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Abstract

The influence of three main irreversibilities existing in thermoelectric
devices on the performance of a thermoelectric generator is investi-
gated by means of nonequilibrium thermodynamics and finite-time
thermodynamics. The efficiency and the power output of the ther
moelectric generator are optimized. The maximum efficiency and
the maximum power output are determined. The power output ver-
sus efficiency curves illustrate clearly that the two operating points
corresponding to maximum efficiency and maximum power output
approach one another as the thermal conductances between the ther-
moelectric device and its external heat reservoirs decrease. Finally,
the optimal problem relative to the load matching involved in the
design of a practical thermoelectric generator is discussed in detail.
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1. Introduction

Since semiconductor materials were discovered, the practi-
cal exploitation of thermoelectric devices has become very
attractive. Thermoelectric generators have been devel-
oped for many uses ranging from small flame-operated
power supplies for automatic control systems to several
kilowatt-size thermopiles for prototype evaluation of ma-
rine propulsion systems. A large number of authors have
analyzed the performance of a thermoelectric generator by
means of nonequilibrium thermodynamics [1-6]. In recent
years, several authors have studied the influence of finite-
rate heat transfer between the thermoelectric device and
its external heat reservoirs on the performance of the ther-
moelectric generator [7-10] and obtained some new results.

In the present paper we will investigate the gen-
eral characteristics of a thermoelectric generator when the
thermal conductances between the thermoelectric device
and its external heat reservoirs are different. New bounds
on the key performance parameters of a thermoelectric
generator will be given.

2, Three Main Irreversible Losses

A thermoelectric generator which converts part of a quan-
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tity of heat absorbed directly into d.c. electricity is com-
posed primarily of p-type and n-type semiconductor ele-
ments. Figure 1 presents a simplified view of a thermo-
electric generation system. Here g3 is the net rate of heat
input from the heat source at temperature T} to the ther-
moelectric device and g, the net rate of heat rejection from
the thermoelectric device to the heat sink at temperature
T.. The power output p of the thermoelectric generator
is received by the load resistance Rr. The term I repre-
sents the electrical current. The terms T} and T are the
temperatures of the two junctions in the thermoelectric
device. The term gy is the heat leak from the hot junction
at temperature T to the cold junction at temperature 75
via the thermoelectric elements. The terms kj and k, are
the thermal conductances between the hot and the cold
junctions of the thermoelectric device and their respective
heat reservoirs. The term k is the thermal conductance
of the thermoelectric device. The thermoelectric device is
assumed to be insulated, both electrically and thermally,
from its surroundings except at the junction-reservoir con-
tacts [7, 9].
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Figure 1. Schematic diagram of a thermoelectric generator
operating between reservoirs at T}, and 7.

The operation of a thermoelectric generator is based
on the Seebeck effect, first observed by Seebeck in 1821.

When the thermoelectric device works as a generator, the
heat fluxes

@1 =ally (1)

and

g2 = aITz (2)



are absorbed by the hot junction and released from the
cold junction, respectively, due to the Seebeck effect; o is
the seebeck coefficient. At the same time, there are two
additional effects in play and always present in thermoelec-
tric devices: Joule heating due to the electrical current and
heat leak between the two junctions.

The traditional treatment ignored the heat resistances
between the thermoelectric device and its external heat
reservoirs and assumed that the thermal conductances be-
tween the thermoelectric device and its external heat reser-
voirs are infinitely large. This implies that the heat trans-
fer areas of the two junctions in the device are infinitely
large, in engineering terms a most unrealistic situation. In
order to make the results approximate the performance
of a practical thermoelectric generator more closely, the
influence of the irreversibility of finite-rate heat transfer
between the thermoelectric device and its external heat
reservoirs is considered in this paper.

It is often assumed that heat transfer obeys a Newto-
nian law [11, 12]). Then g, ¢., and ¢; may be expressed
as

qn = kn(Th — T1)
ge = kc(T2 = Tc)

©)
(4)

and

ae = kT1 - T3) (8)

where k = kpAp/Lp + knAn/Ln. The parameters k, and
ky, are the thermal conductivities, A, and A,, are the cross-
section areas, and Ly and Ly, are the lengths of p-type and
n-type semiconductor elements. It is assumed that these
parameters are constants.

