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1.3 The metallic state

When a large number of rare earth atoms are assembled to form a solid,
the 4f electrons generally remain localized, in a sense which will be made
more precise later, so that their magnetic properties closely resemble
those in the free atoms. The external 5d and 6s electrons, on the other
hand, become delocalized into Bloch states, extending throughout the
metal and constituting the conduction-electron gas. The conduction
electrons themselves make only a modest contribution to the magnetic
moment, but by mediating the magnetic interactions they play a crucial
role in determining the characteristic magnetic properties in the solid
state. An understanding of the magnetism therefore requires a detailed
description of the conduction electron gas, and this section is concerned
with our theoretical and experimental knowledge of the Bloch states,
and their influence on the structural properties of the metals. Some of
these structural properties of the rare earth metals are collected in Table
1.2, from which it may be seen that the room-temperature structures are
all close-packed, with a coordination number of 12, with the exception
of Eu, which is bcc. The remaining elements all form hexagonal phases,
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Table 1.2. Structural properties of the lanthanides.

Element Structure Lattice const. Atomic rad. Density Melt.point
(300K) a (Å) c (Å) S (a.u.) (g/cm3) (K)

La dhcp 3.774 12.171 3.92 6.146 1191
Ce(β) dhcp 3.681 11.857 3.83 6.689 1071
Ce(γ) fcc 5.161 3.81 6.770
Ce(α) fcc 4.85 (77 K) 3.58 8.16
Pr dhcp 3.672 11.833 3.82 6.773 1204
Nd dhcp 3.658 11.797 3.80 7.008 1294
Pm dhcp 3.65 11.65 3.78 7.264 1315
Sm rhom 3.629 26.207 3.77 7.520 1347
Eu bcc 4.583 4.26 5.244 1095
Gd hcp 3.634 5.781 3.76 7.901 1586
Tb hcp 3.606 5.697 3.72 8.230 1629
Dy hcp 3.592 5.650 3.70 8.551 1687
Ho hcp 3.578 5.618 3.69 8.795 1747
Er hcp 3.559 5.585 3.67 9.066 1802
Tm hcp 3.538 5.554 3.65 9.321 1818
Yb fcc 5.485 4.05 6.966 1092
Lu hcp 3.505 5.549 3.62 9.841 1936

although the hcp allotrope of Yb is only stable at low temperatures, and
Ce has two separate fcc phases in addition to its dhcp form.

The heavy rare earths are all hcp, while the dhcp structure pre-
dominates among the lighter metals. These structures may be produced
by stacking close-packed layers in the sequences ABAB and ABAC re-
spectively, as shown in Fig. 1.3. The fcc structure corresponds to the
stacking sequence ABCABC, while the Sm structure is ABABCBCAC.
The latter has rhombohedral symmetry but it is frequently more conve-
nient to consider it as hexagonal. The crystallographic a-axis is taken
along the direction joining a pair of nearest neighbours in the hexagonal
plane, the c-axis is normal to the plane, and the b-axis is orthogonal to
the other two. The local, i.e. nearest-neighbour, symmetry in the fcc
and hcp structure is, of course, cubic and hexagonal respectively. The
dhcp structure, on the other hand, has two types of site and, for an
‘ideal’ c/2a ratio of 1.633, their local symmetry alternates between cubic
and hexagonal in the sequence chch, while the Sm structure corresponds
to chhchh. As may be seen from Table 1.2, however, the c/2a ratio is
consistently smaller than the ideal value, so the ‘cubic’ sites have only
approximate local cubic symmetry.
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Fig. 1.3. The hcp and dhcp crystal structures. In the latter, the
B and C sites have hexagonal symmetry, while the A sites have local

cubic symmetry, for an ideal c/a ratio.

To determine the eigenstates for the conduction electron gas, we
adopt the same procedure as that outlined for atoms in the previous
section. The external potential vext(r) in (1.2.2) is now the Coulomb
attraction of the nuclei situated on the crystal lattice, shielded by the
electrons of the ionic core, which are usually taken to have the same
charge distribution as in the atoms. The potential consequently has the
translational symmetry of the periodic lattice, and so therefore does the
effective potential veff(r), which arises when we make the single-particle
approximation (1.2.5) and the local-density approximation (1.2.9). In
the atom, the eigenfunctions are determined by the boundary condition
that their amplitude must vanish for large values of r and, when (1.2.12)
is integrated numerically, they are automatically continuous and differ-
entiable. The translational symmetry of the solid is expressed in Bloch’s
theorem:

ψ(r) = eik·R ψ(r − R), (1.3.1)

and this boundary condition gives rise to eigenfunctions ψj(k, ε, r) and
eigenvalues εj(k) which are functions of the wave-vector k in reciprocal
space. All the electron states may be characterized by values of k lying
within the Brillouin zone, illustrated for the hexagonal and fcc structures
in Fig. 1.4, and by the band index j defined such that εj(k) ≤ εj+1(k).

