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Lanthanide contraction and magnetism in the heavy
rare earth elements
I. D. Hughes1, M. Däne2, A. Ernst3, W. Hergert2, M. Lüders4, J. Poulter5, J. B. Staunton1, A. Svane6, Z. Szotek4

& W. M. Temmerman4

The heavy rare earth elements crystallize into hexagonally close
packed (h.c.p.) structures and share a common outer electronic
configuration, differing only in the number of 4f electrons they
have1. These chemically inert 4f electrons set up localized magnetic
moments, which are coupled via an indirect exchange interaction
involving the conduction electrons. This leads to the formation of
a wide variety of magnetic structures, the periodicities of which are
often incommensurate with the underlying crystal lattice2. Such
incommensurate ordering is associated with a ‘webbed’ topology3,4

of the momentum space surface separating the occupied and un-
occupied electron states (the Fermi surface). The shape of this
surface—and hence the magnetic structure—for the heavy rare
earth elements is known to depend on the ratio of the interplanar
spacing c and the interatomic, intraplanar spacing a of the h.c.p.
lattice5. A theoretical understanding of this problem is, however,
far from complete. Here, using gadolinium as a prototype for all
the heavy rare earth elements, we generate a unified magnetic
phase diagram, which unequivocally links the magnetic structures
of the heavy rare earths to their lattice parameters. In addition to
verifying the importance of the c/a ratio, we find that the atomic
unit cell volume plays a separate, distinct role in determining the
magnetic properties: we show that the trend from ferromagnetism
to incommensurate ordering as atomic number increases is con-
nected to the concomitant decrease in unit cell volume. This
volume decrease occurs because of the so-called lanthanide con-
traction6, where the addition of electrons to the poorly shielding 4f
orbitals leads to an increase in effective nuclear charge and, cor-
respondingly, a decrease in ionic radii.

We report here a theoretical investigation of the onset of magnetic
order in the heavy rare earths, focusing on gadolinium as the pro-
totypical member of this series. State-of-the-art computational tech-
niques are used to model the finite-temperature electronic structure
of this system, with a completely ab initio approach taken and no
fitting to experimental parameters. Thermally induced spin fluctua-
tions are treated using a ‘local moment’ picture of magnetism7, in
which local spin polarization axes are associated with all lattice sites,
the orientations of which vary slowly on the timescale of electronic
motion. These ‘local moment’ degrees of freedom produce local
magnetic fields on the lattice sites, which affect the electronic
motions and are self-consistently maintained by them. By studying
the wave vector (q) dependence of the spin fluctuations that char-
acterize the paramagnetic state we gain information about the type of
magnetic order that might occur as the temperature is lowered
through a phase transition.

For example, in a ferromagnetic material such as gadolinium,
the paramagnetic state is characterized by ferromagnetic spin

fluctuations that have long wavelengths (q < 0) and becomes un-
stable to these fluctuations at the Curie temperature TC. For a system
that orders into an incommensurate antiferromagnetic structure the
paramagnetic state is dominated by ‘anti-ferromagnetic’ spin fluc-
tuations, specified by a finite, incommensurate, wave vector q 5 Q0

that also characterizes the static magnetization or spin density wave
state formed below the Néel temperature TN. For example, the mag-
netic structures of the later heavy rare earth elements, terbium to
thulium, are described by wave vectors of the form Q0 5 {0, 0, qinc},
where individual hexagonal layers are uniformly magnetized in a
direction that changes from layer to layer according to the modu-
lation vector qinc. To determine the nature of the spin fluctuations
we evaluate the paramagnetic spin susceptibility, x(q, T). This can
be written as x(q, T) 5 m2/(3kBT – S(2)(q, T)), where m specifies a
local moment magnitude and S(2)(q, T) mediates the interaction
between moments8. The wave vector at which x(q, T) and
S(2)(q, T) attain their maxima corresponds to the wave vector of
the dominant paramagnetic spin fluctuations.

We started by investigating gadolinium at its equilibrium lattice
parameters, both those measured experimentally and also those
determined theoretically by minimizing the total energy of the system
with respect to changes in the parameters. For a proper description of
the electronic structure of gadolinium it was necessary to account for
the strong electron–electron correlations of the highly localized 4f
states. Indeed, on neglecting these strong electron correlations the
f-electrons became band-like and we found that at both the experi-
mental and theoretical lattice parameters the system was inclined to
order into a commensurate antiferromagnetic structure, with mag-
netic moments oppositely aligned in alternating planes along the c
axis, contrary to the experimentally observed ferromagnetic order-
ing. Such antiferromagnetic ordering has been found in other con-
ventional electronic structure calculations9 and is attributed to the
presence of minority spin 4f electrons at the Fermi energy10. To
localize the f electrons, previous investigations separated them out
from the more itinerant spd electrons, treating them either as part of
the core11 or introducing the effect of strong electron correlations by
explicitly including a Coulomb parameter U for the f states12. In our
investigation we used a different approach, the self-interaction cor-
rection technique13–15 (see Supplementary Methods for details), in
which localized and delocalized electrons are treated on an equal
footing and the effects of strong Coulomb correlations are incorpo-
rated in a parameter-free way.

