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Within the context of conventional time-independent thermodynamics, an algorithm is developed to construct
potentials @ that define the extremal values of work for processes with arbitrary constraints. An existence
theorem is proved that demonstrates that such potentials ® can be given for any quasistatic process. This
theorem extends the capability of thermodynamics from reversible processes to one class of time-dependent
processes. A corollary shows how such potentials can be constructed for systems whose time dependence is
first order. A final theorem shows the equivalence of the extremal work derived by solution of an optimal
control problem with the work derived as a change in the generalized potentials, A®. Examples are given to

illustrate the constructions.

I. INTRODUCTION

The three laws of thermodynamics were con-
ceived about irreversible processes. The sub-
sequent development of the subject however turned
away from irreversible processes and focused on
equilibrium systems. This happened even though
many questions which gave the subject its original
impetus remained unanswered. Examples of such
questions are, as follows: (1) What is the least
energy AE required by a given machine, to pro-
duce a given work W in time ¢? (2) What is the
most work W that can be produced by a given
machine in time ¢, utilizing a given energy AE?
(3) What is the most efficient way to run a given
thermodynamic process in finite time?

Classical thermodynamics does not try to an-
swer these questions, although it does give a fairly
complete description of equilibrium states and
reversible processes. The only facts it tells us
about real processes is that they always produce
less work and more entropy than the corresponding
reversible processes.! Reversible processes,
however, are possible only in the limit of infinite
time. But no one wants to run a factory infinitely
slowly, and in practice engines seldom attain more
than 30~409% of the reversible efficiency.!

We should be capable of extending the classical
theory to at least quasistatic processes. (We take
a process to be quasistatic if the internal relax-
ation times of the system are much shorter than
times characterizing interactions between system
and surroundings.!) This would be a significant
extension, since quasistatic processes happen in
finite time, produce entropy, and provide an ex-
cellent approximation to many real processes.
Conventional irreversible thermodynamics?:*** has
become increasingly powerful but its micro, dif-
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ferential viewpoint does not lend itself to global
questions such as those stated above.

The methods of optimum control theory® provide
a natural way to attack the above questions for
quasistatic processes. We can express the work
as an integral and use the calculus of variations to
find the process which optimizes that integral.
This approach, although very useful in a precise
formulation of problems, almost always results in
cumbersome nonlinear differential equations. An-
alytic solutions have been found only for the sim-
plest examples.®® For this reason, we have ex-
amined several other approaches,®:” and results
to date seem to indicate that much can be accom-
plished in the field.

Below, we present one such approach toward a
theory of processes: the construction of thermo-
dynamic potentials for finite-time processes. The
word “potential” will be used to mean a function
of state whose changes give (or bound) the value of
a process variable such as heat or work.

In Sec. Il we review the classical theory in the
context of processes. We then proceed (in Sec.
III) to examine the classical Legendre transform,
and we extend it to the general reversibly coupled
system. In Sec. IV we present an original theorem
about the existence and uniqueness of potentials for
quasistatic processes. We go on (Sec. V) to pre-
sent the algorithm for the construction of potentials
in some time dependent examples and conclude
(Sec. VI) with the connection of the theory to a
variational approach.

IL REVIEW OF THE CONCEPTUAL HISTORY (REF.8)

Thermodynamics started as a subject dealing
with practical energy conversion, especially in
the operation of steam engines.® The first law
asserts that the process variables heat and work
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can have identical effects on a system.® The
second law asserts that heat flows spontaneously
only from a body at a higher temperature to a
body at a lower temperature. These two laws
were used to construct two functions of state: the
internal energy E and the entropy S. We will see
in Sec. IV how the technique of using process
variables to construct functions of state can be
extended to a more general setting.

Gibbs used the state variables E and S to char-
acterize equilibrium states.' The success of the
equilibrium theory soon led to the development of
statistical mechanics and a microscopic theory of
equilibrium states. This evolution of the focus of
the theory left the questions of optimality for ir-
reversible processes to the engineers. The en-
gineers in turn responded with the traditional
techniques of experimental design,'?+*® specific
to each device or process.