The determination of the eigenstates of the Schrödinger equation,
subject to the Bloch condition (1.3.1) is the central problem of energy-
band theory. It may be solved in a variety of ways, but by far the most
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Fig. 1.4. The Brillouin zones for the hexagonal and fcc lattices.

effective procedure for the rare earths is to adopt one of the linear meth-
ods of Andersen (1975). In the following, we will use the Atomic Sphere
Approximation (ASA) which will allow us to illustrate the construction
and characteristics of the energy bands in a transparent way. This ap-
proximation, and the closely-related Linear Muffin-Tin Orbitals Method
(LMTO), which allows computationally very efficient calculations of ar-
bitrarily precise energy bands, for a given potential, have been concisely
described by Mackintosh and Andersen (1980) and, in much more detail,
by Skriver (1984).

In a close-packed solid, the electrons may to a very good approxima-
tion be assumed to move in a muffin-tin potential, which is spherically
symmetric in a sphere surrounding each atomic site, and constant in the
interstitial regions. We recall that the atomic polyhedron, or Wigner–
Seitz cell, is bounded by the planes which perpendicularly bisect the
vectors joining an atom at the origin with its neighbours, and has the
same volume as the atomic sphere, whose radius S is chosen accordingly.
If we surround each site in the crystal with an atomic sphere, the po-
tential within each of these overlapping regions will, to a high degree of
accuracy, be spherically symmetric. Neglecting the spin, we may there-
fore write the solutions of the Schrödinger equation for a single atomic
sphere situated at the origin in the form

ψlm(ε, r) = ilRl(ε, r)Ylm(r̂), (1.3.2)

where the radial function Rl(ε, r) satisfies eqn (1.2.12) and is a function
of the continuous energy variable ε. Examples of such radial functions
are shown in Fig. 1.5.
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Fig. 1.5. Radial wavefunctions for α–Ce metal, calculated by Skriver
from the self-consistent atomic-sphere potential, at the energies Cnl of the
centres of the associated bands. Since these wavefunctions are normalized
within the unit cell, the effective masses µnl are inversely proportional
to the value of R2

l (Cnl, S) at the Wigner–Seitz radius, and this probabil-
ity, and the consequent overlap between wavefunctions on neighbouring

sites, therefore determines the corresponding band width.

Augmenting these partial waves by suitably-chosen regular solutions
of Laplace’s equation, we define the energy-dependent muffin-tin orbitals

χlm(ε, r) = ilYlm(r̂)

⎧⎨
⎩
Rl(ε, r) + pl(ε)(r/S)l ; r < S

(S/r)l+1 ; r > S,
(1.3.3)

which are continuous and differentiable if

pl(ε) =
Dl(ε) + l + 1
Dl(ε) − l

, (1.3.4)

where the logarithmic derivative is

Dl(ε) = S
R′

l(ε, S)
Rl(ε, S)

. (1.3.5)
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From muffin-tin orbitals located on the lattice sites of a solid, with
one atom per unit cell, we now construct a wavefunction which is con-
tinuous and differentiable, and manifestly satisfies the Bloch condition
(1.3.1):

ψj(k, ε, r) =
∑
lm

ajk
lm

∑
R

eik·Rχlm(ε, r − R). (1.3.6)

If we approximate the atomic polyhedra by spheres, and implicitly as-
sume that they fill space, the condition that (1.3.6) is a solution of the
Schrödinger equation is easily seen to be that the sum of the tails orig-
inating from terms of the form (S/|r − R|)l+1, from the surrounding
atoms, cancels the ‘extra’ contribution

∑
lm

ajk
lmYlm(r̂)pl(ε)(r/S)l,

in the atomic sphere at the origin. To satisfy this condition, we expand
the tails of the muffin-tin orbitals centred at R about the origin, in the
form

∑
R �=0

eik·R
( S

|r − R|
)l+1

ilYlm( ̂r − R)

=
∑
l′m′

−1
2(2l′ + 1)

( r
S

)l′
il

′
Yl′m′(r̂)Sk

l′m′,lm,

(1.3.7)

where the expansion coefficients, known as the canonical structure con-
stants, are

Sk
l′m′,lm =

∑
R �=0

eik·RSl′m′,lm(R), (1.3.8)

with
Sl′m′,lm(R) = gl′m′,lm

√
4π(−i)λY ∗

λµ(R̂)(R/S)−λ−1,

where

gl′m′,lm ≡ (−1)m+12
√

(2l′ + 1)(2l + 1)

2λ + 1

(λ + µ)!(λ − µ)!

