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ELEMENTS OF RARE EARTH

MAGNETISM

The purpose of this introductory chapter is to describe in a synoptic way
those features of rare earth magnetism which provide the foundation for
the rest of the book. Since this material is presented in the form of a
survey, it does not claim to be as systematic and complete as the later
chapters. Consequently, it may be necessary for those who are unfamiliar
with the rare earths and their magnetism to find further details in the
original articles and reviews to which we shall refer, even though we have
attempted to present a reasonably self-contained account. We shall also
frequently refer forward to later sections for a more exhaustive treatment
of some of the topics which are cursorily introduced here. We hope
however that the information we have collected together will also provide
a useful summary for those who have some familiarity with the subject.

We set the scene with a brief history of the field, outlining what
we regard as the major advances. Even though we have striven to do
justice to at least the majority of the important contributions, our view-
point should not necessarily be considered as particularly objective. The
magnetism of the rare earths has its origin in the angular momenta of
the 4f electrons in the atoms and we therefore describe in Section 1.2
their electronic structure and magnetic characteristics, introducing such
essential ideas as density-functional theory, Russell–Saunders coupling
and Hund’s rules, and outlining how to calculate the magnetic moment
of an unfilled subshell. We condense these atoms into a metal in Section
1.3, which is concerned with the description of the conduction-electron
gas and its influence on the structural properties. A physically transpar-
ent method for determining the electronic structure is outlined, and the
way in which the band structure is built up from its constituent parts
is described and illustrated, using the concepts of canonical bands and
potential parameters. The nature of the 4f states in the metals, and the
occurrence of 4f bands in Ce and its compounds, are briefly discussed.
Our experimental knowledge of the electronic structure, and particularly
of the Fermi surface, is summarized. The way in which the conduction
electrons determine the atomic volume and crystal structure is explained,
and the individual contributions of the different l-states described. In
Section 1.4, the magnetic interactions are presented, both the single-
ion terms resulting from the crystal fields and the two-ion coupling via
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indirect exchange and other mechanisms. The magnetoelastic effects,
due to the coupling between the lattice strains and the magnetic mo-
ments, are also discussed. The manner in which these interactions and
the characteristics of the 4f electrons combine to determine the magnetic
properties of the metals is described in the last section. The observed
magnetic structures of the heavy rare earths are presented and their
occurrence under different circumstances discussed. Some features of
the structures and their temperature dependence are described in terms
of an elementary mean-field theory. The magnetism of the light rare
earths is then briefly treated and the importance of the crystal fields
emphasized. The effect of a magnetic field on the magnetic structures
is mentioned, and the factors which determine the magnetic anisotropy
discussed. Finally, the way in which magnetostriction can change the
crystal symmetry and influence the magnetic structure is illustrated.

1.1 A brief history

The quantum theory of magnetism was first placed on a sound foot-
ing in 1932 by J.H. Van Vleck in his classic monograph The Theory
of Electric and Magnetic Susceptibilities. In it, he extended the cal-
culations of the magnetic susceptibilities of isolated rare earth ions,
which had been performed by Hund (1925), to encompass the anoma-
lous cases of Eu and Sm, which have low-lying multiplets, giving rise to
Van Vleck paramagnetism. He was thus able to obtain good agreement
with experiment over the whole series from La to ‘Casseiopaium’ (now
Lu). The study of the metallic elements began in earnest when Urbain,
Weiss, and Trombe (1935) discovered the ferromagnetism of Gd. Klemm
and Bommer (1937) determined the paramagnetic Curie temperatures of
the heavy rare earths and Néel (1938) showed that, in the presence of
strong spin–orbit coupling on the ion and an interionic exchange inter-
action between the spins, these should be proportional, as observed, to
(g − 1)2J(J + 1). This later became known as the de Gennes factor.

Very little work was done on the rare earths during the war, but im-
mediately afterwards F.H. Spedding, at Iowa State University, resumed
his programme of producing the pure elements, and by the early 1950s
relatively large quantities had become available. One of the first fruits
of this programme was the extension of physical measurements to the
light rare earths, when Parkinson, Simon, and Spedding (1951) detected
a number of anomalies of magnetic origin in the heat capacity. Just
previously, Lawson and Tang (1949) had showed that the γ–α phase
transition in Ce, which can be induced either by pressure or cooling, re-
sulted in no change of the fcc symmetry, but a substantial reduction of
the lattice parameter. Zachariasen and Pauling independently ascribed
this shrinking to the transfer of the localized 4f electron to the conduc-
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tion band, the so-called promotional model. Extensive measurements
were carried out on polycrystalline samples of all the stable lanthanides
through the 1950s, and summarized by Spedding, Legvold, Daane, and
Jennings (1957) at the close of this early period of rare earth research.
Of particular significance, in the light of later developments, was the ob-
servation of extra magnetic neutron-diffraction peaks in polycrystalline
Er by Koehler and Wollan (1955).

The disparate theoretical components which were later brought to-
gether to form the standard model of rare earth magnetism were also
formulated in the 1950s. Zener (1951) suggested that localized moments
could be coupled together by an indirect exchange through the medium
of the conduction electrons, and Ruderman and Kittel (1954) calcu-
lated this coupling quantitatively for nuclear moments embedded in a
free-electron gas. Kasuya (1956) and Yosida (1957) extended the treat-
ment of this RKKY interaction to localized electronic moments. Stevens
(1952) invented his method of operator equivalents, which was of deci-
sive importance for a satisfactory treatment of the crystal fields. Mason
(1954) formulated a theory of magnetoelastic effects, while Zener (1954)
showed how to calculate the temperature dependence of the magnetic
anisotropy.

The classical period of rare earth magnetism was heralded by the
publication of the magnetization measurements on monocrystalline Dy
by Behrendt, Legvold, and Spedding (1957). The fabrication of single
crystals of all the heavy rare earths followed successively, and their bulk
magnetic properties were studied at Iowa State by Legvold and his stu-
dents. They were also made available to Koehler and his colleagues at
Oak Ridge for neutron-diffraction measurements, which revealed what
he later described as ‘a panoply of exotic spin configurations’. By the
time of the First Rare Earth Conference at Lake Arrowhead, Califor-
nia in October 1960, both the magnetic susceptibilities and structures
had been extensively investigated. The papers of Legvold (1961) and
Koehler, Wollan, Wilkinson, and Cable (1961) summarized the remark-
able progress which had been made by that time.

Theoretical developments lagged little behind. Almost simultane-
ously with the observation of the helical structure in Dy, Enz (1960)
showed that the magnetization curves implied such a structure, and
pointed out the importance of magnetoelastic effects in inducing the
transition to the ferromagnetic phase. Niira (1960) successfully inter-
preted the magnetization of Dy in the ferromagnetic phase by calculating
the spin-wave spectrum of an anisotropic magnet, showing that a finite
energy is required to create a long-wavelength excitation. This energy
gap gives rise to an exponential decrease of the magnetization at low
temperatures. Elliott (1961) considered the magnetic structures of the
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heavy rare earths and their temperature dependences, utilizing a phe-
nomenological molecular-field model. A similar approach was taken by
Miwa and Yosida (1961), while Nagamiya, Nagata, and Kitano (1962)
calculated the effect of a magnetic field on some of these structures,
showing that a fan structure may exist between the helix and the ferro-
magnet. In these papers, the standard model first attained a coherent
formulation.

The transport properties, particularly the electrical resistivity, were
elucidated in the same period. De Gennes (1958) considered the mag-
netic disorder scattering, showing that it is proportional to the de Gennes
factor in the paramagnetic phase, while Kasuya (1959) gave a very com-
plete discussion of the same subject, including not only the paramag-
netic phase but also scattering by spin waves and rare earth impuri-
ties. The first resistivity measurements on single crystals were made
on Er by Green, Legvold, and Spedding (1961). The unusual temper-
ature dependence of the resistance in the c-direction was explained by
Mackintosh (1962) as a consequence of the incommensurable magnetic
ordering, leading to magnetic superzones. Miwa (1963) and Elliott and
Wedgwood (1963) made calculations of the magnitude of this effect, us-
ing the free electron model, which were in semi-quantitative agreement
with the experimental results. Mackintosh (1963) pointed out that the
spin-wave energy gap should also give rise to an exponential increase in
the magnetic scattering at low temperature and deduced that the gap in
Tb is about 20K, a value later substantiated by direct measurements.

Until this time, the conduction electrons in the rare earths had
been described by the free-electron model, but Dimmock and Freeman
(1964) demonstrated that this simplification was unjustified when they
calculated the band structure of Gd by the APW method. The con-
duction electrons were found to be largely d-like, as in the transition
metals, and the Fermi surface far from spherical. At that time, sin-
gle crystals of the purity required to allow conventional Fermi surface
experiments were unavailable, so Gustafson and Mackintosh (1964) em-
ployed positron annihilation, initially in polycrystalline samples. Their
most striking observation was that the number of 4f electrons in Ce does
not change greatly at the γ–α transition, in contradiction to the promo-
tional model, and hence to the standard model. Later measurements on
single crystals of the heavy rare earths showed that the conduction elec-
trons are indeed far from free electron-like, and the experimental results
could be well accounted for by relativistic APW calculations (Williams,
Loucks, and Mackintosh 1966).

As the ground-state properties of the rare earth metals became
progressively clarified, interest turned towards the magnetic excitations.
Niira’s pioneering theoretical work was followed by the calculation of
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the spin-wave dispersion relations in a variety of heavy-rare-earth mag-
netic structures by Cooper, Elliott, Nettel, and Suhl (1962). The first
observations of spin waves by inelastic neutron scattering were made
at Risø by Bjerrum Møller and Houmann (1966), who obtained rather
complete dispersion relations for Tb at 90K. During the following years,
Bjerrum Møller and his colleagues performed a series of experiments
which revealed many novel phenomena, including the temperature- and
field-dependence of the magnon energies, allowing the deduction of the
exchange and its anisotropy, and crystal-field and magnetoelastic param-
eters. Magnons in the incommensurable helical phase, including phason
excitations at long wavelengths, were also observed, as was the inter-
action of magnons with each other, with the conduction electrons, and
with phonons, including coupling through a new mechanism involving
the spin–orbit interaction of the conduction electrons, explained by Liu
(1972a).

Callen and Callen (1963) further developed the theory of magneto-
striction, putting it in the form used by Rhyne and Legvold (1965a) to
interpret their pioneering measurements on single crystals. Callen and
Callen (1965) also generalized the treatment of the temperature depen-
dence of crystal-field and magnetoelastic parameters. Cooper (1968a,b)
considered in detail the role of the magnetoelastic effects in the helical-
ferromagnetic transition, and included them in calculations of the spin-
wave energies. Turov and Shavrov (1965) had earlier proposed that,
since the magneto-strain cannot follow the precession of the moments
in a spin wave, the energy gap should not vanish when the hexagonal
anisotropy is cancelled by an external magnetic field. This frozen lattice
effect was observed by Nielsen, Bjerrum Møller, Lindg̊ard, and Mack-
intosh (1970). In the late 1960s, the availability of separated isotopes
allowed spin-wave measurements at Oak Ridge on a number of the heavy
rare earths which, because of neutron absorption in the natural state,
could otherwise only be studied with great difficulty. Of particular in-
terest were experiments on the isotropic ferromagnet Gd, in which the
magnetic form factor was studied by Moon and Koehler (1971) and the
spin waves by Koehler, Child, Nicklow, Smith, Moon, and Cable (1970),
and the clear evidence for a large exchange anisotropy in the conical
phase of Er (Nicklow, Wakabayashi, Wilkinson, and Reed 1971a).

With the increasing understanding of the magnetic behaviour of
the heavy rare earths, it was natural that attention began to turn to
the lighter metals. Moon, Cable, and Koehler (1964) began what was
destined to become a long-lasting study by a number of groups of the
magnetic structure of Nd, and Cable, Moon, Koehler, and Wollan (1964)
found indications of antiferromagnetic ordering in polycrystalline Pr.
Bleaney (1963) had earlier shown that the crystal-field ground states
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in Pr should be singlets, and in such singlet ground-state systems no
magnetic ordering should occur unless the exchange exceeds a critical
value. Johansson, Lebech, Nielsen, Bjerrum Møller, and Mackintosh
(1970) could indeed detect no signs of magnetic ordering at 4.2K in
monocrystalline Pr. Shortly afterwards, the crystal-field excitations, or
magnetic excitons, were observed by Rainford and Houmann (1971) and,
on the basis of these results, Rainford (1972) proposed a crystal-field
level scheme which is very close to that accepted today.

The achievements of the classical period were summarized in the
compendium on the Magnetic Properties of Rare Earth Metals, edited
by R.J. Elliott, which was published in 1972 and, in a sense, also signalled
the end of this period. In the modern era, the principles which had been
established by the early 1970s have been applied to attaining a deeper
and more complete understanding of the elements, even though the pri-
mary interest has increasingly turned towards rare earth compounds
and alloys. For example, the magnetic interactions in the exchange-
dominated system Tb were studied in exhaustive detail with inelastic
neutron scattering by Jensen, Houmann, and Bjerrum Møller (1975).
The crystal-field dominated system Pr was subjected to a similarly care-
ful investigation by Houmann, Rainford, Jensen, and Mackintosh (1979)
and, from his analysis of these results, Jensen (1976a) concluded that Pr
could be induced to order antiferromagnetically either by the application
of a modest stress or, through the hyperfine interaction, as first proposed
by Murao (1971), by cooling to about 40mK. The former effect was ob-
served by McEwen, Stirling, and Vettier (1978) while magnetic ordering
at very low temperatures had been inferred from heat-capacity measure-
ments by Lindelof, Miller, and Pickett (1975). However, the controversy
surrounding this phenomenon was only finally settled by the unambigu-
ous observation of magnetic ordering by neutron diffraction (Bjerrum
Møller, Jensen, Wulff, Mackintosh, McMasters, and Gschneidner 1982).
The effects of the crystal field alone were studied by Touborg and Høg
(1974), by dissolving small amounts of the magnetic rare earths in Sc, Y,
and Lu and determining the crystal-field level scheme through suscep-
tibility measurements, in conjunction with inelastic neutron scattering
(Rathmann and Touborg 1977).

Efforts to increase the purity of rare earth samples were rewarded
by the observation of the de Haas–van Alphen (dHvA) effect in Gd by
Young, Jordan, and Jones (1973) and the subsequent detailed elucida-
tion of its Fermi surface, which could be satisfactorily accounted for
by band structures calculated with the inclusion of the exchange split-
ting between up- and down-spin levels. More recently, the careful study
of the dHvA effect in paramagnetic Pr by Wulff, Lonzarich, Fort, and
Skriver (1988) has confirmed the success of the band model in describ-
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ing the conduction electrons, and given extensive information on their
interaction with the 4f electrons.

The electronic structure of Ce has been of continued interest. Jo-
hansson (1974) elaborated the suggestion of Gustafson, McNutt, and
Roellig (1969) that α–Ce is a 4f-band metal, and Glötzel (1978) and
others have further explored this model by band structure calculations.
Single crystals of α–Ce suitable for dHvA experiments are extremely
difficult to prepare, but Johanson, Crabtree, Edelstein, and McMasters
(1981) have studied the related compound CeSn3, observing the 4f char-
acter of the electrons at the Fermi surface. Photoemission experiments
by Wieliczka, Weaver, Lynch, and Olson (1982) and Mårtensson, Reihl,
and Parks (1982) proved highly informative in exploring the electronic
structure of Ce. This work reflects the intense interest in the 1980s in
the problem of non-integral 4f occupancy, which gives rise to a variety
of phenomena subsumed under the description mixed-valent behaviour,
the most striking of which is the huge electronic heat capacity and as-
sociated effective masses measured in heavy-fermion materials. The dis-
covery of superconductivity in CeCu2Si2 by Steglich, Aarts, Bredl, Lieke,
Meschede, Franz, and Schäfer (1979) stimulated a major effort in study-
ing lanthanide and actinide heavy-fermion systems, and underlined the
significance of the earlier observation of superconductivity in Ce under
pressure by Probst and Wittig (1975).