The one mathematical technique that the Gibbs-
ian formalism provides for processes is the
Legendre transform. This is a way of constructing
thermodynamic potentials (free energies) for cer-
tain reversibly coupled processes. In the follow-
ing sections, we discuss this classical construction
and proceed to extend it to progressively larger
classes of processes.

Process type Zero along process

Isobaric dapP VdpP
Isothermal aT Sar
Isochoric av )
Isentropic as

The construction as described above can be
readily generalized.'® For example, we could
calculate the work potential for an ideal gas in an
adiabatic process by using the integral of motion
PV7Y=const:

AW =PdV=Pav+V* /(1 =y)dPV?)
=d[PV/(1-v)]. (2)

This calculation yields the work potential PV/(1
—v) whose differential is of course the same as
dE, the previously calculated potential for an isen-
tropic process, since in this case

Integrating form

-Tds
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IIi. LEGENDRE TRANSFORM FOR REVERSIBLY
COUPLED SYSTEMS

A. Classical Legendre transforms

Recall that the work for a reversible process
bounds the work for all irreversible processes
between the same states and with the same in-
tegrals of motion, e.g., the isobaric irreversible
work done by a system is always less than the-iso-
baric reversible work done by the same system.

In a reversible process heat and work can be ex-
pressed as differential forms on the space of func-
tions of state, e.g.,

dQ=TdS, dw=Padv. (1)

Now given an integral of motion (e.g., constant
pressure) we can make these differential forms
exact by adding a zero. In the constant pressure
case, this “zero” is the differential form Vdp.
If we add this form to /W and 4@, we get (using
the first law of thermodynamics in the form dE
=TdS — PdV)

AW =PdV=PdV+VdP =d([PV),
AdQ=TdS=dE +PdV =dE +PdV +VdP =d(E +PV) .

The table below shows the results of this procedure
for the classical examples.

Process variable Potential

Pav PV
Tds E+PV
Pdv TS—-E
TdS TS

-Pdv Padv 0
TdS E
Pdv -E
TdS 0

dE=PdV—-TdS=PdV.

The technique above does more than provide
different ways to re-derive the classical potentials.
It can calculate new potentials as well.

B. Nonclassical examples

1. Example 1: Spherical system with constant surface tension

Consider a spherical system in equilibrium with
its elastic surface of constant surface tension.
The actual system inside the surface can be any
fluid. Even the amount of fluid inside the surface
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can vary. Recall the well-known expression'® for
the increase in pressure inside a spherical sys-
tem with radius » and surface tension y,

P=P +29/r. (3)

When rearranged, this becomes an equation in
pressure and volume,

V3P —p,) =(167/3)15 . ’ @)

This equation says that V*/3(p - P, ) is an integral
of motion for the fluid inside the surface. Using
this integral of motion, we find a work potential
for a fluid in equilibrium with the surface,

dW=Pav=Pdv+3iv?¥3qa[vp -p,))]
=d[(v/2)(3P -R,)]. (5)

The method of finding the zero form to be added
is described in Part C of this section. The work
potential for the coupled system: surface +fluidis
® =1v(3P -P,). This means that the work done by
such a coupled system is given by the change in
the potential function @.

2. Example 2: Cylinder with a spring-loaded piston

Consider a fluid in a cylinder equipped with a
spring-loaded piston. (Again the amount of fluid
need not stay constant.) We examine the work
. done by the fluid-spring system maintained in in-
ternal equilibrium, i.e., the pressure of the fluid
always balancing the force of the spring. I % is
the force constant of the spring and A is the sur-
face area of the piston, then in order to maintain
zero net force F,, on the piston during a change in
the pressure of the fluid, the spring must respond.
This response of the spring can be used to give a
zero along the path, and therefore an integral of
motion:

Fo=AdP - (k/A)dV=d(AP -kV/A) =0,
therefore (6)
AP -kV/A =const.

We can then use this integral of motion to find a
potential for work done by the fluid-spring system.

AW =Pdv=PdV +(A/k) PA(AP -k V/A)
=d(A2P%/2k) =d@ . (7)

The general algorithm for finding the factor A/k
is given in the next section. Once again the work
done by the coupled system is bounded by the
change in the potential function ® =A2P2%/2k.