(l′ + m′)!(l′ − m′)!(l + m)!(l − m)!

and
λ ≡ l + l′ ; µ ≡ m−m′.

From (1.3.3) and (1.3.7), the required tail-cancellation occurs if

∑
lm

[Pl(ε)δl′lδm′m − Sk
l′m′,lm]ajk

lm = 0, (1.3.9)
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where the potential function Pl(ε) is defined by

Pl(ε) = 2(2l+ 1)pl(ε) = 2(2l+ 1)
Dl(ε) + l + 1
Dl(ε) − l

. (1.3.10)

The linear homogeneous equations (1.3.10) have solutions for the eigen-
vectors ajk

lm only for those values of k and ε for which

det
[
Pl(ε)δl′lδm′m − Sk

l′m′,lm
]

= 0. (1.3.11)

Fig. 1.6. The canonical bands for the fcc structure. The band structure
in the metal may be obtained by placing, scaling, and distorting the
canonical bands according to the values of the corresponding potential
parameters Cnl, µnl, and γnl, and finally hybridizing them. The extent of
the bands, according to the Wigner–Seitz rule, is indicated on the right.
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In this determinantal equation for the band structure εj(k), the infor-
mation about the structure is separated from that on the potential. The
structure constants Sk

l′m′,lm are canonical in the sense that they de-
pend only on the crystal structure and not, for example, on the lattice
constant, as may be seen from the definition (1.3.8), and the potential
function Pl(ε) is determined entirely by the potential within the atomic
sphere. We shall consider these two terms in turn.

If we include values of l up to 3, i.e. s, p, d, and f partial waves, the
structure constants form a square matrix with 16 rows and columns. The
terms with l = l′ fall into 4 blocks, and these submatrices may be diag-
onalized by a unitary transformation from the lm to an lj representation.
The (2l+1) diagonal elements Sk

lj of each sub-block are the unhybridized
canonical l bands. The canonical bands for the fcc structure are shown
in Fig. 1.6. If hybridization is neglected, which corresponds to setting
to zero the elements of Sk

l′m′,lm with l �= l′, eqn (1.3.11) takes the simple
form

Pl(ε) = Sk
lj . (1.3.12)

Since Pl(ε) is a monotonically increasing function of energy, as illustrated
in Fig. 1.7, the band energies εlj(k) for the pure l bands are obtained by
a monotonic scaling of the corresponding canonical bands. Pl(ε) does
not, furthermore, depart greatly from a straight line in the energy region
over which a band is formed, so the canonical bands resemble the energy
bands in the solid quite closely, whence the name.

The potential function Pl(ε) and the logarithmic-derivative function
Dl(ε) are related to each other through the definition (1.3.10), and this
relationship is shown schematically in Fig. 1.7. It is convenient and
illuminating to parametrize the potential function, when considering the
formation of the energy bands from the canonical bands. The poles of
Pl(ε), which occur when Dl(ε) = l, divide the energy into regions in
which lie the corresponding atomic energy-levels εnl. The energies Vnl

which separate these regions are defined by

Dl(Vnl) = l (1.3.13)

and, within a particular region, the energy Cnl of the centre of the band
is fixed by the condition that Pl(Cnl) = 0, or

Dl(Cnl) = −(l + 1). (1.3.14)

The allowed k-values corresponding to this energy are just those for
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Fig. 1.7. The nth period of the logarithmic derivative function Dl(ε),
and the corresponding potential function Pl(ε). The bottom, centre, and
top of the nl band are defined respectively by Pl(Bnl) = −2(2l+1)(l+1)/l

(Dl(Bnl) = 0), Pl(Cnl) = 0, and Pl(Anl) = l (Dl(Anl) = −∞).

which Sk
lj = 0 and, since the average over the Brillouin zone may be

shown to vanish, i.e.
2l+1∑
j=1

∫
BZ

Sk
lj dk = 0, (1.3.15)

the designation of Cnl as the centre of the band is appropriate. Equa-
tion (1.3.12) may be satisfied, and energy bands thereby formed, over
an energy range around Cnl which, to a good approximation, is defined
by the Wigner–Seitz rule, which states that, by analogy with molecular
binding, the top and bottom of the band occur where the radial wave-
function and its derivative respectively are zero on the atomic sphere.
The corresponding energies, defined by

Dl(Anl) = −∞ (1.3.16)
and

Dl(Bnl) = 0, (1.3.17)
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are then known respectively as the top and bottom of the nl band, even
though this designation is not precisely accurate.