The properties of itinerant 4f electrons have predominantly been
studied through rare earth compounds. Indeed the main thrust of the
rare earth research programme has recently been towards understand-
ing compounds and alloys, which are generally beyond the scope of this
book, but which may nevertheless be largely understood in terms of the
principles which we shall present. However, as will be discussed in later
sections, there still remain a number of problems in the elements which
await and occasionally obtain a solution. For example, the essential fea-
tures of the classic puzzle of the magnetic structure of Nd have been
clarified by McEwen, Forgan, Stanley, Bouillot, and Fort (1985). Gibbs,
Moncton, D’Amico, Bohr, and Grier (1985) have re-examined the con-
figurations of the moments in Ho and other heavy rare earths, using
a combination of synchrotron radiation, which shows promise for very
high-resolution structural studies, and neutron diffraction. They utilized
the concept of spin slips to explain their results, and hence refocused
attention on commensurable magnetic structures, which had originally
been studied by Koehler, Cable, Wilkinson, and Wollan (1966). Initial
studies of the excitations of such structures were performed by Larsen,
Jensen, and Mackintosh (1987), who thereby explained the long-standing
mystery of the stability of the cone structure in Ho at low temperatures.
Other unexplained features of the neutron diffraction patterns from Ho
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were accounted for by Jensen and Mackintosh (1990), who showed that
intermediate structures, which they named helifans, could be stabilized
by a magnetic field.

A new field of endeavour has been opened by the fabrication of
multilayers of different species of rare earths and the study of their prop-
erties by Majkrzak, Cable, Kwo, Hong, McWhan, Yafet, Waszczak, and
Vettier (1986), and by Salamon, Sinha, Rhyne, Cunningham, Erwin,
Borchers, and Flynn (1986). The size of the teams working on a num-
ber of these modern projects in rare earth research reflects the technical
complexity of the problems now being tackled, and no doubt also the
collaborative spirit of the age.

1.2 Rare earth atoms

The starting point for the understanding of the magnetism of the rare
earths is the description of the electronic states, particularly of the 4f
electrons, in the atoms. The wavefunction Ψ(r1σ1, r2σ2, . . . , rZσZ) for
the electrons, which is a function of the space and spin coordinates r

and σ of the Z electrons which constitute the electronic charge cloud (Z
is the atomic number), is determined for the stationary state of energy
E from the Schrödinger equation

HΨ = EΨ, (1.2.1)

where the non-relativistic Hamiltonian operator is

H = − h̄2

2m

Z∑

i

∇2
i +

1

2

Z∑

ij

e2

|ri − rj |
+

Z∑

i

vext(ri) (1.2.2)

and, in the case of an atom, the ‘external’ potential vext(r) is just the
Coulomb potential −Ze2/ri due to the nuclear attraction. As is well
known, the difficulties in solving this problem reside in the second term,
the Coulomb interaction between the electrons. For heavy atoms, exact
solutions require a prohibitive amount of computation, while any possi-
bility of an exact solution for the electronic states in a metal is clearly
out of the question. It is therefore necessary to replace the Coulomb
interaction by a self-consistent field, which is most satisfactorily deter-
mined by means of the density-functional theory of Hohenberg and Kohn
(1964) and Kohn and Sham (1965).

The first step is to write the Hamiltonian (1.2.2) in the symbolic
form

H = T + U + V, (1.2.3)

incorporating the kinetic energy, the Coulomb repulsion between the
electrons, and the external potential, due to the nucleus in the atom or
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the periodic lattice potential in the solid. Hohenberg and Kohn (1964)
established two important results. Firstly, they showed that the external
potential is a unique functional of the electron density n(r), and hence
that the ground-state wavefunction Φ and the energy functional

<Φ | H |Φ> = <Φ | (T + U) |Φ> +

∫
vext(r)n(r)dr (1.2.4)

are unique functionals of n(r). Secondly, they proved that the energy
functional (1.2.4) attains its minimum value, the ground-state energy,
for the correct ground-state density. Hence, if the universal functional
<Φ | (T + U) |Φ> were known, it would be straightforward to use this
variational principle to determine the ground-state energy for any speci-
fied external potential. However, the functional is not known, and the
complexity of the many-electron problem is associated with its approx-
imate determination.

Guided by the successes of the one-electron model, Kohn and Sham
(1965) considered a system of non-interacting electrons with the same
density as that of the real system, satisfying the single-particle Schrö-
dinger equation

[
− h̄2

2m
∇2 + veff(r)

]
ψi(r) = εiψi(r). (1.2.5)

The ground state ΦS of such a system is just the antisymmetrized prod-
uct, or Slater determinant, formed from the Z lowest-lying one-electron
orbitals, so that the electron density is the sum over these orbitals:

n(r) =

Z∑

i

|ψi(r)|2. (1.2.6)

The effective potential veff(r) must therefore be determined so that n(r)
is also the ground-state density of the real system. To accomplish this,
the energy functional (1.2.4) may be written in the form

<Φ | H |Φ> = <ΦS |T |ΦS>

+

∫ [
1

2

∫
e2n(r′)

|r− r′|dr
′ + vext(r)

]
n(r)dr + Exc{n(r)},

(1.2.7)

where the first contribution is the kinetic energy of the non-interacting
system, and the second is the Hartree energy of the charge cloud. The
last term is the difference between the true kinetic energy and that of the
non-interacting system, plus the difference between the true interaction
energy of the system and the Hartree energy. This exchange-correlation
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energy encompasses our ignorance of this problem, and is presumably
relatively small. In the local approximation, which is adopted to convert
the density-functional theory into a practical method, this energy is
written

Exc{n(r)} ≈
∫
εxc[n(r)]n(r)dr, (1.2.8)

and the effective potential is therefore

veff(r) =

∫
e2n(r′)

|r− r′|dr
′ + vext(r) + vxc[n(r)], (1.2.9)

where
vxc[n(r)] = d[nεxc(n)]/dn ≡ µxc[n(r)] (1.2.10)

is the local approximation to the exchange-correlation contribution to
the chemical potential of the electron gas. Useful estimates of this quan-
tity have been obtained from calculations for a homogeneous electron gas
of density n(r) by Hedin and Lundqvist (1971), von Barth and Hedin
(1972), and Gunnarsson and Lundqvist (1976), and these are frequently
used in calculations on both atoms and solids.

In order to determine the atomic structure, the Schrödinger equa-
tion (1.2.5) must be solved by the Hartree self-consistent procedure, in
which, through a process of iteration, the potential (1.2.9) generates
wavefunctions which, via (1.2.6), reproduce itself. Since this potential is
spherically symmetric in atoms, the single-particle wavefunctions may
be written as the product of a radial function, a spherical harmonic and
a spin function

ψnlmlms
(rσ) = ilRnl(r)Ylml

(r̂)χms
, (1.2.11)

where r̂ is a unit vector in the direction of r, the spin quantum number
ms can take the values ± 1

2 , and the phase factor il is included for later
convenience. The radial component satisfies the equation

− h̄2

2m

d2[rRnl(r)]

dr2
+
(
veff(r) +

l(l+ 1)h̄2

2mr2
− ε

)
[rRnl(r)] = 0. (1.2.12)

Some radial wavefunctions for rare earth atoms are shown in Fig. 1.1.
The 4f electrons are well embedded within the atom, and shielded by
the 5s and 5p states from the surroundings. The 5d and 6s electrons
form the conduction bands in the metals. The incomplete screening of
the increasing nuclear charge along the rare earth series causes the lan-
thanide contraction of the wavefunctions, which is reflected in the ionic
and atomic radii in the solid state. In particular, as illustrated in Fig.
1.1, the 4f wavefunction contracts significantly between Ce, which has
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one 4f electron, and Tm, which has one 4f hole in the atom, though

two in the metallic state. The angular dependences of the 4f wavefunc-
tions are depicted in Fig. 1.2. The charge clouds are highly anisotropic,

with pronounced multipoles whose magnitudes and signs change dra-

matically with ml. As we shall see, this anisotropy is clearly manifested

in the magnetic properties of the metals.

Since they are among the heavier elements, relativistic effects are of

substantial importance in the rare earths. These are most straightfor-
wardly taken into account by solving the Dirac equation in the central

Fig. 1.1. The radial components of atomic wavefunctions for Ce, which
has one 4f electron, and Tm, which has 13 4f electrons, or one 4f hole.
The Tm wavefunctions are contracted, relative to those of Ce, due to the
incomplete shielding of the greater nuclear charge. As a consequence, the
amplitude of the 4f wavefunction at the indicated Wigner–Seitz radius
is much greater in Ce than in Tm, which has important consequences

for the character of the 4f states in the metals.
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field, rather than the Schrödinger equation, but it may be more instruc-
tive to consider them as perturbations which, to order (p/mc)2, augment
the one-electron potential with

− p4

8m3c2
− h̄2

4m2c2
dv

dr

∂

∂r
+

1

2m2c2r

dv

dr
s · l. (1.2.13)

The first term, which is due to the increase of mass with velocity, reduces
the energy of all states by an amount which decreases with l, while the
second ‘Darwin’ term increases the energy of s states only. These effects
may both be incorporated into the central field, but the last term couples
together the spin and orbital motion in a way that has far-reaching
consequences for the magnetic properties.

Fig. 1.2. The angular variation of
the 4f wavefunctions. The interac-
tion of the highly anisotropic charge
clouds with the crystalline electric
fields gives rise to the large single-
ion anisotropies observed in the rare
earth metals.

In the Russell–Saunders coupling scheme, which is an accurate pro-
cedure for the 4f electrons, the spins si of the individual 4f electrons
are coupled by the exchange interaction, diagonal in the total spin S

of the incompletely filled subshell, while the Coulomb interaction simi-
larly combines the li into the total orbital momentum L. In terms of the
one-electron functions, the wavefunction for the subshell may be written

Ψ(LSMLMS) =
∑

mlms

C(LSMLMS ;mlms)ψ(mlms), (1.2.14)

where the C(LSMLMS ;mlms) are the Clebsch–Gordan or Wigner co-
efficients. It is convenient to write this expansion in a representation-
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independent form, in terms of the state vectors

|LSMLMS> =
∑

mlms

<mlms|LSMLMS> |mlms> . (1.2.15)

The exchange and Coulomb interactions are sufficiently large that the
magnetic properties at all accessible temperatures are determined by the
S and L states of lowest energy. These are found from Hund’s rules; S is
maximized and, subject to this maximum S value, L is also maximized.
This results in the values for the trivalent ions shown in Table 1.1.

Table 1.1. Properties of the tripositive rare earth ions.

4f n Ion+++ L S J g (g − 1)2J(J + 1) ∆(K)

0 La 0 0 0 —

1 Ce 3 1

2

5

2

6

7
0.18 3150

2 Pr 5 1 4 4

5
0.80 3100

3 Nd 6 3

2

9

2

8

11
1.84 2750

4 Pm 6 2 4 3

5
3.20 2300

5 Sm 5 5

2

5

2

2

7
4.46 1450

6 Eu 3 3 0 — 500

7 Gd 0 7

2

7

2
2 15.75

8 Tb 3 3 6 3

2
10.50 2900

9 Dy 5 5

2

15

2

4

3
7.08 4750

10 Ho 6 2 8 5

4
4.50 7500

11 Er 6 3

2

15

2

6

5
2.55 9350

12 Tm 5 1 6 7

6
1.17 11950a

13 Yb 3 1

2

7

2

8

7
0.32 14800

14 Lu 0 0 0 —

a The lowest excited state in Tm is 3F4 at 8490K.

It is a consequence of the Wigner–Eckart theorem that the spin–
orbit term in (1.2.13) can be written

Hso = ±ζ(LS)S · L, (1.2.16)

where

ζ(LS) =
π

m2c2S

∫
rR2

4f (r)
dv

dr
dr, (1.2.17)
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and the + and − signs refer respectively to a less or more than half-filled
subshell. The spin and orbital angular momenta are thus combined into
the total angular momentum J = L+ S. These states may be written

|JMJLS> =
∑

MLMS

<LSMLMS |JMJLS> |LSMLMS> . (1.2.18)

Because of the sign of (1.2.16), the value of J in the ground state is
L∓ S, according as the subshell is less or more than half-full. Roughly
speaking, L is always parallel to J, but S is antiparallel in the first half
of the series and parallel in the second half. The energy separation to
the first excited multiplet may be determined from the matrix elements
of (1.2.16), and is given by

∆ = ζ(LS)

{
(J + 1)

J
(1.2.19)

again depending on whether the subshell is respectively less or more
than half-filled. The values of J in the ground state and of ∆, obtained
from spectroscopic measurements on rare earth salts (Dieke 1968), are
given in Table 1.1.

The magnetization of an assembly of N rare earth atoms or ions is
given by the derivative of the free energy with respect to magnetic field:

M = − 1

V

∂F

∂H
(1.2.20)

or, recalling that

F = −N

β
ln
∑

n

e−βEn(H), (1.2.21)

where En(H) are the atomic energy levels in the field, and β = 1/kBT ,

M =
N

V

∑

n

−∂En

∂H
e−βEn

/∑

n

e−βEn . (1.2.22)

Neglecting the small diamagnetic susceptibility, the magnetic contribu-
tion to the Hamiltonian is given by the Zeeman term

HZ = −µB(L+ g0S) ·H, (1.2.23)

where µB is the Bohr magneton. Because of the negative charge on the
electron, the angular momentum and the magnetic moment are antipar-
allel. This gives rise to certain difficulties, which are frequently ignored
in the literature. We shall circumvent them by taking L, S, and J as
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signifying the negative of the corresponding angular-momentum vector.
We shall furthermore from now on take the gyromagnetic ratio g0 as 2.
Second-order perturbation theory then gives the magnetic contribution
to the energy:

δEn(H) = −µBH·<n|L+ 2S |n> +
∑

m 6=n

|<n|µBH·(L+ 2S)|m> |2
En − Em

.

(1.2.24)
Problems of degeneracy are taken care of by using the |JMJLS> basis,
whose degeneracy is completely lifted by the field. In this basis, and
within a particular JLS-multiplet, the Wigner–Eckart theorem implies
that the matrix elements of (L + 2S) are proportional to those of J, so
that

<JLSMJ |L+ 2S |JLSM ′
J> = g(JLS) <JLSMJ |J |JLSM ′

J>,
(1.2.25)

and the proportionality constant, the Landé factor, is

g =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (1.2.26)

Within this multiplet, we may write eqn (1.2.25) in the shorthand form
L+ 2S = gJ, and consider the effective moment on the atom to be

µ = gµBJ. (1.2.27)

With the same proviso, we may similarly write

L = (2− g)J, (1.2.28)

and
S = (g − 1)J. (1.2.29)

If J is non-zero, the first-order term in (1.2.24), combined with (1.2.22)
gives a magnetization for the ground-state multiplet:

M(H,T ) =
N

V
gµBJBJ (βgµBJH), (1.2.30)

where the Brillouin function is

BJ(x) =
2J + 1

2J
coth

2J + 1

2J
x− 1

2J
coth

1

2J
x. (1.2.31)

If gµBJH is small compared with kBT , the susceptibility is constant
and given by Curie’s law:

χ =
M

H
=
g2µ2

BJ(J + 1)

3kBT

N

V
≡ C

T
, (1.2.32)
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where C is the Curie constant. The second-order non-diagonal term in
(1.2.24) gives a paramagnetic contribution to χ which is independent of
temperature, provided that the thermal population of the excited states
is negligible. This Van Vleck paramagnetism is very small in the heavy
rare earths, but in the first half of the series it is given by

χV =
2µ2

B(L + 1)S

3(J + 1)∆

N

V
, (1.2.33)

which may be significant, since

χV

χ
=

2(L+ 1)S

g2J(J + 1)2
kBT

∆
=
αkBT

∆
, (1.2.34)

where, from Table 1.1, α takes the modest value of 0.19 for Pr, but
is 12 for Sm. Since ∆ is only 1450K, the Van Vleck paramagnetism
in Sm is significant even at rather low temperatures. In trivalent Eu,
J = 0 in the ground state and the paramagnetic susceptibility is due
entirely to the mixing of the excited states into the ground state by the
field, and to the thermal excitation of these states. However, Eu metal
is divalent and the 8S7/2 ionic susceptibility follows Curie’s law very
closely. The Van Vleck paramagnetism arising from the mixing of states
of different J will not play a significant role in our later discussion, but
the analogous phenomenon of the mixing of states of different MJ , split
by the crystalline electric field in the metal, will be of central importance.