C. General reversible coupling

We now examine the above construction of poten-
tial functions for reversibly coupled systems in

general. It is a tool for calculating the work or
heat extracted from a composite system in in-
ternal equilibrium. This composite system, for
the classical examples, is made up of the thermo-
dynamic system of interest, and one or more of
the following: constant pressure reservoir, con-
stant temperature reservoir, ideal rigid vessel
(constant volume reservoir), or ideal insulated
vessel (constant entropy reservoir). The two
examples above show how we can consider more
generally coupled systems, when equilibrium be-
tween the coupled systems exists. The potential
function is obtained by using the condition that
equilibrium be maintained to find an integral of
motion for one of the coupled systems. This in-
tegral of motion can then be used to integrate the
inexact differential forms /W and 4@ to give po-
tentials for these flows. We thus get the work
(or heat) extracted from a coupled system ex-
pressed as a change in a function of state of one
of the coupled systems.

The actual construction is as follows. Given the
integral of motion g(P, V) =constant, we look for
a function f (P, V) such that PdV +fdg is an exact
differential. To this end we can expand and get

PAV +fdg =PdV +f (%gP—dP+ %dv)

=<p+f-giv>dv+<f—§%>dp. (8)

We then equate cross derivatives giving

8(P +fag/0V) IV 9% _ a(fag/aP)
oP oP oV 9PV av
_f bg . 0%g ©)

oV oP avep

Rearrangement yields the partial differential equa-
tion

<_aa$>p <_Zg?>,, - (%)V (‘?V—L ={f.&tp,v =1,
(10)

where {- - -} denotes the Poisson bracket. Given a
solution f, we form the exact differential PdV
+fdg =d® and obtain a potential function ®. We
shall refer to the construction of an exact differ-
ential for a reversible process by this technique
as a Legendre construction. The existence and
uniqueness of solutions is discussed in Theorem 1
below. We consider an example of the nonunique-
ness of solutions for the cylinder with a spring-
loaded piston before stating and proving the results
in general.
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3. Example 3: Nonuniqueness of solutions

We re-examine the cylinder with a spring-loaded
piston example. - For this example we have the
integral of motion g =AP —kV/A. Substituting this
g into Eq. (1) gives

(38, 38

Recall that we are interested in any solution f of
this equation and can therefore choose af/aV =0,
giving f=AP/k. This was the f used in the solution
of example 2 that give ® =A%P?%/2k. We could as
well have chosen 8f/sP =0, giving f=V/A. We
now find

AW =PdV=PdV +(V/A)d(AP —-kV/A)
=d(PV -kV?/2A%) =de’

and a “different” potential @’ =PV -EV3/2A°%
Note however that the two potentials @ and @’ in
this example have the property

A@ =@") =A@ —AC’=A(A%P?/2k)-A(PV~-RV?/2A%)
=(1/2k)A(AP —kV/A)2=(1/2k) Ag?=0
(12)

that their difference is an integral of motion, so
that the derived process variable remains the
same. The fact that this is always the case is
proved in Theorem 1 below.

Theorem 1

Suppose we are given a function g(P, V), con-
tinuously differentiable on an open set U/ in P, V
space. If the vector Vg is zero on at most a finite
number of points in U, then there exist continu-
ously differentiable functions f (P, V) and @ (P, V)
such that d® =P dV +fdg. Furthermore if f,® and
f’;®’ are any two pairs of functions with the above
property, then f—f’ and @ —®’ can be expressed
as functions of g.

We pause before the proof of the theorem for a
brief discussion of its assumptions. Instating this
theorem, we deal with only two variables, for con-
venience only, because the argument can be made
without recourse to techniques of differential ge-
ometry. The general case is covered in Corollary
3, below. The smoothness conditions on g are
present so standard existence theorems from the
theory of partial differential equations may be
applied. The condition that the gradient be non-
zero has an easy physical interpretation. We will
be interested in a process for which g is a constant
of motion. In that case the directional derivative
of ¢ along the process trajectory is zero. This
condition assures that the gradient of g is locally
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orthogonal to the trajectory of the process. We
can think of this relation as the information con-
tent of the constraint g =constant on the trajectory.
Whenever vg =0, the directional derivative of g

is zero for every direction, not only in the direc-
tion of the process. Hence, if Vg =0 at more than
a finite number of points along the path, there is

a region in which g cannot give information about
the process.

