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The proportionality between the square of the distance traversed as measured in thermodynamic 
length and the minimum associated dissipation of a process is established in a new context 
independent of dynamical laws. A quasistatic thermodynamic process consisting of K steps, each 
equilibrating with an appropriate reservoir, is optimized with respect to the position of the steps 
and the allocation of the total time r for the process among the steps. It is found that the steps 
should be of equal thermodynamic length. For large K the bounds based on thermodynamic 
length are recovered. 

I. INTRODUCTION 

The present paper is a step toward understanding how 
time enters into thermodynamic considerations by examin­
ing the dependence of the dissipation associated with a ther­
modynamic system traversing a sequence of states in a cer­
tain time r. It turns out that the dissipation is closely linked 
to the distance! traversed along such a sequence of states in 
the natural thermodynamic geometry defined by the second 
derivative of either the internal energy or the entropy of the 
system.2

•
3 The present paper sheds new light on this link 

between geometry and dissipation. 
While in the present paper we restrict our view to the 

macroscopic level where the sequence of states consists of 
states of equilibrium, we remark that our statements remain 
valid if the sequence of states consists of states of local ther­
modynamic equilibrium or to distributions in a statistical 
mechanical state space.4 In the event that the sequence of 
distributions happen to represent equilibrium states, the 
conclusions of the three pictures coincide. !.4 The importance 
of the geometry appears to transcend all levels; in fact, the 
notion of distance in the space of distributions has been 
shown to coincide at the quantum mechanicallevel5 with the 
angle in Hilbert space between the initial and final quantum 
states of the system. 

The question we now wish to address is how the dissipa­
tion associated with bringing a system along a given quasi­
static locus varies as a function of the total time alloted to the 
process. While in general this depends on how the total time 
is allocated, i.e., at what rate different portions of the process 
are run, the minimum dissipation behaves very simply for 
large times. This minimum dissipation is proportional to the 
square of the distance L traversed, and inversely proportion­
al to the total time of the process r. The constant of propor­
tionality is the mean value of the slowest time scale E in the 
system. In symbols !.3 

~A u>LtE/r, 
(1) 

~SU>L1dr, 

where ~A U and ~S U are the change in the availability and 
entropy of the universe andL u andLs are the lengths of the 
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paths traversed as measured by the metrics based, respec­
tively, on internal energy and entropy. 

With hindsight, the early finite time thermodynamic 
work on heat engines~lO pointed the way to this result. The 
general formulation of minimum entropy production in fin­
ite time heat engines 10 noted that a natural parametrization 
of the problem involved the entropy change of the working 
fluid. With hindsight, the key result 

~Su>4a2/kr (2) 

retained its simplicity only when parametrized in terms of 
the entropy change a of the working fluid. The finding may 
now be interpreted as showing that the losses in those en­
gines are due purely to making the working fluid involved 
traverse the sequence of states in time r subject to the relaxa­
tion times characteristic for "Newton's Law Thermodynam­
ics"lO which assumed instantaneous relaxation in all degrees 
offreedom save the thermal contact which has time constant 
11k. The losses involved can, in retrospect, be easily comput­
ed from tables of distances and, relaxation times. 

For shorter times the inequalities (1) remain valid but at 
the cost of complexity in the mean relaxation times E which 
are easily evaluated only for the linear regime. In some sense 
our results for shorter times merely shuffle the complexity of 
dissipation in real processes into a convenient parametriza­
tion: E. How useful this approach will prove depends on how 
easily a physics of mean relaxation times can be worked out. 
Progress in this direction would benefit greatly from experi­
mental tools analogous to Watt's instrument to generate an 
indicator diagram for a working fluid in a steam engine. 
Such tools would provide easy access to the path followed by 
a system participating in a process and would thereby make E 

observable. 
Our present task is to arrive at the proportionality 

between L 2 and dissipation in a manner manifestly indepen­
dent of specific dynamical laws by viewing the process as a 
sequence of small equilibrations. The fact that this propor­
tionality is recovered in this manner is further evidence that 
the connection between distance and dissipation is funda­
mental. Furthermore, the arguments involved reveal some 
interesting physics surrounding the nature of the mean re­
laxation time E. 