1.3 The metallic state

When a large number of rare earth atoms are assembled to form a solid,
the 4f electrons generally remain localized, in a sense which will be made
more precise later, so that their magnetic properties closely resemble
those in the free atoms. The external 5d and 6s electrons, on the other
hand, become delocalized into Bloch states, extending throughout the
metal and constituting the conduction-electron gas. The conduction
electrons themselves make only a modest contribution to the magnetic
moment, but by mediating the magnetic interactions they play a crucial
role in determining the characteristic magnetic properties in the solid
state. An understanding of the magnetism therefore requires a detailed
description of the conduction electron gas, and this section is concerned
with our theoretical and experimental knowledge of the Bloch states,
and their influence on the structural properties of the metals. Some of
these structural properties of the rare earth metals are collected in Table
1.2, from which it may be seen that the room-temperature structures are
all close-packed, with a coordination number of 12, with the exception
of Eu, which is bcc. The remaining elements all form hexagonal phases,



1.3 THE METALLIC STATE 17

Table 1.2. Structural properties of the lanthanides.

Element Structure Lattice const. Atomic rad. Density Melt.point
(300K) a (Å) c (Å) S (a.u.) (g/cm3) (K)

La dhcp 3.774 12.171 3.92 6.146 1191
Ce(β) dhcp 3.681 11.857 3.83 6.689 1071
Ce(γ) fcc 5.161 3.81 6.770
Ce(α) fcc 4.85 (77K) 3.58 8.16
Pr dhcp 3.672 11.833 3.82 6.773 1204
Nd dhcp 3.658 11.797 3.80 7.008 1294
Pm dhcp 3.65 11.65 3.78 7.264 1315
Sm rhom 3.629 26.207 3.77 7.520 1347
Eu bcc 4.583 4.26 5.244 1095
Gd hcp 3.634 5.781 3.76 7.901 1586
Tb hcp 3.606 5.697 3.72 8.230 1629
Dy hcp 3.592 5.650 3.70 8.551 1687
Ho hcp 3.578 5.618 3.69 8.795 1747
Er hcp 3.559 5.585 3.67 9.066 1802
Tm hcp 3.538 5.554 3.65 9.321 1818
Yb fcc 5.485 4.05 6.966 1092
Lu hcp 3.505 5.549 3.62 9.841 1936

although the hcp allotrope of Yb is only stable at low temperatures, and
Ce has two separate fcc phases in addition to its dhcp form.

The heavy rare earths are all hcp, while the dhcp structure pre-
dominates among the lighter metals. These structures may be produced
by stacking close-packed layers in the sequences ABAB and ABAC re-
spectively, as shown in Fig. 1.3. The fcc structure corresponds to the
stacking sequence ABCABC, while the Sm structure is ABABCBCAC.
The latter has rhombohedral symmetry but it is frequently more conve-
nient to consider it as hexagonal. The crystallographic a-axis is taken
along the direction joining a pair of nearest neighbours in the hexagonal
plane, the c-axis is normal to the plane, and the b-axis is orthogonal to
the other two. The local, i.e. nearest-neighbour, symmetry in the fcc
and hcp structure is, of course, cubic and hexagonal respectively. The
dhcp structure, on the other hand, has two types of site and, for an
‘ideal’ c/2a ratio of 1.633, their local symmetry alternates between cubic
and hexagonal in the sequence chch, while the Sm structure corresponds
to chhchh. As may be seen from Table 1.2, however, the c/2a ratio is
consistently smaller than the ideal value, so the ‘cubic’ sites have only
approximate local cubic symmetry.
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Fig. 1.3. The hcp and dhcp crystal structures. In the latter, the
B and C sites have hexagonal symmetry, while the A sites have local

cubic symmetry, for an ideal c/a ratio.

To determine the eigenstates for the conduction electron gas, we
adopt the same procedure as that outlined for atoms in the previous
section. The external potential vext(r) in (1.2.2) is now the Coulomb
attraction of the nuclei situated on the crystal lattice, shielded by the
electrons of the ionic core, which are usually taken to have the same
charge distribution as in the atoms. The potential consequently has the
translational symmetry of the periodic lattice, and so therefore does the
effective potential veff(r), which arises when we make the single-particle
approximation (1.2.5) and the local-density approximation (1.2.9). In
the atom, the eigenfunctions are determined by the boundary condition
that their amplitude must vanish for large values of r and, when (1.2.12)
is integrated numerically, they are automatically continuous and differ-
entiable. The translational symmetry of the solid is expressed in Bloch’s
theorem:

ψ(r) = eik·R ψ(r−R), (1.3.1)

and this boundary condition gives rise to eigenfunctions ψj(k, ε, r) and
eigenvalues εj(k) which are functions of the wave-vector k in reciprocal
space. All the electron states may be characterized by values of k lying
within the Brillouin zone, illustrated for the hexagonal and fcc structures
in Fig. 1.4, and by the band index j defined such that εj(k) ≤ εj+1(k).

The determination of the eigenstates of the Schrödinger equation,
subject to the Bloch condition (1.3.1) is the central problem of energy-
band theory. It may be solved in a variety of ways, but by far the most
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Fig. 1.4. The Brillouin zones for the hexagonal and fcc lattices.

effective procedure for the rare earths is to adopt one of the linear meth-
ods of Andersen (1975). In the following, we will use the Atomic Sphere
Approximation (ASA) which will allow us to illustrate the construction
and characteristics of the energy bands in a transparent way. This ap-
proximation, and the closely-related Linear Muffin-Tin Orbitals Method
(LMTO), which allows computationally very efficient calculations of ar-
bitrarily precise energy bands, for a given potential, have been concisely
described by Mackintosh and Andersen (1980) and, in much more detail,
by Skriver (1984).

In a close-packed solid, the electrons may to a very good approxima-
tion be assumed to move in a muffin-tin potential, which is spherically
symmetric in a sphere surrounding each atomic site, and constant in the
interstitial regions. We recall that the atomic polyhedron, or Wigner–
Seitz cell, is bounded by the planes which perpendicularly bisect the
vectors joining an atom at the origin with its neighbours, and has the
same volume as the atomic sphere, whose radius S is chosen accordingly.
If we surround each site in the crystal with an atomic sphere, the po-
tential within each of these overlapping regions will, to a high degree of
accuracy, be spherically symmetric. Neglecting the spin, we may there-
fore write the solutions of the Schrödinger equation for a single atomic
sphere situated at the origin in the form

ψlm(ε, r) = ilRl(ε, r)Ylm(r̂), (1.3.2)

where the radial function Rl(ε, r) satisfies eqn (1.2.12) and is a function
of the continuous energy variable ε. Examples of such radial functions
are shown in Fig. 1.5.



20 1. ELEMENTS OF RARE EARTH MAGNETISM

Fig. 1.5. Radial wavefunctions for α–Ce metal, calculated by Skriver
from the self-consistent atomic-sphere potential, at the energies Cnl of the
centres of the associated bands. Since these wavefunctions are normalized
within the unit cell, the effective masses µnl are inversely proportional
to the value of R2

l (Cnl, S) at the Wigner–Seitz radius, and this probabil-
ity, and the consequent overlap between wavefunctions on neighbouring

sites, therefore determines the corresponding band width.

Augmenting these partial waves by suitably-chosen regular solutions
of Laplace’s equation, we define the energy-dependentmuffin-tin orbitals

χlm(ε, r) = ilYlm(r̂)




Rl(ε, r) + pl(ε)(r/S)

l ; r < S

(S/r)l+1 ; r > S,

(1.3.3)

which are continuous and differentiable if

pl(ε) =
Dl(ε) + l + 1

Dl(ε)− l
, (1.3.4)

where the logarithmic derivative is

Dl(ε) = S
R′

l(ε, S)

Rl(ε, S)
. (1.3.5)
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From muffin-tin orbitals located on the lattice sites of a solid, with
one atom per unit cell, we now construct a wavefunction which is con-
tinuous and differentiable, and manifestly satisfies the Bloch condition
(1.3.1):

ψj(k, ε, r) =
∑

lm

ajklm

∑

R

eik·Rχlm(ε, r−R). (1.3.6)

If we approximate the atomic polyhedra by spheres, and implicitly as-
sume that they fill space, the condition that (1.3.6) is a solution of the
Schrödinger equation is easily seen to be that the sum of the tails orig-
inating from terms of the form (S/|r − R|)l+1, from the surrounding
atoms, cancels the ‘extra’ contribution

∑

lm

ajklmYlm(r̂)pl(ε)(r/S)
l,

in the atomic sphere at the origin. To satisfy this condition, we expand
the tails of the muffin-tin orbitals centred at R about the origin, in the
form

∑

R 6=0

eik·R
( S

|r−R|
)l+1

ilYlm( ̂r−R)

=
∑

l′m′

−1

2(2l′ + 1)

( r
S

)l′
il

′

Yl′m′(r̂)Sk
l′m′,lm,

(1.3.7)

where the expansion coefficients, known as the canonical structure con-
stants, are

Sk
l′m′,lm =

∑

R 6=0

eik·RSl′m′,lm(R), (1.3.8)

with
Sl′m′,lm(R) = gl′m′,lm

√
4π(−i)λY ∗

λµ(R̂)(R/S)−λ−1,

where

gl′m′,lm ≡ (−1)m+12

√
(2l′ + 1)(2l + 1)

2λ+ 1

(λ+ µ)!(λ − µ)!

(l′ +m′)!(l′ −m′)!(l +m)!(l −m)!

and
λ ≡ l + l′ ; µ ≡ m−m′.

From (1.3.3) and (1.3.7), the required tail-cancellation occurs if

∑

lm

[Pl(ε)δl′lδm′m − Sk
l′m′,lm]ajklm = 0, (1.3.9)
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where the potential function Pl(ε) is defined by

Pl(ε) = 2(2l+ 1)pl(ε) = 2(2l+ 1)
Dl(ε) + l + 1

Dl(ε)− l
. (1.3.10)

The linear homogeneous equations (1.3.10) have solutions for the eigen-

vectors ajklm only for those values of k and ε for which

det
[
Pl(ε)δl′lδm′m − Sk

l′m′,lm

]
= 0. (1.3.11)

Fig. 1.6. The canonical bands for the fcc structure. The band structure
in the metal may be obtained by placing, scaling, and distorting the
canonical bands according to the values of the corresponding potential
parameters Cnl, µnl, and γnl, and finally hybridizing them. The extent of
the bands, according to the Wigner–Seitz rule, is indicated on the right.
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In this determinantal equation for the band structure εj(k), the infor-
mation about the structure is separated from that on the potential. The
structure constants Sk

l′m′,lm are canonical in the sense that they de-
pend only on the crystal structure and not, for example, on the lattice
constant, as may be seen from the definition (1.3.8), and the potential
function Pl(ε) is determined entirely by the potential within the atomic
sphere. We shall consider these two terms in turn.

If we include values of l up to 3, i.e. s, p, d, and f partial waves, the
structure constants form a square matrix with 16 rows and columns. The
terms with l = l′ fall into 4 blocks, and these submatrices may be diag-
onalized by a unitary transformation from the lm to an lj representation.
The (2l+1) diagonal elements Sk

lj of each sub-block are the unhybridized
canonical l bands. The canonical bands for the fcc structure are shown
in Fig. 1.6. If hybridization is neglected, which corresponds to setting
to zero the elements of Sk

l′m′,lm with l 6= l′, eqn (1.3.11) takes the simple
form

Pl(ε) = Sk
lj . (1.3.12)

Since Pl(ε) is a monotonically increasing function of energy, as illustrated
in Fig. 1.7, the band energies εlj(k) for the pure l bands are obtained by
a monotonic scaling of the corresponding canonical bands. Pl(ε) does
not, furthermore, depart greatly from a straight line in the energy region
over which a band is formed, so the canonical bands resemble the energy
bands in the solid quite closely, whence the name.

The potential function Pl(ε) and the logarithmic-derivative function
Dl(ε) are related to each other through the definition (1.3.10), and this
relationship is shown schematically in Fig. 1.7. It is convenient and
illuminating to parametrize the potential function, when considering the
formation of the energy bands from the canonical bands. The poles of
Pl(ε), which occur when Dl(ε) = l, divide the energy into regions in
which lie the corresponding atomic energy-levels εnl. The energies Vnl
which separate these regions are defined by

Dl(Vnl) = l (1.3.13)

and, within a particular region, the energy Cnl of the centre of the band
is fixed by the condition that Pl(Cnl) = 0, or

Dl(Cnl) = −(l + 1). (1.3.14)

The allowed k-values corresponding to this energy are just those for
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Fig. 1.7. The nth period of the logarithmic derivative function Dl(ε),
and the corresponding potential function Pl(ε). The bottom, centre, and
top of the nl band are defined respectively by Pl(Bnl) = −2(2l+1)(l+1)/l

(Dl(Bnl) = 0), Pl(Cnl) = 0, and Pl(Anl) = l (Dl(Anl) = −∞).

which Sk
lj = 0 and, since the average over the Brillouin zone may be

shown to vanish, i.e.
2l+1∑

j=1

∫

BZ

Sk
lj dk = 0, (1.3.15)

the designation of Cnl as the centre of the band is appropriate. Equa-
tion (1.3.12) may be satisfied, and energy bands thereby formed, over
an energy range around Cnl which, to a good approximation, is defined
by the Wigner–Seitz rule, which states that, by analogy with molecular
binding, the top and bottom of the band occur where the radial wave-
function and its derivative respectively are zero on the atomic sphere.
The corresponding energies, defined by

Dl(Anl) = −∞ (1.3.16)

and
Dl(Bnl) = 0, (1.3.17)
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are then known respectively as the top and bottom of the nl band, even
though this designation is not precisely accurate.

Over the energy range Anl –Bnl, the potential function may be
parametrized with reasonable accuracy as

Pl(ε) ≃
1

γnl

ε− Cnl

ε− Vnl
. (1.3.18)

It is convenient to define the related mass parameter µnl by

µnlS
2 =

dPl(ε)

dε

∣∣∣∣
C

nl

≃ 1

γnl(Cnl − Vnl)
. (1.3.19)

It is determined by the probability that an electron described by the par-
tial wave Rl(Cnl, r) reaches the atomic sphere and, if the wavefunction
is normalized within the sphere, it may be shown that

µnlS
2 =

[
1

2
SR2

l (Cnl, S)
]−1

. (1.3.20)

For free electrons, µnl ≡ 1 for all values of n and l.
With this parametrization, we may write down an explicit expres-

sion for the unhybridized band energies. From eqns (1.3.12), (1.3.18)
and (1.3.19) these are given by

εlj(k) = Cnl +
1

µnlS
2

Sk
lj

1− γnlSk
lj

. (1.3.21)

The pure l bands are thus obtained from the corresponding canonical
bands by fixing the position with Cnl, scaling the bandwidth by µnlS

2,
and distorting them with γnl.