Proof. I vg+0 then either 5g/9V 0 or ag/sP 0.
Recall that in order for d@ to equal P4V +fdg, we
must have {f,g} =1. I g satisfies our hypotheses,
then this equation is a linear partial differential
equation with continuous function coefficients not
all of which vanish, and we can invoke the stand-
ard existence theorem from the theory of partial
differential equations’” to insure that f exists on
the entire domain U.

As for uniqueness, consider any two solutions
f,® and f’,®’. We first show that the function
® —@®’ can be expressed as a function of g. We
have

d@ -®")=de® —de’ =(PdAV +fdg) ~ (PdV +f' dg)
=(f-f"dg. (13)

Since g is not a constant function either we can
express @ —®’ as a function of g, or the differ-
ence @ —@®’ and g form (at least locally) a coordi-
nate system in P, V space. To show that the latter
is not the case we show that the Jacobian of the
coordinate transformation (P, V) into (g, —¢")
equals zero, which means that the two functions
considered are not a good coordinate system. The
Jacobian of the coordinate transformation is

0@ =¢’,2) _|o@ -®")/oP ag/oP
2(P, V) 0@ —®")/oV ag/oV

_3e-¢) g 8@ -¢") ag (14)
oP oV AV aP "

This is the determinant of the matrix whose
columns are the components of the vectors dg

and d(® —®’). Since a determinant is an anti-
symmetric function of its column vectors, this
Jacobian vanishes since by Eq. (13) dg and d(@ - @)
are multiples of each other. Therefore ® —@®’ can
be expressed as some function F(g). Now we get
using (13)

f=f'=da@ -¢')/dg =dF(g)/dg =G(g) (15)

for some function G(g), which is not dependent

on any other variables, and the theorem is proved.
In the event that g is an integral of motion, we

call f its conjugate’® and ¢ its potential. We can

then express the result of the theorem above as

follows.
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Corollary 1
Given an integral of motion, any two conjugates,
as well as any two potentials, of the integral of
motion differ by some integral of motion.

Process type Zero along process Iqtegrating form

Constant g dg fdg

where the integral in the table is independent of
path.

IV. EXISTENCE THEOREM FOR POTENTIALS
OF QUASISTATIC PROCESSES

We proceed to extend the construction of poten-
tial functions to quasistatic processes. Since some
variation exists in the usage of the term “quasi-
static” we begin with a careful examination of the
meaning of the term.

Description of most real processes is compli-
cated by the fact that the uniformity of the system
is disrupted during the process. Variables such
as temperature and pressure cannot be assigned
a single real value. The nonuniformity makes the
number of degrees of freedom (independent ob-
servables) infinite. There are however real pro-
cesses with only a finite number of degrees of
freedom. A very important subset of the finite
degree of freedom processes are quasistatic. Re-
call® that a process II is quasistatic for a system
> if and only if the relaxation times of the system
~ are negligibly short compared to the time scale
of the process II. A small displacement from
. equilibrium causes a spontaneous process to occur
in ¥, in zero time compared with times of inter-
action with the outside. Hence I is in inlernal
equiliiorium after each displacement so that every
state of © during the process II is a state of in-
ternal equilibrium. We can consider the process
Il as a time-parametrized sequence of equilibrium
states of ¥. If we ignore what happens outside
the system, then this time-parametrized curve in
the space of equilibrium states is a complete de-
scription of the process. If we wish to distinguish
between a quasistatic process that goes completely
dissipatively and the “same” process proceeding
with some nondissipative work exchange, we have
to look outside ¥ and specify more than just the
sequence of its equilibrium states. We can, for
example, insist that in order for two processes
to be the same they must both produce the same
amount of work (or power, entropy, ete.) as a
function of time. We show below that such func-

Before we proceed to the irreversible construc-
tions, note that we can now extend the table of
Legendre transforms by adding the reversibly
coupled case.

Process variable Potential
P4V ®=[(Pdv+fdg)
TdSs P *=E+@

tions of time can be expressed (represented by)
functions of the equilibrium states. For example,
we can find a function of state whose changes are
the values of the useful work delivered by the pro-
cess. We again call such free energy-like func-
tions potentials.