The picture that emerged from our first-principles theory for
S(2)(q, T), once the f electrons were appropriately localized, was of
a magnetic field produced by a 4f moment on one atomic site polar-
izing the conduction electrons. Their induced magnetization then
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interacted with the magnetic fields set up by moments on other sites.
Consequently, the moment–moment interaction was governed by
the non-interacting susceptibility of the conduction electrons,
x0

conduction(q, T). Such an indirect exchange interaction between
moments, mediated by conduction electrons, is referred to as a
RKKY (Ruderman–Kittel-Kasuya–Yosida) interaction and experi-
mentally is what drives the magnetism in the heavy rare earth ele-
ments16. Indeed, with a proper treatment of the f electrons, our
calculations predicted a ferromagnetic ground state, in agreement
with experiment. The temperature dependency of the susceptibility
followed a Curie–Weiss law, with TC 5 280 K for the theoretical lat-
tice parameters and 324 K for the experimental lattice parameters.
The overestimate of the Curie temperature at the experimental lattice

parameters (experimental TC 5 293 K; ref. 2) can be attributed to
our mean field treatment of spin fluctuations17. The effective mag-
netic moment was 7.34mB for the theoretical lattice parameters and
7.36mB for the experimental lattice parameters, in reasonable agree-
ment with the experimental value of 7.63mB and also the results of
previous studies in which f electrons were treated in a different sub-
system to the more itinerant electrons (7.44mB and 7.41mB; refs 18 and
10, respectively).

The susceptibility of gadolinium for non-equilibrium lattice para-
meters is shown in Fig. 1. Two variables, the c/a ratio and the unit cell
volume, specify the h.c.p. lattice parameters of the heavy rare earth
elements. Figure 1a concerns the first. It shows that, for the lowest c/a
ratios, gadolinium is no longer predicted to be ferromagnetic, instead
adopting an incommensurate magnetic structure. This could be hel-
ical, where the helix turn angle, that is, the angle between magnetic
moments in adjacent layers, would be given by pqinc, where qinc is the
position of the susceptibility peak. Andrianov19 investigated helical
magnetic ordering in several heavy rare earth systems and found the
helix turn angle to be a smooth, square-root-shaped function of the
c/a ratio. He also noted that it varied by several orders of magnitude
while the c/a ratio changed by less than 1%. Such behaviour could
possibly be interpreted in terms of an electronic topological trans-
ition20,21 at some critical c/a ratio, where this is a rupturing of the
webbing structure found in the Fermi surface of these systems. This
webbing structure contains large parallel sheets of Fermi surface,
which can ‘nest’ together when translated by some vector in k-space,
and it has been shown, both theoretically22 and experimentally23, that
the size of this nesting vector is correlated with the magnetic modu-
lation vector.

In our theory, such Fermi surface effects should be contained in
x0

conduction(q, T), because this is determined by excitations from
occupied states at all Bloch wave vectors k to unoccupied states at
wave vectors k 1 q. x0

conduction(q, T) is dominated by a Brillouin
zone integral17 #AB(k, eF)AB(k 1 q, eF) dk where the Bloch spectral
function, AB(k, eF), gives the density of states at the Fermi energy eF

at the Bloch wave vector k. It follows that it can develop a peak at a
finite Bloch wave vector q 5 Q0 if there are regions of the Fermi
surface that coincide when one is translated by a nesting vector
Q0. To analyse the results we obtained in Fig. 1a, we calculated the
Fermi surface of paramagnetic gadolinium at various c/a ratios. A
‘webbing’ structure was indeed found in those systems where in-
commensurate ordering is predicted (see Supplementary Fig. S1
for three-dimensional illustrations of the Fermi surface), with the
nesting vector magnitude coinciding with qinc.

Figure 2 shows cross-sections through the nesting region of the
Fermi surface for various c/a ratios. Two extremal nesting vectors,
one centred and the other non-centred, were found. The length of the
centred nesting vector decreases as the c/a ratio increases, in agree-
ment with the experimental results of Andrianov19, but contrary to
the results in Fig. 1a, where the position of the incommensurate
ordering peak is almost invariant to the c/a ratio used. The non-
centred vector, however, stays fairly constant as the c/a ratio is
altered, indicating this vector to be responsible for the incommen-
surate ordering observed in our calculations. This agrees with recent
theoretical work24.