Hybridization between bands of different l is taken into account
by including the structure constants with l 6= l′ in (1.3.11), causing
a repulsion between energy levels with the same k and symmetry, as
specified by the labels in Fig. 1.6. Bands of the same symmetry are
thus not allowed to cross, and strong hybridization instead creates an
energy gap. In addition, weak hybridization gives rise to a mixing and
repulsion between bands which do not cross in the absence of hybridiza-
tion. In order to complete the calculation of the band structure, the
inaccuracies due to approximating the atomic polyhedron by a sphere,
and to neglecting higher partial waves, may be conveniently treated to-
gether by perturbation theory. In practice, the energy bands are not
of course calculated step-wise as described above, but all the steps are
performed simultaneously on a computer. Nevertheless, the conceptual
description of the procedure as a placing, scaling and distortion of the
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canonical bands, according to the values of the potential parameters,
with a final hybridization between bands of the same symmetry, allows
a clear visualization of the way in which the relatively complex band
structure is built up from simpler elements, and of the relation between
the eigenstates of the atom and those in the solid.

Table 1.3. Electronic parameters for α–Ce.

6s 6p 5d 4f

Al (Ry) 2.234 2.698 1.198 0.648
Cl (Ry) 0.620 1.452 0.792 0.628
Bl (Ry) 0.330 0.909 0.409 0.587

µl 0.61 0.70 2.18 45.36

nl 0.509 0.245 2.091 1.154
Nl(εF ) (Ry

−1) 1.81 1.50 6.48 21.11
PlΩ (Ry) 0.195 0.152 −0.219 −0.163

This procedure may be illustrated by considering the construction
of the band structure of α–Ce from its component parts. Partial waves in
the atomic sphere at the energies of the band-centres, where Pl(ε) = 0,
are shown in Fig. 1.5, and the corresponding potential parameters are
given in Table 1.3. In this section, we express the energies in Rydbergs,
following our general principle of using throughout the book those units
which are favoured by practitioners of research in the subject currently
under discussion. The s and p effective masses are somewhat below 1,
and the relative positions of the band centres correspond quite closely to
those of the free-electron gas. Through the influence of the l-dependent
centrifugal-potential term in (1.2.12), the d and f states are in contrast
constrained to the inner regions of the atomic sphere, with the conse-
quence that the d mass is relatively large (though not as large as in a
typical transition metal) and the f mass is extremely large.

The energy bands of Fig. 1.8 were calculated by an iterative pro-
cedure, by Skriver (private communication). The electron density n(r)
is first estimated by, for example, overlapping atomic charge densities
situated on the lattice sites, and from it the periodic potential veff(r)
is constructed, using the local-density approximation (1.2.9). The band
structure is then determined for this potential and n(r) recalculated,
in analogy with (1.2.6), by summing over occupied states, those be-
neath the Fermi level. This procedure is repeated until the potential
self-consistently reproduces itself, and the energy bands have converged
to the desired accuracy. The band structure can be considered as being
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Fig. 1.8. The band structure of fcc α–Ce, calculated by Skriver.
The orbital angular momentum of some states at symmetry points in the
zone is indicated, including the top and bottom of the narrow bands. The

doubleheaded arrow indicates the spin–orbit splitting of a 4f state.

composed of a broad free-electron-like sp band, crossed by and hybridiz-
ing both strongly and weakly with the d and f bands. The occupation
numbers nl of the various states given in Table 1.3 make it clear that
α–Ce may be classified as both a d- and an f -band transition metal.

The above description of the f states in α–Ce as occupying the
bottom of an f band is now generally accepted as valid, but the cor-
rect treatment of the f electrons in the rare earth metals, and especially
Ce, was a matter of lengthy controversy. According to the standard
model, which is generally applicable to rare earth magnetism, an inte-
gral number of f electrons are localized on each ion, subject to the same
intra-ionic interactions as in the free atom. The Pauling–Zachariasen
promotional model for the γ–α phase transition in Ce, which associ-
ated the transition with the transfer of a single f electron on each ion
to a d state, with a concomitant decrease of about 6% in the fcc lattice
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constant, was therefore consistent with the standard model. However the
positron-annihilation experiments of Gustafson and Mackintosh (1964)
showed that the change in f occupancy, when the transition was induced
by a change in temperature, was much less than one, and indeed that
the results in both phases were consistent with about one f electron per
ion. Similar results were obtained by Gustafson et al. (1969) when the
transition was driven by pressure, and they concluded that it involves
not primarily a change in the f occupancy but rather a change in the f
state, from being localized in the γ-phase to being an itinerant band elec-
tron in the α-phase. This idea was taken up by Johansson (1974) who,
from a consideration of spectroscopic, cohesive and thermodynamic evi-
dence, proposed that the γ–α transition should be considered as a Mott
localized–delocalized transition among the f electrons. Glötzel (1978)
used density-functional theory to calculate the ground state properties
and showed that the equation of state in the α-phase can be accounted
for rather satisfactorily by including the f electrons in the band struc-
ture, and furthermore that a transition to a spin-polarized state should
occur at a lattice constant close to that of γ–Ce, though at a (nega-
tive) pressure considerably lower than that deduced from experiment.
Eriksson et al. (1990) have recently shown that this discrepancy may be
substantially reduced by including the l–l coupling, which is responsible
for the second of Hund’s rules, in the calculation of the 4f bands. This
leads to a ground state in γ–Ce in which the 4f electrons are almost
fully polarized, thus occupying the Hund’s-rule ground state on each
site. Despite the fact that they are described in the band picture, they
may thus be considered as localized, making very little contribution to
the cohesive properties. The calculated atomic volumes in both phases
are in good agreement with experiment. Podloucky and Glötzel (1983)
found a cohesive energy for α–Ce in accord with the measured value,
while that of a ‘promotional’ state with no f electrons is far too small.
They were also able to account for the Compton-scattering experiments
of Kornstädt et al. (1980), who had verified that the change in f occu-
pancy at the transition is small. Skriver (1985) calculated the crystal
structure and equation of state of α–Ce up to high pressures, finding
very good agreement with experiment (Staun Olsen et al. 1985), pro-
vided that the f bands are included, but very poor agreement if the
f electrons are promoted to the d bands, or are assumed to be local-
ized, and therefore to make a negligible contribution to the electronic
pressure. The relative stability at high pressures of low-symmetry con-
figurations such as the α–U structure, which is observed experimentally,
is a strong indicator that there are f electrons in the conduction bands,
as in the light actinides, where they play a decisive role in determining
the structure (Skriver 1985).
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The most powerful experimental technique available for studying
the details of the electronic structure in the vicinity of the Fermi level is
the de Haas–van Alphen (dHvA) effect (Shoenberg 1983), which allows
a precise determination not only of the shape of the Fermi surface, but
also of the effective masses of the electrons whose wave-vectors lie on it.
Unfortunately, the metallurgical difficulties encountered in attempting
to fabricate pure single crystals have so far precluded the observation of
the effect in α–Ce, but Johanson et al. (1981) studied the related com-
pound CeSn3, and demonstrated that it contains itinerant f electrons
of large mass at low temperatures. More recently, a number of exam-
ples of heavy-fermion Ce compounds have been investigated (Reinders
et al. 1986; Lonzarich 1988) in which the effective masses, as deduced
either from the dHvA effect or the low-temperature heat capacity, are
enhanced by up to an order of magnitude compared with those deduced
from band structure calculations.

There is thus very convincing evidence that the f electrons in Ce
and its compounds can form bands and extend in coherent Bloch states
throughout the crystal. Photoemission experiments in α–Ce (Wieliczca
et al. 1982; Mårtensson et al. 1982) revealed a structure with two peaks,
which may plausibly be associated respectively with an itinerant f hole
near the Fermi level, and one localized for a finite time at a particular
ionic site (Norman et al. 1984; Mackintosh 1985). There are very few
indications of itinerant f behaviour in the other rare earth elements, al-
though the above-mentioned double-peaked structure is also observed in
γ–Ce and Pr (Wieliczka et al. 1984), in both of which the f electrons are
normally considered as localized, and as we shall see, there is evidence of
an f contribution to the binding energy in some of the light rare earths.
After this brief interlude, we will therefore leave the question of f bands
and return to the standard model of f electrons localized on the ions,
interacting with the surroundings but only indirectly with each other.

Pr, the neighbouring element to Ce, undergoes a phase transition at
high pressures (Wittig 1980) which is probably associated with the for-
mation of a band by the f electrons (Skriver 1981; Eriksson et al. 1990),
but at ambient pressures they are localized and may be considered as
part of the ionic core. Indeed, intermultiplet transitions, corresponding
to those occurring on Pr ions in insulators, but shifted due to screening
by the conduction electrons in the metal, have been observed by Taylor
et al. (1988), using inelastic neutron-scattering at relatively high ener-
gies. The 4f states do not therefore appear in the energy bands of Fig.
1.9, which portrays broad sp bands hybridized with a much narrower d
band. As will be discussed later, Pr is paramagnetic above about 50mK,
and in zero field the Fermi surface, which is relatively complex, may be
deduced from the figure to be composed of 2 electron pockets and 4 open
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Fig. 1.9. The band structure of dhcp Pr, calculated by Skriver. The
energy bands in the vicinity of the Fermi level are predominantly d-like,
and the 4f states are assumed to be localized and therefore do not appear,

in contrast to Fig. 1.8.

hole sheets. However, the dHvA effect is measured in a relatively high
magnetic field, and the induced moment modifies the band structure in
a way which has been studied in detail by Wulff (1985). The exchange
coupling between a conduction-electron spin s and the 4f spins takes
the Heisenberg form

Hsf = −2Is ·
∑

i

Si. (1.3.22)

In the ground-state manifold, this interaction may from (1.2.29) be writ-
ten

Hsf = −2(g − 1)Is ·
∑

i

Ji. (1.3.23)

When a magnetic field is applied, the induced moment therefore gives
rise to a splitting between the up- and down-spin energy bands. Since
Pr is magnetically highly anisotropic, this splitting depends strongly
on the direction of the field, but it can readily attain values of sev-
eral mRy, and hence have drastic effect on the Fermi surface. In par-
ticular, the seventh-band minority-spin surface changes its topology
at a critical (internal) field of about 40kOe, as shown in Fig. 1.10,
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Fig. 1.10. The intersections of the Fermi surfaces, for the two spin
states of the seventh band in dhcp Pr, with the faces of the Brillouin zone
of Fig. 1.4. The surfaces are generated by a rigid splitting of the energy
bands of Fig. 1.9 by 10mRy. The unshaded majority-spin surface is a
single sheet, whereas the exchange splitting modifies the topology of the
shaded minority-spin surface, giving rise to a closed lens at M, a small

electron pocket, and an irregular tube along HK.

and clear evidence for this transition has been observed in the dHvA
effect. The changes of the Fermi surface in a magnetic field, and partic-
ularly the enhancement of the effective masses by the interaction with
the 4f moments (Wulff et al. 1988), which we will discuss further in Sec-
tion 7.3, give an average value of I of about 9mRy, with a variation of
some 30% over different bands and orbits. The agreement between the
measured and calculated electron orbits is such that shifts in the energy
bands of only a few mRy are required to bring the two into concordance,
and this is comparable to typical values for transition metals (Mackin-
tosh and Andersen 1980). The experimental study of the dHvA effect in
Pr, which is the most elaborate which has yet been undertaken for a rare
earth metal, has thus led to the important conclusion that energy-band
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theory gives a realistic description of the conduction electron states, and
may therefore be used as a basis for the calculation of properties which
depend on the electronic structure.

This conclusion could already be drawn, though with slightly less
confidence, from the pioneering measurements of Mattocks and Young
(1977) of the dHvA effect in ferromagnetic Gd. Because of the ferro-
magnetic moment, the exchange interaction (1.3.22) separates the energy
bands of different spin even in zero field, and the exchange splitting is
essentially independent of field. The results were interpreted in terms
of the paramagnetic energy bands, originally calculated by Dimmock
and Freeman (1964) and, with relativistic effects, by Keeton and Loucks
(1968), taking account of the ferromagnetic structure by a rigid split-
ting of the bands. The resulting two majority-spin hole surfaces and the
minority-spin electron surface could account for all of the observed large
orbits, with a value of I close to that later deduced for Pr, and with
a comparable variation through the zone. However, many small orbits
were observed which could not be explained with this model, nor have
subsequent band calculations, culminating in those of Temmerman and
Sterne (1990), in which the exchange splitting of the conduction bands
was included a priori, fully accounted for the small pieces of the Fermi
surface. Although the general features of the electronic structure of Gd
may therefore be considered as well understood, a further theoretical
effort, taking into account the effect on the band structure of the spin–
orbit coupling in the presence of both an exchange field and an external
field, would be necessary to explain the finer details.

The positron-annihilation experiments of Williams and Mackintosh
(1968), although at a much lower level of resolution, were also in gen-
eral accord with the calculations of Keeton and Loucks (1968). They
studied a number of heavy rare earths in their paramagnetic phases,
showing that their Fermi surfaces are highly anisotropic and rather sim-
ilar to each other. A calculation based upon energy-band theory gave
a good account of the experimental results for Y. The distributions of
the annihilation photons displayed a feature which is sensitive to the
form of the hole surface shown in Fig. 1.11, namely the shape of the
‘webbing’ which may join the ‘toes’ on the surface near L. This charac-
teristic is very dependent on the relative positions of the s and d bands,
and the calculations indicated that the webbing is absent in Gd, very
narrow in Tb, and fully developed, forming a kind of plateau, in the
other heavy rare earths. These conclusions were in accordance with the
positron-annihilation results, which further indicated that the webbing
is destroyed in the magnetically ordered phase of Ho. The relation of
these observations to the occurrence of periodic magnetic structures will
be discussed in the following section.
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Fig. 1.11. The calculated hole Fermi surface of paramagnetic Tb in
the Brillouin zone of Fig. 1.4. The extension of the ‘webbing’ between
the ‘toes’ near the zone boundary is believed to give rise to a peak in the
conduction-electron susceptibility χ(q), which determines the Q-vector

characterizing the helical structure.

The Fermi surface of paramagnetic Lu, in which the 4f states are all

filled, has also been studied by the dHvA effect (Johanson et al. 1982)

and found to be in semi-quantitative agreement with the calculations of

Tibbetts and Harmon (1982). Since the results of band structure calcu-

lations have been confirmed experimentally at the Fermi level in widely

separated elements in the rare earth series, it is reasonable to suppose

that they will also be successful in accounting for other ground-state

properties. Characteristic band energies for the trivalent lanthanides,

calculated by Skriver (1983) at a common atomic volume close to the

equilibrium value for Gd, are shown in Fig. 1.12. In this figure, the effect

of the change in potential is thus separated from that of the interatomic

spacing. The most notable feature is the fall in energy of the s band

relative to the d band with increasing atomic number, which results in a

decrease of the occupation of the latter, with consequences, as we shall
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Fig. 1.12. Characteristic band energies for the trivalent lanthanides,
for a common value of the atomic radius S, after Skriver (1983). The
values of the potential v(S) and the exchange-correlation energy εxc at
the atomic sphere are shown, together with the bottom, Bl, the centre,
Cl, and the top, Al, of the 6s, 6p, and 5d bands, and the Fermi level
εF . The relative lowering of the 6s band with increasing atomic number
reduces the 5d occupancy, which in turn changes the crystal structure.

see, for the crystal structure. The reason for the fall in the band en-
ergies is the increase of the nuclear charge with atomic number, which
is incompletely screened by the additional f electrons. The potential
veff(r) in (1.2.12) is therefore on average increasingly negative, and in
order to maintain an unchanged boundary condition, as expressed by
the logarithmic derivative, the band energies must decrease accordingly.
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This effect is relatively modest for the d bands, but much greater for
the s and p bands. The relative shift of the s and d bands is reduced by
the adjustment of the lattice to its equilibrium configuration, but only
by a small amount. As may be seen from Fig. 1.12, (Bd −Bs) increases
from 101mRy for La to 373mRy for Lu at constant S, whereas the cor-
responding values for the equilibrium atomic volumes are 136mRy and
380mRy. The band masses also change across the series; µd at constant
volume increases from 2.1 in La to 3.0 in Lu, so that the d bands narrow
as they fall, while µs increases slightly with atomic number, but remains
below 1 throughout (Skriver 1983).