II. A K-STEP PROCESS 
We treat a simplified quasistatic process as the limit of 

processes which consist of K-step equilibrations during 
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which the system moves through a succession of points on a 
given quasistatic locus. We investigate the asymptotically 
optimal placement of these steps along the locus as K -+ 00 • 

Consider a path y from an initial state to a final state on 
the Gibbs surface in thermodynamic configuration space, 
i.e., the surface relating all the extensive variables of the sys­
tem U,V,S,NI ,N2, ••• , at equilibrium. Callenll calls such a 
path a quasistatic locus. Below we investigate one sense in 
which this locus can be made to correspond with a real pro­
cess taking place in finite time. 

Let a finite number of points be selected and numbered 
successively along this locus from initial state a to final state 
K. We may envision a real process whereby the system is 
transported through these states, not along the exact locus, 
but in K steps where in the k th step the system in state k - 1 
is allowed to equilibrate with a reservoir having intensities 
appropriate to state k or, equivalently, to a very large copy of 
the system in state k. Such a process will be called a K-step 
process associated with the path y. 

If we were to allow the number of steps K to increase 
indefinitely while the spacing of the steps is made uniformly 
smaller, we would approach the classical ideal limit of the 
reversible process. However, any K-step process for which 
the "distance" between consecutive states in the process is 
greater than a standard fluctuation must be irreversible. It 
must also take place in a finite period of time. In this way the 
path y is made to correspond to a real process proceeding at a 
nonvanishing rate. As an example to clarify the concept, 
imagine heating a glass of water from 20 to 50 ·C in a three­
step process by first placing it in a room at 35 ·C, then mov­
ing it to a room at 40 ·C, and finally to a room at 50·C. At 
each stage the glass of water remains until it matches the 
room's temperature. By this procedure, less availability is 
lost (or entropy produced) than if the glass were left to equili­
brate in the 50 ·C room from the beginning, due to the lower 
temperatures at which most of the heat is delivered. It is 
essential to obtaining a reversible process in the limit K -+ 00 

that the system at each step interact with the environment 
with which it will be in equilibrium at the end of that step. 
This gives the smallest dissipation among all (one-step) 
equilibrations. Equilibrating toward different environments 
while suffering the same displacement, would dissipate more 
and thus could not give general bounds since processes exist 
(e.g., the K-step processes discussed above) which proceed by 
K equilibrations but which dissipate less. Two examples of 
such undesirable processes are (i) the three-step heating of 
the glass of water from 20· to 50· in rooms at 135·, 140·, and 
150· and (ii) the step-wise expansion of a gas in a cylinder 
equipped with a piston which is stopped by a series of pins at 
preset volumes, but otherwise working against zero outside 
pressure. The bound derived later in this paper will, of 
course, also be valid for these processes since their dissipa­
tion is much larger than for a K-step process as defined here. 
This very fact, however, renders them unrelated to the prob­
lem of establishing a lower bound on dissipation. 

We show below that the dissipation in such processes is 
related to the thermodynamic length of y. Toward this goal 
we first derive the expansion for dissipation in a single small 
equilibration, i.e., an equilibration where the initial state is 

already so close to equilibrium that higher than second order 
terms in a power series expansion of the entropy may be 
neglected. Then we use this result to deduce the dissipation 
in a K-step process for large K. In the final section we consid­
er the problem of time allocation to the various steps and 
again recover expressions which closely resemble the bounds 
on dissipation in Ref. 1. 

III. DISSIPATION IN A SINGLE SMALL EQUILIBRATION 

Let us turn first to measures of irreversibility for a single 
equilibration step of the process. There are two closely relat­
ed measures:.:::1S u, the entropy produced in the universe and 
-.:::1A u, the availability dissipated in the universe, i.e., the 

loss of potential work. 
We first consider .:::1S U by taking the entropy view of 

Massieu. II That is, we regard the entropy S of the system as a 
function of its natural extensive variables U, V,NI ,N2 , ... , 

which we will denote generically by Xi' i = 1 to m. The in­
tensities conjugate to Xi will be denoted by Yi = as I axi, 
and the second derivatives by uij = - azs laXia~. 