According to the above analysis, three main losses
[13] exist in the thermoelectric generation system: Joulean
heat production inside the thermoelectric device, heat leak
through the thermoelectric device, and irreversible finite-
rate heat transfer between the thermoelectric device and
its external heat reservoirs. We can further prove [14] that
the Joulean heat rate

¢j = RI® (6)

inside the thermoelectric elements flows equally to the hot
and the cold junctions of the device for any values of
the thermal conductances ky and k¢; R = L,/(0pAp) +
L, /(0nAn) is the total electrical resistance of the device
and the electrical conductivities o, and oy, of p-type and n-
type semiconductor elements are assumed to be constants.
Thus one has

gh=aq1+ gk —¢;/2 = aITy + k(T1 — T2) — RI?/2 (7)

and

ge =q2+ QG +¢j/2 = alTy + k(Ty - T5) + RI*/2 (8)

Note that the constant b from [8] should be chosen equal
to 1/2 for any values of the thermal conductances k and
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k..
3. The Efficiency and Power Output

Solving equations (3), (4), (7), and (8), we obtain the junc-
tion temperatures

_ k(knTh + keTe + RI?) + (ke — oI)(kaTh + RI?/2)

e (ks + aD) (ks — o) + k(ks + ko)
9
and
. k(knTh + k.T. + RI?) + (kn + oI)(k.T. + RI?/2)
2 e

(kn + aT) (ke — o) + (ks + ko)

(10)
Substituting (9) and (10) into (3) and (4), one has

k[ko(Th — T,) — RI?) + (k. — aI)(aITy — RI2/2)
(kn + ) (ke — al) + k(kn + ko) el

qn = kn

and
k[kn(Th — T.) + RI?] + (kn + oI)(aIT. + RI%/2)
(kn + oI)(ke — al) + k(kn + k) i

From the usual definitions of the efficiency 7 and the power
output p of a thermoelectric generator we obtain

ge = ke

n=1-qc/qn

kke[kn(Th — Te) + RI?] + ko(kn + oI)(alT. + RI?/2)
" kkn[k(Ty — T.) — RI2] + kp(k. — aI)(aIT;, — RI2/2)
(13)

=1

and

P=4qn —4c
= oknke(Th = T) = {a®(EnTh + kcTe) + RE(ky + ko) + RkakJI + aR(kn — k) I%/2
- (kn + al)(ke — al) + k(ky + kc)

14
For convenience let i = RIfa. Then (11)-(14) may be ( )
rewritten as
_ =T+ ZThi— (1/2+ By + BaZTh) 28 +(1/2) B 2°°
= By + B2 + (1+ B1Zi)(1 — B2Zi) (15)
=T +2Ti+ (1/2+ By + B ZT)Zi% + (1/2)B, 2%
e B1 + By + (1+ B12i)(1 — B22i) (16)
= e Ty = Te + ZTei+ (1/24 By + B1 ZT.) Zi® + (1/2) B1 2%
T T T —T.+ 2Thi— (1/2+ B2 + B22Th) 242 + (1/2)B2 27 (-17)
= kZ(T" —T.)i — [+ By + Bs + Z(B;Th + B1Te))Zi% + (1/2)(B; — B,) 2%
P B: + By + (1 + B1 Zi)(1 — B2Zi)
(18)

where By = k/ky, B2 = k/k., and where Z = o?/(kR) is
referred to as the figure of merit of the elements [2, 7, 10].

From (15)-(18), we can easily generate Figures 2—4.
Figure 2 shows that the rates of heat input ¢ and heat
rejection g, are monotonically increasing functions of the
reduced current i. Figures 3 and 4 show that there exists
a maximum efficiency and a maximum power output for a
thermoelectric generator. It is seen clearly from Figures 3
and 4 that the maximum efficiency pnax and the maximum
power output pmax of a thermoelectric generator decrease
as the thermal conductances kj and k. decrease.
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Figure 2. The rates of heat input g (solid line) and heat
rejection g, (dashed line) versus the reduced current i.
Plots are presented for B; = B = 0.1, Z = 0.003K~!,
Ty = 600K, and T, = 300K.
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Figure 3. The efficiency 7 versus the reduced current i.
The values of Z, Ty, and T, are the same as those used in
Figure 2. Curves a, b, ¢, and d correspond to the cases of
By =By =0,B; =By=0.1, By =0.2and B; = 0.1, and
B; = 0.1 and B> = 0.2, respectively.