The canonical-band theory may be used to calculate the electronic
pressure and its partitioning between the different angular momentum
components. According to the force theorem (see Mackintosh and Ander-
sen 1980) the change in the total energy, due to an infinitesimal change
in the lattice constant, may be determined as the difference in the band
energies, calculated while maintaining the potential unchanged. We may
thus write

dU = δ

∫ εF

εN(ε)dε, (1.3.24)

where N(ε) is the total electronic density of states, and δ indicates the
restricted variation with a frozen potential. The electronic pressure is
then given by

P = −dU
dΩ

, (1.3.25)

where Ω is the volume of the atomic polyhedron. The expression (1.3.21)
for the canonical-band energies then leads to the approximate result for
the l partial pressure:

3PlΩ = −nl

δCl

δ lnS
+ nl(εl − Cl)

δ lnµlS
2

δ lnS
, (1.3.26)

where nl is the occupation number of the l states and

εl =
1

nl

∫ εF

εNl(ε)dε (1.3.27)

is their mean energy. Equation (1.3.26) is useful for purposes of inter-
pretation, but the results which we shall present are based upon a more
accurate procedure, involving the fully hybridized self-consistent band
structure (Skriver 1983).

The partial occupation numbers, state-densities and electronic pres-
sures for α–Ce, at the equilibrium lattice constant, are given in Table
1.3. The s and p electrons make a positive, repulsive contribution to



36 1. ELEMENTS OF RARE EARTH MAGNETISM

the pressure while the d and f states provide the binding, through their

negative, attractive partial pressure. This difference is essentially due to

the fact that the s and p wavefunctions have a positive curvature at the

atomic sphere, over the energy range of the corresponding bands, as illus-

trated in Fig. 1.5, while the d and f functions have a negative curvature.

Consequently, a decrease in volume causes an increase in the logarithmic

derivative for the former and a decrease for the latter, and since Dl(E)

is a decreasing function of energy, the s and p bands must rise and the d

and f bands fall in order to maintain the boundary condition. Equation

(1.3.25) then immediately accounts for the signs of the corresponding

partial pressures. The attractive f pressure for α–Ce is substantial; if

it is removed, the lattice expands to a volume greater than that of γ–

Ce. The partial pressures at a constant atomic volume for the trivalent

rare earths are shown in Fig. 1.13. As may be seen, it is primarily the

decrease in the s and p pressures, which has its origin in the incompletely

Fig. 1.13. The partial 6s, 6p, and 5d pressures for the trivalent rare
earths, calculated for a common atomic volume close to the equilibrium
value for Gd, after Skriver (1983). It is the decrease in the s and p

pressures which gives rise to the lanthanide contraction.
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Fig. 1.14. The equilibrium atomic radii for the rare earth metals, after
Skriver (1983). The full circles indicate the experimental values. The full
line is a calculation including the s, p, and d partial pressures, while the
broken line indicates that the f contribution is also taken into account.

screened increase in the nuclear charge, which leads to the lanthanide
contraction. This contraction is clearly apparent in the atomic radii
shown in Fig. 1.14. The values calculated from the condition that the
total pressure is zero agree very well with the experimental observations
for the heavy metals, but if the f contribution is neglected, the calcu-
lated electronic pressure is increasingly too high as the atomic number
decreases. As mentioned earlier, the partial pressure of the f band is es-
sential for understanding α–Ce, and it seems that the interaction of the
f electrons with their surroundings makes a contribution to the binding,
even in some metals in which the magnetic behaviour strongly indicates
that they are localized.

In Eu and Yb, the intra-atomic interactions make it favourable to
(half) fill the sub-band by transferring an electron from the conduction
bands to an f state, leading to the formation of the divalent cubic struc-
tures which strongly resemble the alkaline earth metals. This transfer
occurs predominantly at the expense of the d electrons, whose bind-
ing contribution to the electronic pressure is thereby reduced, causing
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a substantial increase in the atomic volume. The relatively weak bind-
ing of the 4f states in the divalent rare earths is clearly apparent in
the experiments of Lang et al. (1981), who used X-ray photoemission to
measure the energies required to transfer a 4f electron to the Fermi level,
throughout the whole series. By inverse photoemission (Bremsstrahlung
Isochromat Spectroscopy) they were similarly able to deduce the energies
required to move an electron from the Fermi level to the unoccupied 4f
states. Combining the two experiments, the Coulomb correlation energy
required to transfer an electron from an occupied level on another site
could be deduced. These energies were later calculated by Min et al.
(1986a) using a supercell method, in which rare earth ions with different
f occupancies are considered as distinct species, and the agreement with
experiment was generally very satisfactory.

For close-packed structures, the atomic volume is almost indepen-
dent of the structure, but there are small differences in the electronic
contribution to the cohesive energy, which manifest themselves in the
common structural sequence hcp → dhcp → Sm-structure → fcc in the
rare earths, as the atomic number is reduced or the pressure is increased.
Duthie and Pettifor (1977) proposed that the d-electron occupancy,

Fig. 1.15. The occupation numbers of the 5d states for the trivalent
lanthanides, at the observed equilibrium atomic volumes, after Skriver
(1983). For Ce, the 4f electrons are included in the energy bands. The
experimentally observed crystal structures are labelled by h, s, d, and
f, for hcp, Sm-structure, dhcp, and fcc, respectively. The empirical d-
occupation numbers which separate the different structures are indicated

by the lines on the right.



1.4 MAGNETIC INTERACTIONS 39

which increases through these structural sequences, is the essential de-
terminant of the structure, and made an approximate calculation of the
energy differences using canonical-band theory. The results of Skriver
(1983) in Fig. 1.15 show how well the d occupancy indeed correlates
with the structure. To complete the picture, Min et al. (1986b) demon-
strated that increasing the pressure on Lu should produce a series of
phase transitions following the above sequence, the first of which has
been observed experimentally.

1.4 Magnetic interactions

In the metallic state, the 4f electrons on a rare earth ion are subjected
to a variety of interactions with their surroundings. These forces may
be broadly classified into two categories. The single-ion interactions act
independently at each ionic site, so that their influence on the state of
the 4f electrons at a particular site is unaffected by the magnetic state
of its neighbours. The corresponding contribution to the Hamiltonian
therefore contains sums over terms located at the ionic sites i of the
crystal, but without any coupling between different ions. On the other
hand, the two-ion interactions couple the 4f -electron clouds at pairs of
ions, giving terms which involve two sites i and j.

The charge distribution around an ion produces an electric field,
with the local point-symmetry, which acts on the 4f electrons and gives
rise to the large magnetic anisotropies which are characteristic of the rare
earth metals. This crystal field makes a contribution to the potential
energy of a 4f electron with charge −e

vcf(r) = −
∫

eρ(R)

|r−R| dR, (1.4.1)

where ρ(R) is the charge density of the surrounding electrons and nuclei.
If these do not penetrate the 4f charge cloud, vcf(r) is a solution of
Laplace’s equation, and may be expanded in spherical harmonics as

vcf(r) =
∑

lm

Am
l r

lYlm(r̂), (1.4.2)

where

Am
l = −(−1)m

4π

2l + 1

∫
eρ(R)

Rl+1
Yl−m(R̂) dR, (1.4.3)

which is a special case of the multipole expansion (1.3.7). We can
thus look upon (1.4.2) as arising from the interaction of the multipoles
rlYlm(r̂) of the 4f electrons with the appropriate components of the
electric field. If part of the charge which is responsible for the crystal
field lies within the 4f cloud, vcf(r) can still be expanded in spherical
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harmonics with the appropriate symmetry, but the coefficients are not
generally proportional to rl, nor to (1.4.3).

As the crystal-field energy is small compared to the spin–orbit split-
ting, its effects on the eigenstates of the system are adequately accounted
for by first-order perturbation theory. Since f electrons cannot have
multipole distributions with l > 6, the properties of the spherical har-
monics ensure that the corresponding matrix elements of (1.4.2) vanish.
Even so, the calculation of those that remain from the electronic wave-
functions would be a formidable task, even if the surrounding charge
distribution were known, if the ubiquitous Wigner–Eckart theorem did
not once again come to the rescue. As first pointed out by Stevens
(1952), provided that we remain within a manifold of constant J , in
this case the ground-state multiplet, the matrix elements of vcf(r) are
proportional to those of operator equivalents, written in terms of the J

operators. We may thus replace (1.4.2) by

Hcf =
∑

i

∑

lm

Am
l αl〈rl〉

(
2l+ 1

4π

)1/2

Õlm(Ji), (1.4.4)

where we have also summed over the ions. The Stevens factors αl de-
pend on the form of the electronic charge cloud through L, S and J , and
on l, but not on m. They are frequently denoted α, β, and γ when l is 2,
4, and 6 respectively, and their values for the magnetic rare earth ions
are given in Table 1.4. The expectation value 〈rl〉 is an average over the

4f states. The Racah operators Õlm(J) are obtained from the spherical
harmonics, multiplied by (4π/2l + 1)1/2 , by writing them in terms of

Table 1.4. Stevens factors for rare earth ions.

Ion+++ α×102 β×104 γ×106

Ce −5.714 63.49 0
Pr −2.101 −7.346 60.99
Nd −0.6428 −2.911 −37.99
Pm 0.7714 4.076 60.78
Sm 4.127 25.01 0
Tb −1.0101 1.224 −1.121
Dy −0.6349 −0.5920 1.035
Ho −0.2222 −0.3330 −1.294
Er 0.2540 0.4440 2.070
Tm 1.0101 1.632 −5.606
Yb 3.175 −17.32 148.0
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Cartesian coordinates and replacing (x, y, z) by (Jx, Jy, Jz), with an ap-
propriate symmetrization to take account of the non-commutation of the
J operators. They have been tabulated for l-values up to 8 by Lindg̊ard
and Danielsen (1974).

Following the customary practice, we shall generally use not the
Racah operators, which are tensor operators transforming under rota-
tions like spherical harmonics, but the Stevens operators Om

l (J), which
transform like the real tesseral harmonics Tlm. If we define correspond-
ing operators for m zero or positive as:

Tl0 = Õl0

T c
lm =

1√
2

[
Õl−m + (−1)mÕlm

]

T s
lm =

i√
2

[
Õl−m − (−1)mÕlm

]
,

(1.4.5)

the Stevens operators for positive and negative m are proportional re-
spectively to T c

lm and T s
l|m|. There is some ambiguity in the literature

about the proportionality constants, but we have used the standard def-
initions of the Stevens operators in Table 1.5, see also Hutchings (1964).
In terms of these operators, we may write the crystal-field Hamiltonian

Hcf =
∑

i

∑

lm

Bm
l O

m
l (Ji). (1.4.6a)

The crystal-field parameters Bm
l can in principle be calculated from the

charge distribution in the metal, but in practice attempts to do so have
met with limited success. The difficulties are two-fold. The charge den-
sity on the surroundings of an ion is not easy to determine with the
necessary accuracy, and the approximations normally used in the calcu-
lation of the electronic structure of a metal, in particular the assumption
that the charge distribution in the atomic polyhedron is spherically sym-
metric, are inadequate for the purpose. Furthermore, a redistribution
of the charge within the cell can modify the electric fields experienced
by the 4f electrons, and such shielding effects are again very difficult
to estimate. It is therefore necessary to appeal to relatively crude mod-
els, such as the instructive but quite unjustified point-charge model, in
which an adjustable charge is placed on each lattice site, or alternatively
to regard the Bm

l as parameters to be determined from experiment.
Fortunately, the number of such parameters is strongly restricted by

symmetry. We shall be concerned almost exclusively with the hexagonal
structures of Fig. 1.3, and in defining the Stevens operators, we have
used a Cartesian system in which the (x, y, z)-directions are along the
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Table 1.5. Stevens operators. X ≡ J(J + 1) and J± ≡ Jx ± iJy.

O2
2 =

1

2
(J2

+ + J2
−)

O1
2 =

1

2
(JzJx + JxJz)

O0
2 = 3J2

z −X

O−1
2 =

1

2
(JzJy + JyJz)

O−2
2 =

1

2i
(J2

+ − J2
−)

O4
4 =

1

2
(J4

+ + J4
−)

O2
4 =

1

4

[
(7J2

z −X − 5)(J2
+ + J2

−) + (J2
+ + J2

−)(7J
2
z −X − 5)

]

O0
4 = 35J4

z − (30X − 25)J2
z + 3X2 − 6X

O−2
4 =

1

4i

[
(7J2

z −X − 5)(J2
+ − J2

−) + (J2
+ − J2

−)(7J
2
z −X − 5)

]

O−4
4 =

1

2i
(J4

+ − J4
−)

O0
6 = 231J6

z − (315X − 735)J4
z + (105X2 − 525X + 294)J2

z

−5X3 + 40X2 − 60X

O6
6 =

1

2
(J6

+ + J6
−)

crystallographic (a, b, c)-axes specified in the previous section. How-
ever, it will later be convenient to rotate the z-axis into the magne-
tization direction, and instead orient the crystallographic (a, b, c)-axes
along the (ξ, η, ζ)-Cartesian directions. For an ion with hexagonal point-
symmetry, as in the hcp structure or on the hexagonal sites of the dhcp
structure, the crystal field is specified by 4 parameters:

Hcf =
∑

i

[ ∑

l=2,4,6

B0
l O

0
l (Ji) +B6

6O
6
6(Ji)

]
. (1.4.6b)

The Hamiltonian (1.4.6) lifts the degeneracy of the ionic |JMJ> states
and, since it is expressed in terms of J operators, whose matrix elements
between these states may be determined by straightforward calculation,
it may readily be diagonalized to yield the crystal-field energies and
eigenfunctions. The Bm

l may then be used as adjustable parameters to
reproduce the available experimental information on these eigenstates.
As an example, we show in Fig. 1.16 the splitting of the nine |4MJ>
states in Pr by the crystal fields acting on the hexagonal sites. This level
scheme was derived from values of the crystal-field parameters adjusted
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Fig. 1.16. The crystal-field split-
ting of the nine |4MJ > states on
the hexagonal sites in dhcp Pr. The
wavefunctions are written in terms
of a basis |MJ > corresponding to
quantization along the c-direction.

to account for a variety of experimental phenomena (Houmann et al.
1979).

If the lattice is strained, the crystal fields, and indeed all the other
magnetic interactions which we shall discuss, are modified. In conse-
quence, there is a magnetoelastic coupling between the moments and
the strain, which can have profound consequences for rare earth mag-
netism. Magnetoelastic effects are manifested in both single-ion and
two-ion terms in the Hamiltonian, though we shall mostly be concerned
with the former. The elastic energy is quadratic in the strain, measured
relative to the equilibrium configuration in the absence of magnetic in-
teractions. The magnetoelastic energy is linear in the strain and the
competition between the two effects may lead to some equilibrium strain
or magnetostriction. Because of their moderate elastic constants and the
large orbital component in their moments, the lanthanide metals display
the largest known magnetostrictions.