A second order power series expansion of S about equi­
librium yields 

S=SO+ LY~(Xi -X~) 
i 

- 1/2 L at(Xi - X?)(~ - XJ), 
ij 

(3) 
where the superscript zero denotes equilibrium values. Ifwe 
let.:::1S = SO - Sand .:::1Xi = X~ - Xi denote the deviations 
from the equilibrium values and assume that these are small, 
this expansion may be written 

.:::1S = 2: Y?.:::1Xi + 1/2 L at.:::1Xi.:::1Xj • (4) 
i ij 

The corresponding entropy change of the reservoir-like envi­
ronment, whose intensive quantities y~n are constant, due to 
its infinite size, is 

(5) 

Since at eqUilibrium y~n = Y~, and conservation of matter 
and energy insures that.:::1X~n = - .:::1Xi> Eqs. (4) and (5) may 
be added to obtain the total entropy production in the small 
equilibration of the system from Xi to X?, 

.:::1S U = 1/2 L UZ.:::1Xi.:::1~ 
ij 

or in matrix notation, 

.:::1S u = 1/2.:::1 X'(J'°.:::1 X. 

(6a) 

(6b) 

To examine the loss of availability in a small equilibra­
tion we take the energy view and regard the internal energy 
of the system U as a function of its natural extensive variables 
S, V,NI ,N2, ... • To distinguish these variables and their conju­
gates from the symbols Xi , Yi used in the entropy discussions 
we add a tilde, Xi and Yi = au lax;. and call the compo­
nents of the matrix of second derivatives Oi = a2 U I aXia~. 
Then the maximum work that can be extracted as the system 
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undergoes changes ix; at intensities Y; in contact with a 
reservoir of intensities Y? is equal to the availability dissipat­
ed in the corresponding spontaneous process, 

- dA U = L (Y? - Y;)dXj = L Y?dXj - dUo (7) 
; 

Since the Y? are constant equilibrium values, we have for the 
finite changes during the equilibration 

-LlA U = L Y?X; -LlU. (8) 
; 

Combining this with a second order Taylor expansion of U 
about equilibrium, 

U- Uo= -LlU 

- L Y?LlX; + ~ L £TgLlXjLlXj, 
i ij 

(9) 
we have in matrix notation 

_ LlA U = 1/2LlXI&OLlX. (10) 

It should be remembered that the X in Eq. (6b) and X in 
Eq. (10) represent different sets of coordinates. Nevertheless, 
we have shown elsewhere3 that (T and & are related as qua­
dratic forms in a manner independent of coordinates by 

& = T(T, (11) 

where T is the temperature. This allows us to combine Eqs. 
(6) and (10) in the form 

- LlA U = TLlSu, (12) 

which is consistent with the interpretation of work lost as 
"uncompensated heat." 

IV. DISSIPATION IN A K-STEP PROCESS 

Now let us return to the K -step process and focus on the 
entropy view; a precisely analogous argument may be given 
for the energy view. 

For the k th step of the process we may write [cf. Eq. 
(6b)] 

(13) 

where u" is evaluated at the k th equilibrium state, and 
where, for short equilibration steps so that (T is essentially 
constant, 

(14) 

can be identified with the length of the step as measured by 
the Riemannian metric (T. For the whole process the 
Cauchy-Schwarz inequality gives 

LlS
u = 1/2 + Di>1/2K (+ Dk r = L 2/2K, (15) 

where L = ~kDk is the thermodynamic length, I L of the K­
step process, and equality is attained only when all Dk'S are 
equal. Thus, since L is the length of the whole path r irre­
spective of partitioning, minimum dissipation is attained 
when the K steps of the process are spaced such that the 
lengths of all the steps are the same when measured in the 
metric (T. 

Note that the above arguments solve the problem of the 
optimal location of the steps along r provided each of the K­
equilibration steps is small. The Appendix examines this op­
timization problem further in a more general context, calcu­
lates necessary conditions for optimality, and proves that the 
step size in an optimal K-step process goes uniformly to zero 
as K goes to infinity. 

V. OPTIMAL ALLOCATION OF TIME 

In the previous section we found the optimal allocation 
of step sizes along the process, viz. constant steplength. Now 
we let each step k equilibrate for time 1" k in contact with the 
reservoir of intensities ~ so that the duration of the total 
process is 

(16) 

However, in the k th step it is not possible for the system to 
completely reach the state X2 which is in equilibrium with 
the reservoir in the time Tk (or in any finite time for that 
matter), rather the system ends in Xk so that the entropy 
production of the step becomes 

LlS~ = - ~ • (Xk - Xk _ l ) + [S(Xk) -S(Xk_ d]. 
(17) 

For T k large compared to the largest relaxation time E k of the 
interaction 

(18) 

where V k is the eigendirection corresponding to the eigen­
value lIEk for the linearized dynamics near X~. 