Over the energy range Anl –Bnl, the potential function may be
parametrized with reasonable accuracy as

Pl(ε) �
1
γnl

ε− Cnl

ε− Vnl

. (1.3.18)

It is convenient to define the related mass parameter µnl by

µnlS
2 =

dPl(ε)
dε

∣∣∣∣
C

nl

� 1
γnl(Cnl − Vnl)

. (1.3.19)

It is determined by the probability that an electron described by the par-
tial wave Rl(Cnl, r) reaches the atomic sphere and, if the wavefunction
is normalized within the sphere, it may be shown that

µnlS
2 =

[1
2SR

2
l (Cnl, S)

]−1
. (1.3.20)

For free electrons, µnl ≡ 1 for all values of n and l.
With this parametrization, we may write down an explicit expres-

sion for the unhybridized band energies. From eqns (1.3.12), (1.3.18)
and (1.3.19) these are given by

εlj(k) = Cnl +
1

µnlS
2

Sk
lj

1 − γnlSk
lj

. (1.3.21)

The pure l bands are thus obtained from the corresponding canonical
bands by fixing the position with Cnl, scaling the bandwidth by µnlS

2,
and distorting them with γnl.

Hybridization between bands of different l is taken into account
by including the structure constants with l �= l′ in (1.3.11), causing
a repulsion between energy levels with the same k and symmetry, as
specified by the labels in Fig. 1.6. Bands of the same symmetry are
thus not allowed to cross, and strong hybridization instead creates an
energy gap. In addition, weak hybridization gives rise to a mixing and
repulsion between bands which do not cross in the absence of hybridiza-
tion. In order to complete the calculation of the band structure, the
inaccuracies due to approximating the atomic polyhedron by a sphere,
and to neglecting higher partial waves, may be conveniently treated to-
gether by perturbation theory. In practice, the energy bands are not
of course calculated step-wise as described above, but all the steps are
performed simultaneously on a computer. Nevertheless, the conceptual
description of the procedure as a placing, scaling and distortion of the
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canonical bands, according to the values of the potential parameters,
with a final hybridization between bands of the same symmetry, allows
a clear visualization of the way in which the relatively complex band
structure is built up from simpler elements, and of the relation between
the eigenstates of the atom and those in the solid.

Table 1.3. Electronic parameters for α–Ce.

6s 6p 5d 4f

Al (Ry) 2.234 2.698 1.198 0.648
Cl (Ry) 0.620 1.452 0.792 0.628
Bl (Ry) 0.330 0.909 0.409 0.587
µl 0.61 0.70 2.18 45.36
nl 0.509 0.245 2.091 1.154
Nl(εF ) (Ry−1) 1.81 1.50 6.48 21.11
PlΩ (Ry) 0.195 0.152 −0.219 −0.163

This procedure may be illustrated by considering the construction
of the band structure of α–Ce from its component parts. Partial waves in
the atomic sphere at the energies of the band-centres, where Pl(ε) = 0,
are shown in Fig. 1.5, and the corresponding potential parameters are
given in Table 1.3. In this section, we express the energies in Rydbergs,
following our general principle of using throughout the book those units
which are favoured by practitioners of research in the subject currently
under discussion. The s and p effective masses are somewhat below 1,
and the relative positions of the band centres correspond quite closely to
those of the free-electron gas. Through the influence of the l-dependent
centrifugal-potential term in (1.2.12), the d and f states are in contrast
constrained to the inner regions of the atomic sphere, with the conse-
quence that the d mass is relatively large (though not as large as in a
typical transition metal) and the f mass is extremely large.

The energy bands of Fig. 1.8 were calculated by an iterative pro-
cedure, by Skriver (private communication). The electron density n(r)
is first estimated by, for example, overlapping atomic charge densities
situated on the lattice sites, and from it the periodic potential veff(r)
is constructed, using the local-density approximation (1.2.9). The band
structure is then determined for this potential and n(r) recalculated,
in analogy with (1.2.6), by summing over occupied states, those be-
neath the Fermi level. This procedure is repeated until the potential
self-consistently reproduces itself, and the energy bands have converged
to the desired accuracy. The band structure can be considered as being
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Fig. 1.8. The band structure of fcc α–Ce, calculated by Skriver.
The orbital angular momentum of some states at symmetry points in the
zone is indicated, including the top and bottom of the narrow bands. The

doubleheaded arrow indicates the spin–orbit splitting of a 4f state.

composed of a broad free-electron-like sp band, crossed by and hybridiz-
ing both strongly and weakly with the d and f bands. The occupation
numbers nl of the various states given in Table 1.3 make it clear that
α–Ce may be classified as both a d- and an f -band transition metal.