We now turn to the magnetic ordering behaviour as a function of
unit cell volume. Here we found two distinct cases, dependent on the
c/a ratio of the lattice parameters. For high c/a ratios, corresponding
to systems with no webbing feature, ferromagnetic ordering was
predicted for all volumes. For low c/a ratios, corresponding to sys-
tems with webbing, a more complicated picture emerges, as shown in
Fig. 1b. The webbing structure leads to an enhancement of the sus-
ceptibility at the nesting vector for all volumes. However, for the
enhancement to be large enough so that incommensurate ordering
wins out over ferromagnetic ordering the unit cell volume needs to
be below a certain critical value.
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Figure 1 | Normalized paramagnetic spin susceptibilities for gadolinium,
obtained from ab initio calculations. The data shown is for wave vectors
q along the [0, 0, 1] direction. a, Data for various c/a ratios, using theoretical
unit cell volumes which were found to be almost invariant to the c/a ratio.
The inset shows the susceptibility up to the zone boundary for c/a ratio 1.54.
The experimental c/a ratio is 1.597. It is evident that as the c/a ratio
decreases, the susceptibility starts to develop a peak at some
incommensurate wave vector qinc and, at the lowest c/a ratios, the
susceptibility no longer attains its maximum value at q 5 0. This means that,
rather than ordering ferromagnetically, the system will adopt an
incommensurate antiferromagnetic structure, modulated along the c axis
with the wave vector qinc. b, Data for various unit cell volumes, using a c/a
ratio of 1.54. The unit cell volumes are parameterized using Wigner–Seitz
(W–S) radii, defined as the radius of a sphere of the same volume as the
volume per atom. Atomic units (a.u.) are used, where 1 a.u. is the Bohr
radius of a hydrogen atom. As the volume is increased, the height of the
incommensurate peak relative to the q 5 0 (ferromagnetic) peak is reduced
and at a W–S radius of 3.710 a.u. there is a near degeneracy between the two
ordering types. For the highest W–S radii the ferromagnetic peak wins out. A
similiar trend was observed for other, small, c/a ratios that correspond to
systems having a webbing feature in their Fermi surface.
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Our key Fig. 3 summarizes the magnetic ordering tendencies of
gadolinium as a function of c/a ratio and unit cell volume. Because 4f
electrons are usually chemically inert, the heavy rare earth elements
can all be considered as variations of the same entity and hence the
behaviour of gadolinium as a function of lattice parameters is

expected to mimic that of all the other heavy rare earth elements.
Indeed, by examining where the experimental lattice parameters of all
the heavy rare earth elements lie on Fig. 3, we predict that when going
left to right in the heavy rare earth series there should be a trend away
from ferromagnetism and towards incommensurate ordering. This is
exactly what is observed experimentally, with the magnetic modu-
lation vector starting out at zero for gadolinium (ferromagnetic
ordering) and then progressively increasing through the series to
produce various incommensurate antiferromagnetic structures.

From our ordering phase diagram (Fig. 3), we predict that the
transition between ferromagnetism and incommensurate ordering
occurs very rapidly as a function of c/a ratio, particularly for the
higher unit cell volumes. This is consistent with recent experimental
work on terbium, for which it was shown25 that its incommensurately
ordered phase could be completely suppressed by increasing the c/a
ratio by as little as 0.002. In the phase diagram the elements dyspro-
sium and terbium are positioned close to, or within, the transition
region between ferromagnetic and incommensurate ordering. This
concurs with the two systems’ experimental behaviour, which exhi-
bits incommensurate ordering at high temperatures and ferromag-
netic ordering at low temperatures. Gadolinium is able to form alloys
with all the heavy rare earth elements, with the alloys transforming
from ferromagnets to incommensurate magnetically structured
materials once the concentration of the heavy rare earth element
exceeds a critical value. We used the phase diagram to predict these
critical alloy concentrations and found them to be in good agreement
with experimental values where known (see Fig. 3 legend).