The total dissipation sums to 

LlS U = - I y~ . (~ - X~ _ I ) + (Sfinal - Sinitial) 
k 

(19) 

in which the only time dependence is in the last term. In 
writing the overall change of entropy of the system as the 
constant Sfinal - Sinitial we have neglected the small differ­
ence X~ - Xk at the end of the last step. 

For brevity we define 

Ck=Vk'(YLl-~) (20) 

which for small Ll Xk is the dot product between the net 
displacement and the direction of approach relative to the 
metric. Then we minimize the entropy production with re­
spect to the time allocation subject to the constraint (16) with 
Lagrange mUltiplier A., 

, _ aLlSu _ C - TklEk( II ) /1.---- ke - Ek • 
ark 

(21) 

Using Eq. (21) and invoking the constraint (16) we find 

In( - A) = - [1" + + Ek In (~: ) J/+ Ek (22) 

and 
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Tk = ~ T + Ek (+ E, In(E,/G,J -In (~: )) . (23) 

LEI LEI 
I I 

This gives the following total entropy production with opti­
mal time allocation: 

..:is" = - L 1'2' (X2 - X2_1) + (Sfinal - Sinitial) 
k 

+exp ( -T~Ek) 

X exp [ - ~ Ek In(EkICd/~ Ek ] ~ Ek, (24) 

which has a simple exponential time dependence e - n, where 
n = T/~kEk = TklEk is the average number of relaxation 
times in each step. 

As it stands, the lower bound in Eq. (15) goes to zero as 
the number of steps K goes to infinity. However, the individ­
ual steps lose their meaning when they last less than one 
relaxation time, so the largest meaningful K is the number of 
relaxation times in the total process K = TIE k • Then the 
bound cannot become less than roughly 

..:SS">Ek LV2T· 

Analogously in the energy view l
•3 

..:SA ">EkL t/2T. 

(25) 

(26) 

Here we have assigned sUbscripts Sand U to distinguish the 
lengths of the process as measured in the two metrics (J' and 
U. 

It is interesting to note several reduced forms of the 
time allocation in Eq. (23). For sufficiently large T, the ratio 
TklEk is independent of k, so the process spends an equal 
number of relaxation times on each step. For smaller T the 
second term becomes significant. We define the probability 
distribution 

Pm = Em /2;- EI (27) 

and write Eq. (23) in the form 

Tk =PkT+Ek[ In(EmIEd- In(CmICk)], (28) 

where the bars denote the means computed with respect to 
the distribution in Eq. (27). Note that if all the Ek are equal, 
the first term in the bracket vanishes, while if all the dot 
products C k are equal, the second term vanishes. This will be 
the case, e.g., if the directions of approach V k coincide with 
the displacements ..:S X~, i.e., if the system moves along the 
quasistatic locus. Then the Ck are constant by the results of 
the previous section since the Ck then become the squares of 
the lengths of the segments. 

VI. CONCLUDING REMARKS 
We have examined the minimum dissipation in a K-step 

process along a quasistatic locus r. When the number of 
steps K goes to infinity, the optimal step size goes uniformly 
to zero. In this limit the minimum is L 2/2K, where L is the 
thermodynamic length of r. Furthermore, the minimum is 
achieved for equal length steps. For large times, the time 
allocation to step k is proportional to the largest relaxation 

time of the system at state k. 
K-step processes, besides providing excellent intuition 

for why it should take a certain amount of dissipation to 
bring a system through a given sequence of equilibrium 
states, are interesting in their own right. They are involved 
whenever control on a system is naturally exercised in steps, 
e.g., when there is a cost to touching the controls. This fact 
has already been exploited to find strategies which minimize 
losses in adaptive coding through an evolving channel, 12 and 
we are currently exploiting it to choose optimal annealing 
schedules in applications of simulated annealing. 13 

The primary achievement of the present paper, how­
ever, was to establish in a new context, independent of any 
dynamical laws the inseparable link between dissipation and 
thermodynamic length. 
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APPENDIX 

The optimality arguments for step length (Sec. IV) and 
duration (Sec. V) of a K-step process implicitly assumed that 
all steps become small as K increases, not leaving any large 
gaps. This Appendix gives proof that this is actually the case, 
and points up the dependence of this fact on the convexity of 
the entropy function. 