The above description of the f states in α–Ce as occupying the
bottom of an f band is now generally accepted as valid, but the cor-
rect treatment of the f electrons in the rare earth metals, and especially
Ce, was a matter of lengthy controversy. According to the standard
model, which is generally applicable to rare earth magnetism, an inte-
gral number of f electrons are localized on each ion, subject to the same
intra-ionic interactions as in the free atom. The Pauling–Zachariasen
promotional model for the γ–α phase transition in Ce, which associ-
ated the transition with the transfer of a single f electron on each ion
to a d state, with a concomitant decrease of about 6% in the fcc lattice
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constant, was therefore consistent with the standard model. However the
positron-annihilation experiments of Gustafson and Mackintosh (1964)
showed that the change in f occupancy, when the transition was induced
by a change in temperature, was much less than one, and indeed that
the results in both phases were consistent with about one f electron per
ion. Similar results were obtained by Gustafson et al. (1969) when the
transition was driven by pressure, and they concluded that it involves
not primarily a change in the f occupancy but rather a change in the f
state, from being localized in the γ-phase to being an itinerant band elec-
tron in the α-phase. This idea was taken up by Johansson (1974) who,
from a consideration of spectroscopic, cohesive and thermodynamic evi-
dence, proposed that the γ–α transition should be considered as a Mott
localized–delocalized transition among the f electrons. Glötzel (1978)
used density-functional theory to calculate the ground state properties
and showed that the equation of state in the α-phase can be accounted
for rather satisfactorily by including the f electrons in the band struc-
ture, and furthermore that a transition to a spin-polarized state should
occur at a lattice constant close to that of γ–Ce, though at a (nega-
tive) pressure considerably lower than that deduced from experiment.
Eriksson et al. (1990) have recently shown that this discrepancy may be
substantially reduced by including the l–l coupling, which is responsible
for the second of Hund’s rules, in the calculation of the 4f bands. This
leads to a ground state in γ–Ce in which the 4f electrons are almost
fully polarized, thus occupying the Hund’s-rule ground state on each
site. Despite the fact that they are described in the band picture, they
may thus be considered as localized, making very little contribution to
the cohesive properties. The calculated atomic volumes in both phases
are in good agreement with experiment. Podloucky and Glötzel (1983)
found a cohesive energy for α–Ce in accord with the measured value,
while that of a ‘promotional’ state with no f electrons is far too small.
They were also able to account for the Compton-scattering experiments
of Kornstädt et al. (1980), who had verified that the change in f occu-
pancy at the transition is small. Skriver (1985) calculated the crystal
structure and equation of state of α–Ce up to high pressures, finding
very good agreement with experiment (Staun Olsen et al. 1985), pro-
vided that the f bands are included, but very poor agreement if the
f electrons are promoted to the d bands, or are assumed to be local-
ized, and therefore to make a negligible contribution to the electronic
pressure. The relative stability at high pressures of low-symmetry con-
figurations such as the α–U structure, which is observed experimentally,
is a strong indicator that there are f electrons in the conduction bands,
as in the light actinides, where they play a decisive role in determining
the structure (Skriver 1985).
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The most powerful experimental technique available for studying
the details of the electronic structure in the vicinity of the Fermi level is
the de Haas–van Alphen (dHvA) effect (Shoenberg 1983), which allows
a precise determination not only of the shape of the Fermi surface, but
also of the effective masses of the electrons whose wave-vectors lie on it.
Unfortunately, the metallurgical difficulties encountered in attempting
to fabricate pure single crystals have so far precluded the observation of
the effect in α–Ce, but Johanson et al. (1981) studied the related com-
pound CeSn3, and demonstrated that it contains itinerant f electrons
of large mass at low temperatures. More recently, a number of exam-
ples of heavy-fermion Ce compounds have been investigated (Reinders
et al. 1986; Lonzarich 1988) in which the effective masses, as deduced
either from the dHvA effect or the low-temperature heat capacity, are
enhanced by up to an order of magnitude compared with those deduced
from band structure calculations.

There is thus very convincing evidence that the f electrons in Ce
and its compounds can form bands and extend in coherent Bloch states
throughout the crystal. Photoemission experiments in α–Ce (Wieliczca
et al. 1982; Mårtensson et al. 1982) revealed a structure with two peaks,
which may plausibly be associated respectively with an itinerant f hole
near the Fermi level, and one localized for a finite time at a particular
ionic site (Norman et al. 1984; Mackintosh 1985). There are very few
indications of itinerant f behaviour in the other rare earth elements, al-
though the above-mentioned double-peaked structure is also observed in
γ–Ce and Pr (Wieliczka et al. 1984), in both of which the f electrons are
normally considered as localized, and as we shall see, there is evidence of
an f contribution to the binding energy in some of the light rare earths.
After this brief interlude, we will therefore leave the question of f bands
and return to the standard model of f electrons localized on the ions,
interacting with the surroundings but only indirectly with each other.