We also computed estimates of the magnetic ordering vectors of
all the heavy rare earth elements from our susceptibility calculations
for gadolinium, the results of which are shown in Fig. 4, where the
experimental trend is well reproduced. The magnetic ordering vec-
tors of the last three members of the series (holmium, erbium and
thulium) were found to lie very close together, in agreement with
experiment. Owing to its half-filled 4f shell, the gadolinium ion has
orbital angular momentum L 5 0. Hence the effects of spin orbit
coupling can be neglected in our calculations of gadolinium. For
the other heavy rare earth elements, however, the coupling of spin
and orbital moments is important in obtaining estimates of their
magnetic moments and magnetic ordering temperatures. Indeed,
by accounting for this aspect, we used the gadolinium results to
reproduce trends in magnetic ordering temperatures, as shown in
the inset of Fig. 4. Nonetheless, the type of magnetic order and mag-
netic ordering vector are determined by the spd conduction electrons,
which are little affected by spin-orbit coupling and which all the
heavy rare earths have in common.
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Figure 2 | Bloch spectral function of gadolinium on the HLMK plane of the
hexagonal Brillouin zone, depicting the topology of the Fermi surface. The
colour scale shows the spectral function in arbitrary units. Theoretical unit
cell volumes were used, with the c/a ratios given in panels a, b and c. The
centre of the plane is the L point. The Fermi surface in a has the ‘webbing
feature’, with large sections of parallel Fermi surface that are separated by a

nesting vector, indicated by the black arrow. The magnitude of the nesting
vector is 0.2, which coincides with the size of the magnetic ordering wave
vector qinc that we obtained for this c/a ratio in Fig. 1a. As the c/a ratio
increases, it is evident that the surfaces parallel to the KMK direction become
less flat and at the highest c/a ratio the webbing structure is ruptured. This is
concurrent with the transition to ferromagnetism observed in Fig. 1a.
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Figure 3 | Magnetic ordering tendencies of gadolinium (Gd) as a function
of c/a ratio and W–S radii. On the colour scale, a value of 0 corresponds to
when the paramagnetic state is dominated by ferromagnetic spin
fluctuations, and a value of 1 corresponds to when it is dominated by spin
fluctuations with some finite, incommensurate wave vector. For values
between 0 and 1 the two ordering types compete: values below 0.5 indicate a
stronger tendency towards ferromagnetic ordering and values above 0.5
indicate a greater tendency towards incommensurate antiferromagnetic
ordering. A 3% shift was applied to the W–S radii, such that data shown at
the experimental W–S radius of gadolinium corresponds to data calculated
at the theoretical W–S radius of gadolinium. The experimental lattice
parameters of all the heavy rare earth elements are indicated by circles: a blue
(or red) circle indicates that experimentally the magnetic structure of the
element is ferromagnetic (or incommensurate antiferromagnetic). The
green circle indicates the experimental lattice parameters of a Gd–Ho alloy at
the critical concentration of Ho at which an incommensurate
antiferromagnetic phase first appears. From the phase diagram we predict
the critical concentration of the Gd1 2 xRex alloys to be 0.78, 0.56, 0.49, 0.45,
0.42 for the heavy rare earth elements Tb (terbium), Dy (dysprosium), Ho
(holmium), Er (erbium) and Tm (thulium) respectively. Experimental
values are known only for dysprosium and holmium and are 0.50 (ref. 26)
and 0.45 (ref. 27) respectively.
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The parts that the different types of valence electrons play in deter-
mining the magnetic structures of the heavy rare earth elements are
thus clear; the itinerant spd electrons, common to all the heavy rare
earth elements, mediate the interaction between magnetic moments
and it is the nesting of their Fermi surfaces which can lead to instabil-
ities in the paramagnetic phase with respect to the formation of
incommensurate spin density waves. The f electrons, on the other
hand, are responsible for setting up the magnetic moments and, as
their number increases across the heavy rare earth series, they play an
indirect role in promoting incommensurate order by shrinking the
unit cell volume through the lanthanide contraction.
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Figure 4 | Experimental magnetic ordering vectors of the heavy rare earth
elements versus those predicted from ab initio calculations for gadolinium.
The ordering vectors are obtained by performing susceptibility calculations
for gadolinium at the appropriate lattice parameters. For example, when we
performed a calculation at the experimental lattice parameters of terbium
the susceptibility peaked at a wave vector q 5 {0, 0, 0.13}, in good agreement
with the experimental ordering vector, {0, 0, 0.11}. The inset shows the
corresponding ordering temperatures. Experimentally, gadolinium has the
highest ordering temperature, which decreases monotonically through the
heavy rare earth series. To take into account the different total angular
momentum values J of the heavy rare earth elements, the theoretical
ordering temperatures have been scaled according to the de Gennes factor28

(gJ 2 1)2J(J 1 1), where gJ is the Lande g-factor. It is clear that the results
from the gadolinium study reproduce the experimental trend, although the
magnitudes of the temperatures are systematically underestimated.
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