Following Callen and Callen (1965), it is convenient to develop the
theory in terms of the irreducible strains for hexagonal point-symmetry,
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which are related to the Cartesian strains as follows:

ǫα1 = ǫ11 + ǫ22 + ǫ33

ǫα2 = 1

3
(2ǫ33 − ǫ11 − ǫ22)

ǫγ1 = 1

2
(ǫ11 − ǫ22)

ǫγ2 = ǫ12

ǫε1 = ǫ13

ǫε2 = ǫ23,

(1.4.7)

where we have adopted the conventional notation of designating the
Cartesian axes (ξ, η, ζ) by (1, 2, 3). The α-strains are thus symmetry-
conserving dilatations, the γ-strains distort the hexagonal symmetry of
the basal plane, and the ε-strains shear the c-axis. The elastic energy
may then be written

Hel = N
[
1

2
cα1ǫ

2
α1 + cα3ǫα1ǫα2 +

1

2
cα2ǫ

2
α2

+ 1

2
cγ(ǫ

2
γ1 + ǫ2γ2) +

1

2
cε(ǫ

2
ε1 + ǫ2ε2)

]
,

(1.4.8)

where we have defined irreducible elastic stiffness constants per ion, re-
lated to the five independent Cartesian constants by

cα1 = 1

9
(2c11 + 2c12 + 4c13 + c33)V/N

cα2 = 1

2
(c11 + c12 − 4c13 + 2c33)V/N

cα3 = 1

3
(−c11 − c12 + c13 + c33)V/N

cγ = 2(c11 − c12)V/N

cε = 4c44V/N.

(1.4.9)

The contributions to the single-ion magnetoelastic Hamiltonian,
corresponding to the different irreducible strains, are

Hα
me = −

∑

i

[ ∑

l=2,4,6

{
Bl

α1ǫα1 +Bl
α2ǫα2

}
O0

l (Ji)

+
{
B66

α1ǫα1 +B66
α2ǫα2

}
O6

6(Ji)
]

(1.4.10)

Hγ
me = −

∑

i

[ ∑

l=2,4,6

Bl
γ2

{
O2

l (Ji)ǫγ1 +O−2
l (Ji)ǫγ2

}

+
∑

l=4,6

Bl
γ4

{
O4

l (Ji)ǫγ1 −O−4
l (Ji)ǫγ2

}]
(1.4.11)

Hε
me = −

∑

i

[ ∑

l=2,4,6

Bl
ε1

{
O1

l (Ji)ǫε1 +O−1
l (Ji)ǫε2

}

+Bε5

{
O5

6(Ji)ǫε1 −O−5
6 (Ji)ǫε2

}]
. (1.4.12)
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The operators in the α-strain term are the same as those in the crystal-
field Hamiltonian (1.4.6b), and the associated magnetoelastic effects may
thus be considered as a strain-dependent renormalization of the crystal-
field parameters, except that these interactions may mediate a dynamical
coupling between the magnetic excitations and the phonons. The other
two terms may have the same effect, but they also modify the symme-
try and, as we shall see, can therefore qualitatively influence both the
magnetic structures and excitations.

It is the two-ion couplings which are primarily responsible for co-
operative effects and magnetic ordering in the rare earths, and of these
the most important is the indirect exchange, by which the moments
on pairs of ions are coupled through the intermediary of the conduction
electrons. The form of this coupling can be calculated straightforwardly,
provided that we generalize (1.3.22) slightly to

Hsf(i) = −2

∫
I(r−Ri)Si · s(r)dr = −

∫
Hi(r) · µ(r)dr, (1.4.13)

s(r) is the conduction-electron spin density, and the exchange integral
I(r−Ri) is determined by the overlap of the 4f and conduction-electron
charge clouds. This expression, whose justification and limitations will
be discussed in Section 5.7, can be viewed as arising from the action of
the effective inhomogeneous magnetic field

Hi(r) =
1

µB

I(r−Ri)Si =
1

µBN

∑

q

I(q) eiq·(r−Ri)Si (1.4.14)

on the conduction-electron moment density µ(r) = 2µBs(r). The spin
at Ri generates a moment at r, whose Cartesian components are given
by

µiα(r) =
1

V

∑

β

∫
χαβ(r− r′)Hiβ(r

′)dr′, (1.4.15)

where χ is the nonlocal susceptibility tensor for the conduction electrons
and V the volume. This induced moment interacts through Hsf(j) with
the spin Sj , leading to a coupling

H(ij) = − 1

V

∑

αβ

∫ ∫
Hjα(r)χαβ(r− r′)Hiβ(r

′)drdr′. (1.4.16)

If we neglect, for the moment, the spin–orbit coupling of the conduction
electrons, and the crystal is unmagnetized, χαβ becomes a scalar. The
Fourier transform is:

χ(q) =
1

V

∫
χ(r) e−iq·rdr (1.4.17)
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in terms of which the integrations with respect to r and r′ in eqn (1.4.16)
are calculated straightforwardly. Summing the result over the N lattice
sites, counting each interaction once only, we find that the indirect-
exchange interaction takes the familiar isotropic Heisenberg form:

Hff = −1

2

V

N2µ2
B

∑

ij

∑

q

χ(q)I(q)I(−q) eiq·(Ri−Rj) Si ·Sj

= − 1

2N

∑

q

∑

ij

JS(q) e
iq·(Ri−Rj) Si ·Sj

= −1

2

∑

ij

JS(ij)Si ·Sj , (1.4.18)

where

JS(ij) =
1

N

∑

q

JS(q) e
iq·(Ri−Rj) (1.4.19)

and

JS(q) =
∑

j

JS(ij) e
−iq·(Ri−Rj) =

V

Nµ2
B

|I(q)|2χ(q). (1.4.20)

In the presence of an orbital moment, it is convenient to express
(1.4.18) in terms of J rather than S, which we may do within the ground-
state multiplet by using (1.2.29) to project S on to J, obtaining

Hff = −1

2

∑

ij

J (ij)Ji ·Jj , (1.4.21)

with
J (q) = (g − 1)2

[
JS(q)−

1

N

∑

q′

JS(q
′)
]
, (1.4.22)

where we have also subtracted the interaction of the ith moment with
itself, as this term only leads to the constant contribution to the Hamil-
tonian; − 1

2 (g − 1)2NJS(ii)J(J + 1). The origin of the indirect ex-
change in the polarization of the conduction-electron gas by the spin
on one ion, and the influence of this polarization on the spin of a
second ion, is apparent in the expression (1.4.20) for JS(q). As we
shall see, it is the Fourier transform [J (q) − J (0)] which may be di-
rectly deduced from measurements of the dispersion relations for the
magnetic excitations, and its experimentally determined variation with
q in the c-direction for the heavy rare earths is shown in Fig. 1.17.
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Fig. 1.17. The exchange interaction JS(q) − JS(0), determined ex-
perimentally in the magnetic heavy rare earth metals. The magnitude
of the peak, which stabilizes the observed periodic magnetic structures,

increases monotonically with atomic number.

A notable feature is the maximum which, except in Gd, occurs at non-
zero q and, as discussed in the following section, is responsible for stabi-
lizing the periodic magnetic structures in the metals. In the approxima-
tion which we have used, the conduction-electron susceptibility is given
by

χ(q) =
2µ2

B

V

∑

nn′k

fnk − fn′k−q

εn′(k− q) − εn(k)
, (1.4.23)
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where fnk is the Fermi–Dirac function. It is clear that a large contri-
bution to the sum is made by pairs of electronic states, separated by q,
one of which is occupied and the other empty, and both of which have
energies very close to the Fermi level. Consequently, parallel or nest-
ing regions of the Fermi surface tend to produce peaks, known as Kohn
anomalies, at the wave-vectorQ which separates them, and it is believed
that the parallel sections of the webbing in the hole surface of Fig. 1.11
give rise to the maxima shown in Fig. 1.17. As we have mentioned, this
conjecture is supported by both positron-annihilation experiments and
band structure calculations but, despite extensive efforts, first-principles
estimates of J (q) have not proved particularly successful. χ(q) may be
calculated quite readily from the energy bands (Liu 1978), and exhibits
the expected peaks, but the exchange matrix elements which determine
I(q) are much less tractable. Lindg̊ard et al. (1975) obtained the correct
general variation with q for Gd, but the matrix elements were, not sur-
prisingly, far too large when the screening of the Coulomb interaction
was neglected.

The Kohn anomalies in J (q) Fourier transform into Friedel oscilla-
tions in J (R), and such oscillations, and the extremely long range of the
indirect exchange, are illustrated in the results of Houmann et al. (1979)
for Pr in Fig. 1.18. As is also shown in this figure, they found that the
anisotropic component of the coupling is a substantial proportion of the
Heisenberg exchange. The anisotropic coupling between the moments
on two ions can be written in the general form

HJJ = −1

2

∑

ij

∑

ll′mm′

Kmm′

ll′ (ij)Om
l (Ji)O

m′

l′ (Jj), (1.4.24)

where the terms which appear in the sum are restricted by symmetry,
but otherwise may exhibit a large variety, depending on their origin. The
many possible causes of anisotropy have been summarized by Jensen et
al. (1975). They are usually associated with the orbital component of
the moment and are therefore expected to be relatively large when L
is large. In addition to contributions due to the influence of the local-
ized 4f orbital moment on the conduction electrons (Kaplan and Lyons
1963), and to the magnetization and spin–orbit coupling of the latter
(Levy 1969), direct multipolar interactions and two-ion magnetoelas-
tic couplings, for which the coefficients Kmm′

ll′ depend explicitly on the
strain, may be important. A general two-ion coupling which depends
only on the dipolar moments of the 4f electrons is

Hdd = −1

2

∑

ij

Jαβ(ij)JiαJjβ . (1.4.25)
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Fig. 1.18. The indirect-exchange interaction between ions on the
hexagonal sites in Pr, deduced from measurements of the magnetic exci-
tations at 6K. The circles represent the isotropic interaction J (R) be-
tween an ion at the origin and those at different sites. The filled sym-
bols are for pairs of ions in the same hexagonal plane, and the open
symbols for pairs in different planes. The former are reasonably well
described by the simple free-electron model of Section 5.7.1, with an ef-
fective value of 1.1 Å−1 for 2kF , as shown by the full curve. In addition,
the exchange incorporates an anisotropic component K(R), discussed in
Section 2.1.6, which is smaller, but of comparable magnitude. Its values
between pairs of ions in the plane are indicated by the squares. The calcu-
lated uncertainties in the exchange interactions are, at the most, the size

of the points.

The dispersion relations for the magnetic excitations provide extensive
evidence for anisotropy of this form. A special case is the classical dipole–
dipole interaction for which

Jαβ(ij) = (gµB)
2
3(Riα −Rjα)(Riβ −Rjβ)− δαβ |Ri −Rj|2

|Ri −Rj |5
.

(1.4.26)
Although it is very weak, being typically one or two orders of magnitude
less than the exchange between nearest neighbours, the dipole–dipole
coupling is both highly anisotropic and extremely long-ranged, and may
therefore have important effects on both magnetic structures and exci-
tations. Apart from this example, the anisotropic two-ion couplings are
even more difficult to calculate than are the isotropic components, so
the strategy which has generally been adopted to investigate them is to
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assume that all terms in (1.4.24) which are not forbidden by symmetry
are present, to calculate their influence on the magnetic properties, and
to determine their magnitude by judicious experiments.

The hyperfine interaction between the 4f moment and the nuclear
spin I may be written

Hhf = A
∑

i

Ii · Ji. (1.4.27)

Since A is typically of the order of micro-electron-volts, the coupling to
the nuclei normally has a negligible effect on the electronic magnetism
in the rare earth metals, but we shall see in Sections 7.3 and 7.4 that it
has a decisive influence on the low-temperature ordering in Pr.

1.5 Rare earth magnetism

The interactions discussed in the preceding section are the origin of the
characteristic magnetic properties of the rare earth metals. The long-
range and oscillatory indirect exchange gives rise to incommensurable
periodic structures, the crystal fields and anisotropic two-ion coupling
induce a magnetic anisotropy which may require fields up to hundreds
of tesla to overcome, and the magnetoelastic interactions causemagneto-
strictive strains which may approach one per cent. In the following, we
shall give a brief description of some features of rare earth magnetism, as
a prelude to a more detailed discussion of selected structures in the next
chapter, and as a necessary basis for our later treatment of magnetic
excitations. We have emphasized general principles, with appropriate
illustrations, and have not attempted an exhaustive description of the
magnetic properties of each element. This task has been accomplished by
McEwen (1978), following earlier surveys by Rhyne (1972) and Coqblin
(1977), and we shall refer to his comprehensive review article for further
details, while quoting more recent investigations where appropriate.

Below the critical temperatures, listed in Table 1.6 on page 57, the
rare earth metals form magnetically ordered phases. In the heavy ele-
ments, the maximummoment of gµBJ per ion is approached in moderate
fields at low temperatures. As is also apparent from Table 1.6, there is an
additional contribution from the conduction electrons, which is almost
10% of the total moment in Gd, and appears to fall with S, as expected
from (1.3.23). In their ordered phases, all the moments in a particular
plane normal to the c-axis are aligned but, as illustrated in Fig. 1.19,
their relative orientations may change from plane to plane. The mag-
netic structures of the heavy rare earths, which have been thoroughly
reviewed by Koehler (1972) and Sinha (1978), derive basically from two
different configurations of moments. In the helix, the expectation values
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of the moments take the form:

〈Jiξ〉 = 〈J⊥〉 cos(Q·Ri + ϕ)

〈Jiη〉 = 〈J⊥〉 sin(Q·Ri + ϕ)

〈Jiζ〉 = 0,

(1.5.1)

while the longitudinal wave, sometimes known in the heavy rare earths
as the c-axis modulated structure or CAM, is described by

〈Jiζ〉 = 〈J‖〉 cos(Q·Ri + ϕ), (1.5.2)

with the two other components being zero. The wave-vectorsQ are along
the c-axis, and the associated wavelength 2π/Q does not necessarily bear
any simple relationship to the lattice spacing.

Fig. 1.19. Magnetic structures of the heavy rare earths. The moments
in a particular hexagonal layer are parallel, and the relative alignments
of different planes are illustrated. From left to right; the basal-plane
ferromagnet, the helix, the cone, and the longitudinal-wave structure.
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A helix is formed at the Néel temperature in Tb, Dy, and Ho, while
the longitudinal-wave structure is preferred in Er and Tm. If the Q-
vectors are zero, a ferromagnetic structure results, with the ordered mo-
ment along some specified direction. In Tb and Dy at low temperatures,
the easy direction of magnetization lies in the plane, while in Gd, which
has a very small magnetic anisotropy, it is along the c-axis just below
the Curie temperature, but is tilted about 30◦ towards the b-axis at low
temperatures. If a ferromagnetic component in the c-direction is added
to the helix, the moments rotate on the surface of a cone with its axis
in the c-direction. This conical structure is stable in both Ho and Er
at the lowest temperatures, but the cone angle between the c-axis and
the moments at 4K is large (about 80◦) in the former, and small (about
30◦) in the latter. If the plane of the moments in the helix is rotated
about an axis in the hexagonal plane, so that its normal makes a non-
zero angle with Q, the structure becomes the tilted helix, which may be
regarded as a combination of a helix and a longitudinal wave, with the
same Q-vectors. This structure has not been definitively identified in
the elements in zero field. The moments in the hexagonal plane of Er
do order below 52K, with the same period as the c-axis modulation, but
they are most probably confined to the a–c plane, in an elliptically polar-
ized cycloidal structure (Miwa and Yosida 1961; Nagamiya 1967) in the
whole temperature interval between 52K and the transition to the cone
(Jensen 1976b). As the temperature is reduced, in the modulated c-axis
phases, the moments on the individual sites approach their saturation
values, resulting in a squaring of the longitudinal wave which manifests
itself in higher odd harmonics. This phenomenon is observed in both Er
and Tm and, in the latter, results in a low-temperature ferrimagnetic
square-wave structure in which alternately four layers of moments point
up and three layers point down.