Pr, the neighbouring element to Ce, undergoes a phase transition at
high pressures (Wittig 1980) which is probably associated with the for-
mation of a band by the f electrons (Skriver 1981; Eriksson et al. 1990),
but at ambient pressures they are localized and may be considered as
part of the ionic core. Indeed, intermultiplet transitions, corresponding
to those occurring on Pr ions in insulators, but shifted due to screening
by the conduction electrons in the metal, have been observed by Taylor
et al. (1988), using inelastic neutron-scattering at relatively high ener-
gies. The 4f states do not therefore appear in the energy bands of Fig.
1.9, which portrays broad sp bands hybridized with a much narrower d
band. As will be discussed later, Pr is paramagnetic above about 50mK,
and in zero field the Fermi surface, which is relatively complex, may be
deduced from the figure to be composed of 2 electron pockets and 4 open
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Fig. 1.9. The band structure of dhcp Pr, calculated by Skriver. The
energy bands in the vicinity of the Fermi level are predominantly d-like,
and the 4f states are assumed to be localized and therefore do not appear,

in contrast to Fig. 1.8.

hole sheets. However, the dHvA effect is measured in a relatively high
magnetic field, and the induced moment modifies the band structure in
a way which has been studied in detail by Wulff (1985). The exchange
coupling between a conduction-electron spin s and the 4f spins takes
the Heisenberg form

Hsf = −2Is ·
∑

i

Si. (1.3.22)

In the ground-state manifold, this interaction may from (1.2.29) be writ-
ten

Hsf = −2(g − 1)Is ·
∑

i

Ji. (1.3.23)

When a magnetic field is applied, the induced moment therefore gives
rise to a splitting between the up- and down-spin energy bands. Since
Pr is magnetically highly anisotropic, this splitting depends strongly
on the direction of the field, but it can readily attain values of sev-
eral mRy, and hence have drastic effect on the Fermi surface. In par-
ticular, the seventh-band minority-spin surface changes its topology
at a critical (internal) field of about 40kOe, as shown in Fig. 1.10,
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Fig. 1.10. The intersections of the Fermi surfaces, for the two spin
states of the seventh band in dhcp Pr, with the faces of the Brillouin zone
of Fig. 1.4. The surfaces are generated by a rigid splitting of the energy
bands of Fig. 1.9 by 10mRy. The unshaded majority-spin surface is a
single sheet, whereas the exchange splitting modifies the topology of the
shaded minority-spin surface, giving rise to a closed lens at M, a small

electron pocket, and an irregular tube along HK.

and clear evidence for this transition has been observed in the dHvA
effect. The changes of the Fermi surface in a magnetic field, and partic-
ularly the enhancement of the effective masses by the interaction with
the 4f moments (Wulff et al. 1988), which we will discuss further in Sec-
tion 7.3, give an average value of I of about 9mRy, with a variation of
some 30% over different bands and orbits. The agreement between the
measured and calculated electron orbits is such that shifts in the energy
bands of only a few mRy are required to bring the two into concordance,
and this is comparable to typical values for transition metals (Mackin-
tosh and Andersen 1980). The experimental study of the dHvA effect in
Pr, which is the most elaborate which has yet been undertaken for a rare
earth metal, has thus led to the important conclusion that energy-band
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theory gives a realistic description of the conduction electron states, and
may therefore be used as a basis for the calculation of properties which
depend on the electronic structure.

This conclusion could already be drawn, though with slightly less
confidence, from the pioneering measurements of Mattocks and Young
(1977) of the dHvA effect in ferromagnetic Gd. Because of the ferro-
magnetic moment, the exchange interaction (1.3.22) separates the energy
bands of different spin even in zero field, and the exchange splitting is
essentially independent of field. The results were interpreted in terms
of the paramagnetic energy bands, originally calculated by Dimmock
and Freeman (1964) and, with relativistic effects, by Keeton and Loucks
(1968), taking account of the ferromagnetic structure by a rigid split-
ting of the bands. The resulting two majority-spin hole surfaces and the
minority-spin electron surface could account for all of the observed large
orbits, with a value of I close to that later deduced for Pr, and with
a comparable variation through the zone. However, many small orbits
were observed which could not be explained with this model, nor have
subsequent band calculations, culminating in those of Temmerman and
Sterne (1990), in which the exchange splitting of the conduction bands
was included a priori, fully accounted for the small pieces of the Fermi
surface. Although the general features of the electronic structure of Gd
may therefore be considered as well understood, a further theoretical
effort, taking into account the effect on the band structure of the spin–
orbit coupling in the presence of both an exchange field and an external
field, would be necessary to explain the finer details.