80
a
60 I
< ol
a 40 _ g
- .
~ \\
| \\‘c 1
N
\
d ﬁ\
0 i A\
0 50 100 150 200

Figure 4. The power output p versus the reduced current
i. The values of Z, Ty, T, By, and B, are the same as
those used in Figure 3.
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4, Maximum Efficiency
Using Equation (17) and the extremum condition

an)di=0 (19)

we find that when the thermoelectric generator attains
its maximum efficiency, the corresponding reduced current
ipm is determined by

—(1/2)(B1C3 + B2C1) Zipy + (BiTh — B, T.) 2%,

+[(3/2)(B1 — B2)(Th — T.) 22 +(CyTh + CoTe) Z)igm (20)
+2(Cy + Co)(Th — Toipm — (Ta = Te)’Z =0

where Cy = (1/2+ By + B12T.)Z and C; = (1/2+ B2 +
B3ZTh)Z. Equation (20) shows that for given parameters
By, Bs, Z, Ty, and T, there is an analytic solution for
inm, albeit a complicated one. When the two thermal
conductances to the surroundings are identical, By = By =
B, Equation (20) may be reduced to

—(1/2)BCZ%%,, + B(Ty — T.) 2%, (21)

+[(1/2+B)(T.+T.)+2Bzr,.n12’i:m+2c(T.—Te)Zi-,--—(T~—Te)’Z =0

where C = 1+ 2B + BZ(Th + T¢).

When B = 0, corresponding to infinitely better con-
ductance to the reservoirs than across the semiconductors,
we obtain an analytic solution,

2T —Ter A3 (1722 +T0) - 1]

1 == 22
tim ZTh+T, (22)

from (21). Substituting (22) into (17) and (18), we obtain
the maximum efficiency

T.. V1+(1/2)Z(Th+T)-1
fhmax = (1 — =-) =To
Th \/ﬁ(l/2)Z(Th + Tc) + Te/Th
(23)
with the corresponding power output
Pm = zk(j;,:h:’zq‘:e)’ {[l—i— Z(TA‘+ Tg)][\/ﬁ—(‘/z_)z(—'rlﬁ‘ l]_”
(24)

Equation (23) shows that the maximum efficiency of a
thermoelectric generator is always smaller than the effi-
ciency of a reversible Carnot heat engine operating across
the same temperature range. The origin is the thermal
conductance k of the semiconductor elements, which is
always larger than zero so that the heat leak loss is un-
avoidable.

5. Maximum power output
From (18) and the extremum condition

Op/di =0 (25)



we obtain the reduced current iy, at maximum power out-
put

—(1/2)(Bz — B1)B1Ba 2%, — (B — B2)*Z%5m,

+{1B',Bz(T,,—:rc)z"'+(3/2)(1+31+Bz)(132—191)z2 (26)
—(B1 — By)[l + By + B2 + Z(B2Th + BiTNZ*Yism

Figure 5 illustrates clearly that maximum efficiency
and maximum power output are two different operating
points. They get closer to one another when the thermal
conductances between the thermoelectric device and its
external heat reservoirs decrease.

Figure 5 also shows that when a thermoelectric gen-
erator is operated in these parts of the p — 7 curves with
positive slope, the power output decreases as the efficiency
decreases. These regions are not the optimal operating re-