The hexagonal anisotropy B6
6 tends to distort the helical structure,

by deflecting the moments towards the nearest easy axis. In a helix
which is incommensurable with the lattice periodicity, this effect may be
treated by perturbation theory, which predicts a change of the energy
in second order. However, in Ho at low temperatures, B6

6 is so large
that the magnetic structure is forced to be commensurable with the lat-
tice, so that Q has the magnitude π/3c, and the turn angle between the
moments in successive planes averages 30◦. It was verified experimen-
tally by Koehler et al. (1966) that, under these circumstances, the large
hexagonal anisotropy causes the helix to distort so that the moments in
the plane bunch about the b-directions, as illustrated in Fig. 1.20. This
bunched helix is described by

〈Jiξ〉 = 〈J⊥〉(u sinQ·Ri − v sin 5Q·Ri)

〈Jiη〉 = 〈J⊥〉(u cosQ·Ri + v cos 5Q·Ri),
(1.5.3a)
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where

u = cos(π/12− φ) ; v = sin(π/12− φ), (1.5.3b)

and any moment deviates from the nearest b-axis by the bunching angle
φ. At 4K, φ in Ho is 5.8◦, and it increases monotonically with temper-
ature towards the value 15◦ which characterizes the uniform commen-
surable helix. An increase in temperature also causes an increase in Q,
but it was shown by Gibbs et al. (1985) that this change does not oc-
cur smoothly and continuously. Instead, the magnetic periodicity tends
to lock in to values commensurable with the lattice, and they proposed
that this is a manifestation of spin-slip structures, in which the moments
are arranged in a pattern in which one of the planes in regularly spaced
members of the bunched doublets of Fig. 1.20 is omitted, while the re-
maining plane of the pair orients its moments along the adjacent easy
axis. We shall discuss such structures in more detail in the next chapter.

Fig. 1.20. The 4f contribution to the magnetization of Ho at 4K,
calculated by a self-consistent mean-field theory and compared with ex-
perimental values. The zero-field structure is a bunched cone, comprising
the illustrated bunched helix in the plane, and a small moment in the
c-direction. The value of the c-axis moment, deduced from neutron-

diffraction measurements, is indicated by the arrow.
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The aforementioned magnetic structures may readily be understood
as the result of the co-operation and competition between the oscillatory
indirect exchange, which is relatively strong in the heavy rare earths, be-
cause (g−1)J is generally large, and the crystal-field and magnetoelastic
anisotropy forces. The origin of the periodic structures can be explained
by writing (1.4.21) in the form

Hff = −N

2

∑

q

J (q)J(q)·J(−q), (1.5.4)

where the Fourier transform of the magnetic structure is

J(q) =
1

N

∑

i

Jie
−iq·Ri . (1.5.5)

In order to minimize the energy of the magnetic system, this term will
favour a Q vector which corresponds to the maximum in J (q). The
maxima shown in Fig. 1.17 thus reflect the observed Q values in the
heavy rare earths through their position, and the relative stability of the
periodic structures through their magnitude. The isotropic exchange
does not in itself specify any orientation of the moments relative to
the crystal axes. The normal to a planar helix can, for example, be
rotated into an arbitrary direction without altering the exchange energy.
This flexibility is realized in Eu, where the crystal-field anisotropy is
very small because, like Gd, it has no ionic orbital moment. Neutron-
diffraction studies of a single crystal by Millhouse and McEwen (1973)
showed a first-order transition to a helical structure, and magnetization
measurements indicate that the plane of the helical structure is always
normal to the direction of a moderate applied field, even though Q

remains along a four-fold axis of the bcc structure.
It is the magnetic anisotropy which fixes the magnetic structure rel-

ative to the crystal axes. As may be seen from eqn (1.4.4), the two-fold
axial anisotropy (proportional to J2

ζ ) is also proportional to the Stevens

factor α. If A0
2 is negative throughout the heavy rare earths, as we shall

see is the case, the values in Table 1.4 immediately explain why Tb and
Dy have easy axes in the hexagonal plane, while the moments in Tm
are strongly bound to the c-axis. In Ho and Er the higher-order axial
anisotropy is important, but the values of α are consistent with the re-
spectively large and small cone angles. Similarly, the alternation in the
sign of γ in the series of the heavy elements is reflected in the easy direc-
tions of magnetization in the hexagonal plane. The competition between
the exchange and the anisotropy is manifested in the low-temperature
magnetic structures. In the ferromagnetic phases of Tb and Dy, the
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anisotropy and magnetoelastic forces, which are averaged out or ineffec-
tive in the helical structure, are strong enough to overcome the relatively
weak tendency to periodic ordering. In Tm, on the other hand, a com-
promise obtains, by which the moments take their maximum value along
the c-axis, but alternate in direction so as to take advantage of the large
peak in J (q). In Ho, the balance is so delicate that the weak classical
dipolar interaction plays a crucial role, as we shall discuss in Section 2.3.

In order to explain the temperature dependence of the structures,
it is necessary to determine the configuration of the moments which
minimizes the free energy, taking into account the influence of increasing
temperature and magnetic disorder on the interactions. Provided that
the magnitude |〈Ji〉| of the ordered moment is the same on all sites, the
entropy term is independent of the details of the ordering (Elliott 1961),
so the stable structure has the minimum energy. In exchange-dominated
systems, like the heavy rare earths, the ordered moment approaches its
saturation value at low temperature. As the temperature is increased,
the structure which has the lowest energy may change as the effective
interactions renormalize. This may occur either through a second-order
transition, in which some order-parameter goes continuously to zero or,
more commonly, discontinuously through a first-order transition. At
elevated temperatures, the entropy may favour a structure, such as the
longitudinal wave, in which the degree of order varies from site to site.

A conceptually simple but powerful means of calculating magnetic
properties, and their dependence on the temperature, is provided by the
molecular-field approximation or mean-field theory. We shall describe
this method in some detail in the next chapter, but it is convenient to
introduce it here in order to establish a few elementary results. The
essential feature of the theory is the approximation of the two-ion in-
teractions by effective single-ion terms, by replacing the instantaneous
values of the J operators on the surroundings of any particular ion by
their thermal averages. The effect of the exchange interaction (1.4.21)
with the surrounding ions on the moment at Ri may then be written

Hff(i) ≃ −(Ji − 1

2
〈Ji〉) ·

∑

j

J (ij)〈Jj〉, (1.5.6)

which in turn may be written in terms of an effective magnetic field

Heff(i) = (gµB)
−1

∑

j

J (ij)〈Jj〉, (1.5.7)

plus a constant contribution to the energy. If the sum of the applied and
effective fields is small, which will generally be true in the paramagnetic
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phase (but not if spontaneous ordering occurs), the magnetic moment
of the system per unit volume, neglecting the anisotropy, is given by
Curie’s law (1.2.32):

M =
g2µ2

BJ(J + 1)

3kBT

N

V
(H+Heff). (1.5.8)

For a uniform system, we may write

Heff =
1

g2µ2
B

V

N

∑

j

J (ij)M =
J (0)

g2µ2
B

V

N
M, (1.5.9)

recalling that

J (q) =
∑

j

J (ij) e−iq·(Ri−Rj), (1.5.10)

and the susceptibility is therefore

χMF =
g2µ2

BJ(J + 1)

3kBT

N

V

[
1− J (0)J(J + 1)

3kBT

]−1

≡ C

T − θ
, (1.5.11)

where C is the Curie constant (1.2.32), and the paramagnetic Curie
temperature is

θ =
J (0)J(J + 1)

3kB
. (1.5.12)

From the Curie–Weiss law (1.5.11) it is apparent that, if nothing else
happens, the susceptibility diverges at θ, which is therefore also the
Curie temperature TC at which spontaneous ferromagnetism occurs in
this model.

The bulk magnetic properties of the rare earths are summarized
in Table 1.6, where the moments are given in units of µB/ion, and the
temperatures in K. The theoretical paramagnetic moments per ion are
µ = g{J(J + 1)}1/2µB, and are compared with values deduced from
the linear magnetic susceptibilities in the paramagnetic phases, using
(1.5.11). The theoretical saturation moments per ion are gµBJ , from
(1.2.30), and are compared with low-temperature values, in fields high
enough essentially to saturate the magnetization, or in the highest fields
in which measurements have been made (McEwen et al. 1973). θ‖ and θ⊥
are the paramagnetic Curie temperatures, deduced from measurements
with a field applied respectively parallel and perpendicular to the c-
axis, and using (1.5.11). As we shall see in Section 2.1.1, there are
corrections to this expression at finite temperatures, which give rise to a
non-linearity in the inverse susceptibility. A simple linear extrapolation



1.5 RARE EARTH MAGNETISM 57

therefore gives values for the paramagnetic Curie temperatures which
depend on the highest temperature of the measurements. The fit to
the experimental results for Tm illustrated in Fig. 2.1, for example, in
which the mean-field corrections are taken into account, gives θ‖ and
θ⊥ as respectively 52K and −3K, which differ significantly from the
values deduced from a linear extrapolation of the same results, given in
Table 1.6. A similar analysis for Er yields 69K and 46K. The ordering
temperatures are determined either from bulk measurements or neutron
diffraction. TN and TC denote transition temperatures to magnetically-
ordered states without and with a net moment respectively, and values
are given for sites of both kinds of symmetry, in the light rare earths.

Table 1.6. Magnetic properties of rare earth metals.

Metal Para.moment Sat.moment θ‖ θ⊥ TN TC
µ Obs. gJ Obs. hex. cub.

Ce 2.54 2.51 2.14 0.6 13.7 12.5
Pr 3.58 2.56 3.20 2.7a 0.05
Nd 3.62 3.4 3.27 2.2a 19.9 8.2
Pm 2.68 2.40
Sm 0.85 1.74 0.71 0.13a 106 14.0
Eu 7.94 8.48 7.0 5.1a 90.4
Gd 7.94 7.98 7.0 7.63 317 317 293
Tb 9.72 9.77 9.0 9.34 195 239 230 220
Dy 10.65 10.83 10.0 10.33 121 169 179 89
Ho 10.61 11.2 10.0 10.34 73 88 132 20
Er 9.58 9.9 9.0 9.1 62 33 85 20
Tm 7.56 7.61 7.0 7.14 41 −17 58 32

a Values measured at 38 tesla.

A straightforward generalization of the above argument (see Sec-
tion 2.1) gives the response of the ions in the paramagnetic phase to a
spatially varying magnetic field with wave-vector q. The corresponding
susceptibility tensor (not to be confused with that for the conduction-
electron gas) is

χMF(q) =
g2µ2

BJ(J + 1)

3kBT

N

V

[
1− J (q)J(J + 1)

3kBT

]−1

=
C

T − TN
.

(1.5.13)
Spontaneous ordering is therefore predicted to occur at the wave-vector
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Q for which J (q) has its maximum value, and the Néel temperature is

TN =
J (Q)J(J + 1)

3kB
. (1.5.14)

Since, from (1.4.22), J (q) varies as (g − 1)2, the critical temperature is
expected to be proportional to the de Gennes factor (g − 1)2J(J + 1),
provided that the susceptibility of the conduction-electron gas is con-
stant. As may be seen from Tables 1.1 and 1.6, this relationship is
rather accurately obeyed for the heavy rare earths, though not so well
in the light elements. The crystal-field interactions influence the criti-
cal temperatures significantly, especially in the light end of the series,
and both the electronic susceptibility and the matrix elements of the
sf -exchange coupling, which together determine the indirect spin–spin
interaction JS(q), change through the series. The scaling of the critical
temperature with the de Gennes factor is therefore more precise than
would have been anticipated. The mean-field theory is known to be in-
adequate in the vicinity of the critical temperature, but as the rare earth
metals are three-dimensional systems with long-range interactions, the
transition temperature itself is rather well determined by this approxi-
mation. The theory is valid at high temperatures, and should describe
the static magnetic structures adequately in the low-temperature limit.
The discussion of the dynamical behaviour requires a time-dependent
generalization of the mean-field, accomplished by the random-phase ap-
proximation. We shall later describe how low-temperature corrections to
the mean-field properties may be derived from the magnetic-excitation
spectrum, determined within the random-phase approximation. The
discussion of the detailed behaviour close to the critical temperature,
i.e. the critical phenomena, is however beyond the scope of this book,
and we refer instead to the recent introduction to the subject by Collins
(1989), and to the specialist literature on the application of statistical
mechanics to phase transitions.

In mean-field theory, the exchange energy varies like σ2, where the
relative magnetization σ(T ) is |〈J〉|/J . However, the anisotropy energy
generally changes more rapidly with magnetization. The crystal-field
parameters Bm

l in (1.4.6) are generally assumed to vary only slightly
with temperature, but the thermal average 〈Om

l (J)〉 is very dependent
on the degree of ordering. By treating the deviation in the direction of
the moment on a particular site from the perfectly ordered state as a
random walk on a sphere, Zener (1954) showed that

〈
Om

l (J)
〉
T
=

〈
Om

l (J)
〉
T=0

σl(l+1)/2. (1.5.15)

We shall discuss the derivation of this thermal average by mean-field
theory in Section 2.2, and show that Zener’s result is indeed correct at
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low temperatures. Since the anisotropy energy is very small just below
the critical temperature, the exchange dominates and gives rise to peri-
odic magnetic structures in the heavy rare earths, except in Gd where
the peak in J (q) occurs at q = 0. As the temperature is lowered, the
anisotropy forces become relatively more important, and phase transi-
tions occur to structures in which their influence is apparent. A less
obvious but nevertheless important effect is that J (q) itself changes
substantially with temperature. As was mentioned in the last section,
the peak reflects a maximum in the conduction-electron χ(q), which is
determined by the form of the Fermi surface. Because of the interaction
(1.3.23) between the local moments and the spins of the conduction elec-
trons, the latter experience a potential with a period which is generally
different from that of the lattice, and therefore generates extra energy
gaps in the band structure. These magnetic superzone gaps, which we
shall discuss in more detail in Section 5.7, may be of the order of 10mRy
and therefore perturb the energy spectrum of the conduction electrons
significantly. In particular, the regions of the Fermi surface responsible
for the peak in J (q) are severely modified, as has been verified through
calculations on Tm by Watson et al. (1968). The result is that both
the position of the peak is changed and its magnitude is reduced. As a
consequence, periodic magnetic structures tend to be self-destructive; as
they become established they try to eliminate the characteristic of the
exchange which ensures their stability. These effects were studied by
Elliott and Wedgwood (1964), who used a free-electron model to ex-
plain the variation of Q in the heavy metals. Although their model is
greatly over-simplified, it illustrates the essential features of the prob-
lem. We shall see in Chapters 2 and 5 that this variation in J (q) is
necessary to explain the change in both the magnetic structures and
excitations with temperature.

Whereas the magnetic structures of the heavy rare earths can be
accounted for by recognizing the dominant role of the exchange, and
considering the crystal fields and magnetoelastic effects as perturbations,
whose essential role is to establish favoured directions for the moments
in the lattice, the balance in the light elements is not so clear-cut. Since
g is generally close to 1, the exchange is relatively weak, and the larger
values of 〈rl〉 towards the beginning of the series are expected to make
crystal-field effects relatively important. As a result, the latter are able
to hinder the moments from attaining their saturation values of gµBJ ,
even in high fields at low temperatures, as illustrated in Table 1.6.

The most remarkable manifestation of the influence of the crystal
fields is found in Pr, where they are able effectively to frustrate the efforts
of the exchange to produce a magnetically ordered state. As illustrated
in Fig. 1.16, the ground state on the hexagonal sites is the |Jζ = 0 >
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singlet which, in common with all singlet states, carries no moment. The
first term in (1.2.24) therefore gives no contribution to the susceptibility,
but the mixing of the | ± 1> excited doublet into the ground state by
the field gives a Van Vleck susceptibility at low temperatures which, if
we neglect the exchange, has the form

χ =
2g2µ2

BM
2
α

∆

N

V
, (1.5.16)

where M2
α = |<±1| Jα|0> |2 is the square of the matrix element of the

component of J in the field direction, and ∆ is the energy separation
between the ground state and the first excited state. Since Mα is zero
when the field is applied along the c-axis, no moment is initially gen-
erated on the hexagonal sites, as confirmed by the neutron diffraction
measurements of Lebech and Rainford (1971), whereas the susceptibility
in the basal plane is large. An applied field in the c-direction changes
the relative energies of the crystal-field levels however, and at 4.2K a
field of 32 tesla induces a first-order metamagnetic transition to a phase
with a large moment (McEwen et al. 1973), as shown in Fig. 7.13. This
is believed to be due to the crossing of the ground state by the second
excited state, as illustrated in Fig. 7.12.