The positron-annihilation experiments of Williams and Mackintosh
(1968), although at a much lower level of resolution, were also in gen-
eral accord with the calculations of Keeton and Loucks (1968). They
studied a number of heavy rare earths in their paramagnetic phases,
showing that their Fermi surfaces are highly anisotropic and rather sim-
ilar to each other. A calculation based upon energy-band theory gave
a good account of the experimental results for Y. The distributions of
the annihilation photons displayed a feature which is sensitive to the
form of the hole surface shown in Fig. 1.11, namely the shape of the
‘webbing’ which may join the ‘toes’ on the surface near L. This charac-
teristic is very dependent on the relative positions of the s and d bands,
and the calculations indicated that the webbing is absent in Gd, very
narrow in Tb, and fully developed, forming a kind of plateau, in the
other heavy rare earths. These conclusions were in accordance with the
positron-annihilation results, which further indicated that the webbing
is destroyed in the magnetically ordered phase of Ho. The relation of
these observations to the occurrence of periodic magnetic structures will
be discussed in the following section.
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Fig. 1.11. The calculated hole Fermi surface of paramagnetic Tb in
the Brillouin zone of Fig. 1.4. The extension of the ‘webbing’ between
the ‘toes’ near the zone boundary is believed to give rise to a peak in the
conduction-electron susceptibility χ(q), which determines the Q-vector

characterizing the helical structure.

The Fermi surface of paramagnetic Lu, in which the 4f states are all
filled, has also been studied by the dHvA effect (Johanson et al. 1982)
and found to be in semi-quantitative agreement with the calculations of
Tibbetts and Harmon (1982). Since the results of band structure calcu-
lations have been confirmed experimentally at the Fermi level in widely
separated elements in the rare earth series, it is reasonable to suppose
that they will also be successful in accounting for other ground-state
properties. Characteristic band energies for the trivalent lanthanides,
calculated by Skriver (1983) at a common atomic volume close to the
equilibrium value for Gd, are shown in Fig. 1.12. In this figure, the effect
of the change in potential is thus separated from that of the interatomic
spacing. The most notable feature is the fall in energy of the s band
relative to the d band with increasing atomic number, which results in a
decrease of the occupation of the latter, with consequences, as we shall
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Fig. 1.12. Characteristic band energies for the trivalent lanthanides,
for a common value of the atomic radius S, after Skriver (1983). The
values of the potential v(S) and the exchange-correlation energy εxc at
the atomic sphere are shown, together with the bottom, Bl, the centre,
Cl, and the top, Al, of the 6s, 6p, and 5d bands, and the Fermi level
εF . The relative lowering of the 6s band with increasing atomic number
reduces the 5d occupancy, which in turn changes the crystal structure.

see, for the crystal structure. The reason for the fall in the band en-
ergies is the increase of the nuclear charge with atomic number, which
is incompletely screened by the additional f electrons. The potential
veff(r) in (1.2.12) is therefore on average increasingly negative, and in
order to maintain an unchanged boundary condition, as expressed by
the logarithmic derivative, the band energies must decrease accordingly.
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This effect is relatively modest for the d bands, but much greater for
the s and p bands. The relative shift of the s and d bands is reduced by
the adjustment of the lattice to its equilibrium configuration, but only
by a small amount. As may be seen from Fig. 1.12, (Bd −Bs) increases
from 101mRy for La to 373mRy for Lu at constant S, whereas the cor-
responding values for the equilibrium atomic volumes are 136mRy and
380mRy. The band masses also change across the series; µd at constant
volume increases from 2.1 in La to 3.0 in Lu, so that the d bands narrow
as they fall, while µs increases slightly with atomic number, but remains
below 1 throughout (Skriver 1983).

The canonical-band theory may be used to calculate the electronic
pressure and its partitioning between the different angular momentum
components. According to the force theorem (see Mackintosh and Ander-
sen 1980) the change in the total energy, due to an infinitesimal change
in the lattice constant, may be determined as the difference in the band
energies, calculated while maintaining the potential unchanged. We may
thus write

dU = δ

∫ εF

εN(ε)dε, (1.3.24)

where N(ε) is the total electronic density of states, and δ indicates the
restricted variation with a frozen potential. The electronic pressure is
then given by

P = −dU
dΩ

, (1.3.25)

where Ω is the volume of the atomic polyhedron. The expression (1.3.21)
for the canonical-band energies then leads to the approximate result for
the l partial pressure:

3PlΩ = −nl

δCl

δ lnS
+ nl(εl − Cl)

δ lnµlS
2

δ lnS
, (1.3.26)

where nl is the occupation number of the l states and

εl =
1
nl

∫ εF

εNl(ε)dε (1.3.27)

is their mean energy. Equation (1.3.26) is useful for purposes of inter-
pretation, but the results which we shall present are based upon a more
accurate procedure, involving the fully hybridized self-consistent band
structure (Skriver 1983).