—2(14 By +B2)[14B1+Ba+Z(By T+ B1Te)| Zipm+(1+B1 +B2)(Th-T)Z =0

Like iym, there is an analytic solution for ipm, but again
it is complicated. However, in the symmetric case, By =
B, = B the analytic solution

gions. The optimal operating region of a thermoelectric
generator is situated in the parts of the p — 7 curves with
negative slope. Then the power output will increase as
the efficiency decreases, and vice versa. Thus, the reduced

max p
+

1
: (1+2B)C B2Z*(Ty, — T¢)? max
O - . it =< Al _— "] (2
‘vm = BATA(T, — T L-y1-—a+2B)C ] &)
may be derived from (26). Substituting (27) into (18) and a
(17), we obtain the maximum power output o P
a P
C B27%(Ty, — T¢)? 4 L
=fk—1l]1 - —_— S
Prusx = kg paz 1 \/1 arzp0t | B o
Yy
. A
with the corresponding efficiency (G
0
0 1
i B Th — T — Cipm
™ (1/2)BZiy, — (1/2+ B+ BZTh)ipm + T + (Th — T2)/(Zipm) n/n,

(29)
In the large-conductance limit B = 0, ipm, Pmax, and 7m
may be expressed simply as

tpn = (Th = T.)/2
Pmax = &2(Th — Te)?/(4R) = po

(30)
(31)

and

_1 el T
In = =112/ T3)/A+ 22 Th)

respectively. It is important to note that when B = 0, the
electrical current at maximum power output

(32)

Iym = aipm/R = a(Ty — T.)/(2R) (33)

is independent of k. When k5 and k. are finite, the elec-
trical current I, at maximum power output is dependent
on k as well as kp and k..

6. The Power Output Versus Efficiency
Characteristics

From Equations (17) and (18), we can obtain the power
output versus efficiency curves, as shown in Figure 5. It is
seen once again that the influence of the irreversibility of
finite-rate heat transfer between the device and its exter-
nal heat reservoirs on the performance of a thermoelectric
generator is substantial. Both the maximum power out-
put and the maximum efficiency decrease as the thermal
conductances kj and k. decrease.

26

Figure 5. The power output ratio p/po versus the efficiency
ratio 7/no. The values of Z, T}, and T, are the same as
those used in Figure 2. Curves a, b, and ¢ correspond to
the cases of By = By = 0, 0.1, and 0.2, respectively.

current should be constrained by

igm <t < tpm (34)
such that the power output
P2 Pm (35)
and the efficiency
n2M0m (36)

In the operation of a thermoelectric generator, the
magnitude of the electrical current I is controlled directly
by the load resistance. Consequently we must consider the
optimal matching of the load resistance.

7. Optimal Load Matching

From (18) and the relation between the power output p
and the load resistance Ry,

p=IRg (37)

we obtain



Rr=R

(Tw = T.)/i — [1+ By + By + (BT + B, T.)Z] + (1/2)(Bs — B1)Zi

Bi + Bs + (1 + B1Zi)(1 — B2 Z¢%)

(38)

Substituting i, and i,,, into (38), we may get Rp,

and Rpr,, respectively. According to (34), Rp must be
constrained between Rz, and Rp,, i.e.,

Rrp, < RL L Rpy (39)

Equation (39) is the condition of optimal load matching
for a thermoelectric generator.

From (38), (17), and (18) we can plot the efficiency
7 versus load resistance Ry curve and the power output p
versus load resistance Ry curve, as shown in Figure 6.
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Figure 6. The power output ratio p/pg (solid line) and the
efficiency ratio 7/no (dashed line) versus the ratio of the
load resistance to internal resistance Ry/R. The values
of Z, Ty, T., By, and B are the same as those used in
Figure 2.

It is well known that for a general d.c. power source,
when the external resistance is equal to the internal resis-
tance, the power output of the power source will attain a
maximum. However, when the load resistance Ry, is equal
to the internal resistance R of a thermoelectric generator,
the thermoelectric generator does not, in general, operate
at maximum power output. For example, when B, = B,,
the matching condition of the load at maximum power
output [10]

2Z2(T;, — T.)?

T+2c: ) 10

C
RLp—Rm[1+\/1—

may be derived from (38) and (27). When the thermal
conductances k, and k. are finite,

Only if B, = By = 0, can we obtain the matching con-
dition of R, = R. The physical meaning of this new
conclusion has been expounded in [10].

27

8. Conclusion

We have analyzed the general characteristics of a thermo-
electric generator. The new performance bounds of the
key parameters such as the power output and efficiency
are determined. The matching condition of the load resis-
tance derived here will be useful for the determination of
the optimal operation of a practical thermoelectric gener-
ator.
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