Suppose we are given a one-to-one function X(t): 
[a,b ]_Rn with range r and a strictly convex function <p:Rn 
-R, both being suitably differentiable. Here <p plays the role 
of S or - U. For t and t' in the closed interval [a,b ], define 

/(t,t ') = tP (t ') - <p (t) + VtP (t) • [X(t) - X(t ')] (AI) 

as a general expression for the dissipation (entropy produced 
or availability dissipated). Here, for brevity, we have let 
tP (t) = tP [X(t )]. Notethatthe strict convexity oftP guarantees 
that 

/(t,t ') > 0 for t = t '. (A2) 

The graph of tP is a hypersurface in Rn + I, and/(t,t ') may be 
interpreted as the vertical distance from the surface to its 
tangent plane at X(t), as measured from the point X(t '). Let 
P = (to,tl, ... ,tK J be a partition of the interval [a,b] with 
a = to<tl< ... <tK = b. Define 

liP Ii = max It; - t;_II, 
; 

(A3) 

k 

F(P) = L /(t;,t;_ d· (A4) 
;=1 

We will prove the following theorem consisting of as­
sertions (i), (ii), and (iii): 

(i) For each K > 0, there is an optimal partition P ~ such 
that 

F(P ~) = inf F(P K)' (AS) 

J. Chem. Phys., Vol. 83, No.1, 1 July 1985 

 06 M
arch 2025 07:23:39



338 Nulton et at. : Quasistatic processes 

where the infimum is taken over all partitionsP K of[a,b ] into 
K subintervals. 

(ii) IIPr II decreases monotonically to zero as K goes to 
infinity. 

(iii) The optimal partition satisfies the extremal equa­
tions 

X(tr)· [V<,6(tr+d-V<,6(tr)) 

= X(tr)'D 2<,6 (tr)[X(tr) - X(tr_l)] 

for i = 1, ... ,K - 1. (A6) 

Proof; Part (i) follows at once. The set of (K + I)-tuples 
(fo, ... ,tK ) corresponding to partitions of [a,b ] form a compact 
set in RK + I. F, as a function of to, ... ,t K is continuous, and, 
therefore, assumes its minimum value on the set. 

Part (iii) expresses, by direct calculation, the necessary 
conditions that aF lat;, i = 1, ... ,K - I must vanish at the 
minimum. 

As for part (ii) it is clear that t>K = IIPH decreases 
monotonically. We will show that if t>K did not converge to 
zero, the numbers F (P r ) would be bounded away from zero. 
We will then show this contradicts the optimality of P by 
exhibiting a sequence PK for which 

lim F(PK ) = O. (A7) 
K~oo 

Suppose, contrary to (ii), that t> K >t> > 0 for all K. That is, for 
each K, there is a maximal subinterval [t (K),f (K)] of the 
partition P r with the t (K) - t (K) >t> > O. We may suppose, 
by going to a subsequence if necessary, that t (K) and t (K) 
converge to t' and t", respectively, where, of course, 
t" - t '>t>.ltthenfollowsfromEq. (A2)thatf(t ',t ") = E>O. 
Thus, by continuity, for K o large enough, 

F(Pr»f(t(Kpt(K))>d2>0 forallK>Ko. (AS) 

We will now exhibit the sequence P K promised above 
which will contradict Eq. (AS) and complete the proof of the 
theorem. Let the partition PK , for each K, be defined by 

t; = a + i(b - a)/K, i = O, ... ,K. (A9) 

We will show that 

(AW) 

where 

Q = max {a z.r I at 2(S,t ):s,tE[a,b ] J . (All) 

For fixed r, define g(t) = f(r,t). Direct calculation shows 
g(r) = g'(r) = 0, so, by Taylor's theorem, there is an s 
between rand t for which 

g(t)=!g"(s)(t-rf (AI2) 

This result, expressed in terms of the functionf, and letting t; 
= rand t;_ 1 = t, yields Eq. (AW). Summing this over i 
yields 

F(PK)<.Q(b - aflK, (A13) 

from which the desired result [Eq. (A 7)] follows at once. This 
completes the proof of the theorem. 

Note that Eq. (A6) has a simple interpretation if the 
steps are small enough to justify the approximation 

V<,6 (tr+ I) - V<,6 (trJ-zD2<,6 (r)[X(tr+ I) - X(tr))· 

(AI4) 
Then 

X(t r)tD 2<,6 (t r)[ X(t r+ d - 2X(t r) + X(t r- d] = O. 

(AIS) 
This says that the velocity vector X is perpendicular to the 
second difference of X (the acceleration) with respect to the 
metric D 2<,6, a familiar condition for a constant speed curve. 
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