If the exchange is included in the mean-field approximation, the
q-dependent susceptibility becomes, in analogy with (1.5.13),

χMF(q) = g2µ2
B

N

V

[
∆

2M2
α

− J (q)

]−1

. (1.5.17)

From this expression, it is apparent that the susceptibility diverges, cor-
responding to spontaneous ordering, if

2J (q)M2
α

∆
≥ 1. (1.5.18)

The magnetic behaviour of such a singlet ground-state system is there-
fore determined by the balance between the exchange and the crystal
field. If the exchange is strong enough, magnetic ordering results; oth-
erwise paramagnetism persists down to the absolute zero. In Pr, the
crystal-field splitting is strong enough to preclude magnetic order, but
the exchange is over 90% of that required for antiferromagnetism. We
shall return to the consequences of this fine balance in Chapter 7.

The remaining close-packed light rare earths Ce, Nd, and Sm, which
are amenable to experimental study (radioactive Pm is very intractable),
all have an odd number of 4f electrons and thus, according to Kramers’
theorem, crystal-field levels with even degeneracy and a magnetic mo-
ment. The crystal fields cannot therefore suppress magnetic ordering,
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but they reduce the ordered moment and contribute to the complex-
ity of the magnetic structures (Sinha 1978), which is exacerbated by
the two different site-symmetries in each of the metals. The magnetic
structure of Ce has not been fully determined, but it now seems (Gib-
bons et al. 1987) that commensurable transverse waves are formed on
both the hexagonal and cubic sites, with Q in a b-direction and the mo-
ments pointing along an a-axis in the plane. The magnetic periodicity is
twice that of the lattice. This relatively straightforward structure is in
marked contrast to that of Nd, which displays an extraordinary complex-
ity. An incommensurable longitudinal wave in a b-direction is formed on
the hexagonal sites through a first-order transition at TN , with a sim-
ple antiferromagnetic arrangement of successive hexagonal layers. As
the temperature is lowered, a further first-order transition takes place
within a degree to a double-Q structure (McEwen et al. 1985). At a
still lower temperature, an incommensurable periodic structure in the b-
direction is also formed on the cubic sites. At the lowest temperatures,
the moments assume an elaborate quadruple-Q pattern (Forgan et al.
1989), which we shall discuss in more detail in Chapter 2. The magnetic
structure on the hexagonal sites of Sm comprises pairs of planes with
the moments arranged ferromagnetically in the c-direction (Koehler and
Moon 1972). Adjacent pairs are coupled antiferromagnetically and sep-
arated by the cubic sites. The latter also order antiferromagnetically,
with the moments along the c-axis, at low temperatures, but the nor-
mal to the ferromagnetic sheets is now in the b–c plane. Although the
magnetic structures of the light rare earths are phenomenologically rea-
sonably well described, the explanation of their origin in terms of the
crystal-field and exchange interactions is still at a rudimentary stage.

The application of a magnetic field adds to the Hamiltonian a term

HZ = −gµB

∑

i

Ji ·H. (1.5.19)

In a sufficiently large field, the stable configuration is thus an array
of moments gµBJ pointing along the field direction. The intermediate
states between the zero-field structure and the high-field limit may how-
ever be very complex. In Fig. 1.20 on page 53 is shown a relatively simple
example of the magnetization curves which result when a cone structure
undergoes first-order transitions to the almost fully-aligned ferromag-
netic state. We will discuss the effect of a magnetic field on periodic
magnetic structures in some detail in Section 2.3, and therefore restrict
ourselves for the moment to outlining the results of the mean-field treat-
ment of Nagamiya et al. (1962) of the helical structure without planar
anisotropy, to which a field is applied in the plane. The ferromagnetic



62 1. ELEMENTS OF RARE EARTH MAGNETISM

structure is reached at a field

Hc =
J [J (Q)− J (0)]

gµB

, (1.5.20)

but there is an intermediate transition, occurring at approximatelyHc/2,
at which the helix transforms abruptly through a first-order transition
to a fan structure, in which the moments make an angle θ with the field
direction, given by

sin
θi
2

=

{
2gµB(Hc −H)

J [3J (Q)− 2J (0)− J (2Q)]

}1/2

sinQ·Ri. (1.5.21)

The opening angle of the fan thus goes continuously to zero at the
second-order transition to the ferromagnetic phase.

The crystal fields manifest themselves in both microscopic and ma-
croscopic magnetic properties. The macroscopic anisotropy parameters
κml are defined as the coefficients in an expansion of the free energy in
spherical harmonics, whose polar coordinates (θ, φ) specify the magne-
tization direction relative to the crystallographic axes. For hexagonal
symmetry,

F (θ, φ) = N
[
κ0(T ) + κ02(T )P2(cos θ) + κ04(T )P4(cos θ)

+ κ06(T )P6(cos θ) + κ66(T ) sin
6 θ cos 6φ

]
,

(1.5.22)

where Pl(cos θ) = (4π/2l+ 1)1/2Yl0(θ, φ) are the Legendre polynomials.
Anisotropic two-ion coupling and magnetoelastic strains may introduce
additional higher-rank terms of the appropriate symmetry. If the Hamil-
tonian is written in a representation H(θ, φ) in which the quantization
axis is along the magnetization, the macroscopic and microscopic pa-
rameters are related by

F (θ, φ) = − 1

β
ln Tr

{
e−βH(θ,φ)

}
. (1.5.23)

Transforming the Stevens operators to a coordinate system with the z-
axis along the magnetization direction, and assuming that the isotropic
exchange is the dominant interaction, we find at absolute zero

κ02(0) = 2B0
2J

(2) κ04(0) = 8B0
4J

(4)

κ06(0) = 16B0
6J

(6) κ66(0) = B6
6J

(6)
(1.5.24)

where
J (n) ≡ J(J − 1

2
)(J − 1) · · · (J − n−1

2
). (1.5.25)
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There are a number of different experimental methods for obtain-
ing values for the microscopic and macroscopic anisotropy parameters.
The susceptibility in different directions, or equivalently the torque on
a crystal in a field, can be measured either in the paramagnetic or mag-
netically ordered phases and, as we shall discuss in detail later, much
information may be obtained from the excitation spectrum and its field
dependence. The values of κml (0) obtained from these various sources
for the different elements have been reviewed and tabulated by McEwen
(1978).

In order to deduce the crystal-field parameters Bm
l in the absence

of exchange and magnetoelastic effects, Touborg and his collaborators
studied the crystal-field states of dilute alloys of the magnetic rare earths
in the non-magnetic hosts Sc, Y, and Lu, utilizing magnetization mea-
surements and, to a limited extent, neutron spectroscopy. Their results
for heavy rare earth solutes have been reviewed by Touborg (1977) and,
for the light elements, by Touborg et al. (1978). Within the uncertainty
of the measurements and of the interpretation, and with the exception
of Ce in Y, which behaves anomalously, they found that a common set of
parameters Bm

l /αl accounts for the behaviour of all solutes in a particu-
lar host. B0

4/β and B0
6/γ are roughly 10K/ion and 15K/ion respectively

in all cases, while B6
6 is close to the value − 77

8 B
0
6 which the point-charge

model would predict. B0
2/α increases from about 30K/ion in Sc, to 45

K/ion in Lu, to 100K/ion in Y, which correlates with the deviation of
the c/a ratio of the host metal (1.592 for Sc, 1.584 for Lu, and 1.573 for
Y) from the ideal value of 1.633 (Orlov and Jensen 1988). It is note-
worthy that the parameters Bm

l /αl show no obvious correlation with
〈rl〉, as would be anticipated from (1.4.4).

The values of Bm
l from these studies of dilute alloys may be com-

pared with those from other sources. In particular, B0
2 may be estimated

for the pure metals by interpolating between the c/a ratios of the non-
magnetic hosts. These values may then be compared with those deduced
from the difference between the paramagnetic Curie temperatures par-
allel and perpendicular to the c-axis, which is shown in Section 2.1 to
be given by

B0
2 =

5kB(θ⊥ − θ‖)

6(J − 1
2 )(J + 3

2 )
. (1.5.26)

The agreement for the heavy rare earths is in all cases good (McEwen
1978), indicating that the crystal fields measured in dilute alloys are re-
lated to those acting in the pure metals. On the other hand, the values
deduced from torque and magnetization measurements at low tempera-
tures in the ferromagnetic state show large discrepancies with those in
the paramagnetic phase. For Tb and Dy, the former are roughly three
times the latter. Despite this discrepancy, which is probably primarily
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due to the anisotropic two-ion coupling in the magnetically ordered
phases, the axial anisotropy parameter κ02(T )− 5

2κ
0
4(T )+

35
8 κ

0
6(T ), where

κ02(T ) is the dominating term, depends on temperature approximately
as predicted by (1.5.15), varying roughly as σ3 in Dy and σ4 in Tb.
We shall return to the question of the anisotropy parameters in the rare
earths when we discuss the structures and excitations.

The large magnetoelastic effects have a profound effect on the mag-
netic properties of the rare earths, making a significant contribution to
the anisotropy, playing a decisive role in some instances in determining
the structures, and modifying the excitation spectrum. We here consider
for illustrative purposes a special example, the basal-plane ferromagnet,
exemplified by Tb and Dy. As mentioned previously, the α-strains main-
tain the symmetry and therefore only have the effect of renormalizing the
Bm

l , and if the moments are confined to the plane, the ε-strains vanish.
However, the γ-strains are large and symmetry-breaking, and thereby
cause qualitative modifications in the magnetic behaviour. From (1.4.8)
and (1.4.11), their contribution to the magnetoelastic Hamiltonian may
be written

Hγ =
∑

i

[
1

2
cγ(ǫ

2
γ1 + ǫ2γ2)−Bγ2{O2

2(Ji)ǫγ1 +O−2
2 (Ji)ǫγ2}

−Bγ4{O4
4(Ji)ǫγ1 −O−4

4 (Ji)ǫγ2}
]
,

(1.5.27)

where we have included only the lowest ranks (l = 2 and 4 respectively)
of the γ2 and γ4 terms. As shown in Section 2.2, the condition

∂F/∂ǫγ = 0 (1.5.28)

leads to the equilibrium strains

ǫγ1 =
1

cγ

(
Bγ2〈O2

2〉+Bγ4〈O4
4〉
)

ǫγ2 =
1

cγ

(
Bγ2〈O−2

2 〉 −Bγ4〈O−4
4 〉

)
.

(1.5.29)

Transforming the Stevens operators as before, and using (1.5.15) to esti-
mate the magnetization dependence of the thermal averages, we obtain

ǫγ1 = C cos 2φ− 1

2
A cos 4φ

ǫγ2 = C sin 2φ+ 1

2
A sin 4φ,

(1.5.30)

where

C =
1

cγ
Bγ2J

(2)σ3

A = − 2

cγ
Bγ4J

(4)σ10
(1.5.31)

are the conventional magnetostriction parameters (Mason 1954), and φ
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is the angle between the a-axis and the magnetization in the plane.
The dominant contribution to the magnetoelastic energy is

〈Hγ〉 = −1

2
Ncγ(ǫ

2
γ1 + ǫ2γ2) = −1

2
Ncγ(C

2 + 1

4
A2 −CA cos 6φ). (1.5.32)

The cos 6φ term makes a contribution to the hexagonal anisotropy, which
is in total, from (1.5.24), (1.5.15), and (1.5.31),

κ66(T ) = B6
6J

(6)σ21 + 1

2
cγCA

= B6
6J

(6)σ21 − 1

cγ
Bγ2J

(2)Bγ4J
(4)σ13.

(1.5.33)

The hexagonal anisotropy can readily be deduced from the critical field
Hc necessary to rotate the moments from an easy direction to a neigh-
bouring hard direction in the plane (respectively a b-axis and an a-axis
in Tb), which is given by

gµBJσHc = 36|κ66(T )|. (1.5.34)

Values of the critical field for Tb are given as a function of σ in Fig. 1.21.

Fig. 1.21. The critical field Hc necessary to rotate the moments from
an easy direction to a neighbouring hard direction in the plane in Tb, as
a function of the reduced magnetization. The closed circles denote the
results of neutron-scattering experiments, and the other signatures are

deduced from macroscopic measurements.
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The observed σ15 dependence on the magnetization indicates that the
magnetoelastic term dominates. As illustrated in Fig. 1.22, C and A
have been accurately determined by Rhyne and Legvold (1965a) from
macroscopic strain-gauge measurements and, since the elastic constant
is known (Jensen and Palmer 1979), the relative magnetoelastic and
crystal-field contributions to (1.5.33) may readily be determined. At
absolute zero, the former is 1.14K/ion and the latter is −0.60K/ion,
rapidly becoming negligible as the temperature is increased. On account
of the sign of the Stevens factor γ for Tb, the crystal-field contribution
is expected to be positive, and this may be another indication of the
importance of anisotropic two-ion coupling in the magnetically ordered
phases.

Fig. 1.22. The temperature dependence of the magnetostriction pa-
rameters C and A in Tb, after Rhyne and Legvold (1965a). The full lines
show the results of the Callen-Callen theory presented in Section 2.2.

The magnetoelastic energy (1.5.32) is substantial in the ferromag-
netic phase. In particular the term − 1

2cγC
2, which results from a magne-

toelastic strain of cylindrical symmetry, is relatively important at high
temperatures, because it renormalizes roughly as σ4, and is therefore
still about 0.3K/ion in Dy at 85K, the temperature at which a first-
order transition occurs from the helical to the ferromagnetic phase. The
hexagonally symmetric contribution proportional to CA is small at all
temperatures in Dy, since A ≈ 0 (Martin and Rhyne 1977). In the
helical phase, the lattice is clamped (Evenson and Liu 1969), so that
the γ-strains are zero, and the magnetoelastic contribution to the sta-
bilization energy is therefore absent. At TC , this energy, plus a minor
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contribution from the crystal-field anisotropy, just balances the differ-
ence in exchange energy between the helical and ferromagnetic phases:

∆Uff = −1

2
NJ2σ2{Jh(Q)− Jf (0)}. (1.5.35)

There has been some discussion about the relative importance of the
two terms in stabilizing the ferromagnetic phase. From an analysis of
the field required to induce the transition above TC , Cooper (1968a)
concluded that the magnetoelastic energy plays the dominant role. This
conclusion was, however, based on the implicit assumption that the ex-
change energy changes little between the phases, and later measurements
of the spin waves by Nicklow et al. (1971b) demonstrated that this is
not the case. The energy difference − 1

2J
2σ2{Jh(Q) − Jh(0)} is about

2K/ion in the helical phase, but the corresponding quantity is substan-
tially smaller in the ferromagnetic phase. Del Moral and Lee (1975)
reanalysed the data and concluded that the change (1.5.35) in the ex-
change energy makes the major contribution to driving the transition.
Any statement about what drives a first-order, as distinct from a second-
order transition must necessarily be imprecise, since all contributions to
the energy change discontinuously at the transition. Immediately below
TN , the exchange dominates and the anisotropy forces are small. As
the temperature is lowered, the peak in J (Q) decreases and moves, as
was shown explicitly for the analogous case of Tb by the spin-wave mea-
surements of Bjerrum Møller et al. (1967), illustrated in Fig. 6.1. The
magnetoelastic forces therefore increase in relative importance, until a
balance is reached and the transition to the ferromagnetic phase takes
place. At the transition, a large change occurs in the exchange. With-
out the magnetoelastic term, TC would be determined by the hexagonal
crystal-field anisotropy, and would therefore be much lower. In this
sense, the cylindrically-symmetric magnetoelastic forces drive the tran-
sition.