The partial occupation numbers, state-densities and electronic pres-
sures for α–Ce, at the equilibrium lattice constant, are given in Table
1.3. The s and p electrons make a positive, repulsive contribution to
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the pressure while the d and f states provide the binding, through their
negative, attractive partial pressure. This difference is essentially due to
the fact that the s and p wavefunctions have a positive curvature at the
atomic sphere, over the energy range of the corresponding bands, as illus-
trated in Fig. 1.5, while the d and f functions have a negative curvature.
Consequently, a decrease in volume causes an increase in the logarithmic
derivative for the former and a decrease for the latter, and since Dl(E)
is a decreasing function of energy, the s and p bands must rise and the d
and f bands fall in order to maintain the boundary condition. Equation
(1.3.25) then immediately accounts for the signs of the corresponding
partial pressures. The attractive f pressure for α–Ce is substantial; if
it is removed, the lattice expands to a volume greater than that of γ–
Ce. The partial pressures at a constant atomic volume for the trivalent
rare earths are shown in Fig. 1.13. As may be seen, it is primarily the
decrease in the s and p pressures, which has its origin in the incompletely

Fig. 1.13. The partial 6s, 6p, and 5d pressures for the trivalent rare
earths, calculated for a common atomic volume close to the equilibrium
value for Gd, after Skriver (1983). It is the decrease in the s and p

pressures which gives rise to the lanthanide contraction.
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Fig. 1.14. The equilibrium atomic radii for the rare earth metals, after
Skriver (1983). The full circles indicate the experimental values. The full
line is a calculation including the s, p, and d partial pressures, while the
broken line indicates that the f contribution is also taken into account.

screened increase in the nuclear charge, which leads to the lanthanide
contraction. This contraction is clearly apparent in the atomic radii
shown in Fig. 1.14. The values calculated from the condition that the
total pressure is zero agree very well with the experimental observations
for the heavy metals, but if the f contribution is neglected, the calcu-
lated electronic pressure is increasingly too high as the atomic number
decreases. As mentioned earlier, the partial pressure of the f band is es-
sential for understanding α–Ce, and it seems that the interaction of the
f electrons with their surroundings makes a contribution to the binding,
even in some metals in which the magnetic behaviour strongly indicates
that they are localized.

In Eu and Yb, the intra-atomic interactions make it favourable to
(half) fill the sub-band by transferring an electron from the conduction
bands to an f state, leading to the formation of the divalent cubic struc-
tures which strongly resemble the alkaline earth metals. This transfer
occurs predominantly at the expense of the d electrons, whose bind-
ing contribution to the electronic pressure is thereby reduced, causing
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a substantial increase in the atomic volume. The relatively weak bind-
ing of the 4f states in the divalent rare earths is clearly apparent in
the experiments of Lang et al. (1981), who used X-ray photoemission to
measure the energies required to transfer a 4f electron to the Fermi level,
throughout the whole series. By inverse photoemission (Bremsstrahlung
Isochromat Spectroscopy) they were similarly able to deduce the energies
required to move an electron from the Fermi level to the unoccupied 4f
states. Combining the two experiments, the Coulomb correlation energy
required to transfer an electron from an occupied level on another site
could be deduced. These energies were later calculated by Min et al.
(1986a) using a supercell method, in which rare earth ions with different
f occupancies are considered as distinct species, and the agreement with
experiment was generally very satisfactory.

For close-packed structures, the atomic volume is almost indepen-
dent of the structure, but there are small differences in the electronic
contribution to the cohesive energy, which manifest themselves in the
common structural sequence hcp → dhcp → Sm-structure → fcc in the
rare earths, as the atomic number is reduced or the pressure is increased.
Duthie and Pettifor (1977) proposed that the d-electron occupancy,

Fig. 1.15. The occupation numbers of the 5d states for the trivalent
lanthanides, at the observed equilibrium atomic volumes, after Skriver
(1983). For Ce, the 4f electrons are included in the energy bands. The
experimentally observed crystal structures are labelled by h, s, d, and
f, for hcp, Sm-structure, dhcp, and fcc, respectively. The empirical d-
occupation numbers which separate the different structures are indicated

by the lines on the right.
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which increases through these structural sequences, is the essential de-
terminant of the structure, and made an approximate calculation of the
energy differences using canonical-band theory. The results of Skriver
(1983) in Fig. 1.15 show how well the d occupancy indeed correlates
with the structure. To complete the picture, Min et al. (1986b) demon-
strated that increasing the pressure on Lu should produce a series of
phase transitions following the above sequence, the first of which has
been observed experimentally.


