sign of the Stevens factor γ for Tb, the crystal-field contribution
is expected to be positive, and this may be another indication of the
importance of anisotropic two-ion coupling in the magnetically ordered
phases.

Fig. 1.22. The temperature dependence of the magnetostriction pa-
rameters C and A in Tb, after Rhyne and Legvold (1965a). The full lines

show the results of the Callen-Callen theory presented in Section 2.2.

The magnetoelastic energy (1.5.32) is substantial in the ferromag-
netic phase. In particular the term − 1

2cγC2, which results from a magne-
toelastic strain of cylindrical symmetry, is relatively important at high
temperatures, because it renormalizes roughly as σ4, and is therefore
still about 0.3K/ion in Dy at 85K, the temperature at which a first-
order transition occurs from the helical to the ferromagnetic phase. The
hexagonally symmetric contribution proportional to CA is small at all
temperatures in Dy, since A ≈ 0 (Martin and Rhyne 1977). In the
helical phase, the lattice is clamped (Evenson and Liu 1969), so that
the γ-strains are zero, and the magnetoelastic contribution to the sta-
bilization energy is therefore absent. At TC , this energy, plus a minor
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contribution from the crystal-field anisotropy, just balances the differ-
ence in exchange energy between the helical and ferromagnetic phases:

∆Uff = −1
2NJ2σ2{Jh(Q) − Jf (0)}. (1.5.35)

There has been some discussion about the relative importance of the
two terms in stabilizing the ferromagnetic phase. From an analysis of
the field required to induce the transition above TC , Cooper (1968a)
concluded that the magnetoelastic energy plays the dominant role. This
conclusion was, however, based on the implicit assumption that the ex-
change energy changes little between the phases, and later measurements
of the spin waves by Nicklow et al. (1971b) demonstrated that this is
not the case. The energy difference − 1

2J2σ2{Jh(Q) − Jh(0)} is about
2K/ion in the helical phase, but the corresponding quantity is substan-
tially smaller in the ferromagnetic phase. Del Moral and Lee (1975)
reanalysed the data and concluded that the change (1.5.35) in the ex-
change energy makes the major contribution to driving the transition.
Any statement about what drives a first-order, as distinct from a second-
order transition must necessarily be imprecise, since all contributions to
the energy change discontinuously at the transition. Immediately below
TN , the exchange dominates and the anisotropy forces are small. As
the temperature is lowered, the peak in J (Q) decreases and moves, as
was shown explicitly for the analogous case of Tb by the spin-wave mea-
surements of Bjerrum Møller et al. (1967), illustrated in Fig. 6.1. The
magnetoelastic forces therefore increase in relative importance, until a
balance is reached and the transition to the ferromagnetic phase takes
place. At the transition, a large change occurs in the exchange. With-
out the magnetoelastic term, TC would be determined by the hexagonal
crystal-field anisotropy, and would therefore be much lower. In this
sense, the cylindrically-symmetric magnetoelastic forces drive the tran-
sition.