We emphasize that quasistatic processes provide
a far more realistic model of real processes than
do reversible ones, for which equilibrium between
¥ and surroundings is required. In order to re-
verse a quasistatic process, we have to convert
work to heat. Quasistatic processes also produce
entropy and proceed in finite time.

Theorem 2

Suppose given a system ¥ a quasistatic noncyclic
processII of %. (For cyclic processes, each
branch must be treated separately.) The process
II is given by the time-parametrized curve o¢(¢) of
states of > and a function W(¢) of time that speci-
fies (say) the work output of the system during the
process. Then there exists a function of state @[o]
such that A@[o ()] =W (¢) for all ¢ along the process
II. ® is unique up to an integral of motion.

Proof. For the existence part of the theorem,
we need to find a function of state @[¢] such that

®lo@] -elo(0)]=w(). (16)

If we take @[0(0)]=0, then we can let Eq. (16) de-
fine @ on the equilibrium states of ¥ that lie on the
curve representing the process II. This definition
can be extended to all equilibrium states of = by
Tietze’s extension theorem.'® This theorem guar-
antees that any continuous function on a compact
set in a manifold has a continuous extension to the,
entire manifold. Since the time-parametrized
curve of equilibrium states is a compact set, our
proof of existence is complete.

To show uniqueness, suppose we have two func-
tions @ and @’ with the above property. Then

A@ =@') =A@ A =W () =W () =0.

Therefore, ® —®’ is constant on all states along II.



V. POTENTIALS FOR SOME QUASISTATIC PROCESSES

In the preceding section we showed the existence
and uniqueness of potentials for quasistatic pro-
cesses. The next step is to show how these poten-
tial functions can be computed. Below we present
a computational scheme for a class of quasistatic
processes. The technique as presented is limited,
particularly by assumption 2, but other approaches
permit one to extend the calculation to more gen-
eral cases.”

Our knowledge of a process is frequently. stated
in the form of a system of differential equations.
For example we might know that heat is flowing
between systems 3, and ¥, due to conduction
through a wall with heat conductance k. Newton’s
law of heat conduction implies that

=T,dS,=T,dS;=k(T,~T,)dt, (1

where T; and S; refer to the temperature and the
entropy of systems T; on either side of the wall,
and the boundary conditions are the initial states
of ;. This example points out quite clearly the
difficulties in integrating such differential equa-
tions. The equation itself involves variables of
both systems and of the wall that connects them.
We now make two simplifying assumptions which
serve to eliminate such difficulties and allow the
computation of potential functions.

Assumption 1. All variables appearing in the
differential equations describing the process are
either constant or expressible in terms of state
function of ¥, and time. Note that if any intensities
appear, the process is quasistatic in that degree
of freedom.

Assumption 2. The differential equations de-
scribing the process are first order. This means
that no second derivatives appear in the equations.
This does not imply that the second derivatives
are zero or that the equations are linear.

We now present an example to show the utility
of these assumptions.

Example 4: Quasistatic expansion

Consider a gas inside a cylinder equipped with a
piston. We denote the usual state functions of the
gasby P, V, T, and S. The temperature of the
environment is denoted by T,,. For the boundary
variables we use ¢ for the coefficient of friction
against the walls and k for the heat conductance of
the wall.

It is assumed that all the heat created by friction
is absorbed by the environment. We also assume
that the system obeys Newton’s law of heat con-
duction to the environment and that the gas is ex-
panding according to the equations

ds/dt =k(T -~ T,)/T, dV/dt=aV. (18)
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Volume-dependent rates are typical of many en-
gines.?® The above equations satisfy our assump-
tions 1 and 2 only if 7., and k are constant. We
now combine the equations to eliminate time and
get

as/av=(k/a)(T - T)/TV, (19)
(TV)dS ~ (k/a)(T = Ts) dV=0=40. (20)

The differential 46 of Eq. (20) generates an integral of
motion in the sense of Cartan.?*+?* If we reexamine
Sec. III, we notice that state function integrals of
motion are not necessary for the construction of
potential functions. It is sufficient to have differ-
ential forms that vanish during the process. The
useful work is given by

AW =Pav-aldv/dt)dv=P -aaV)dV, (21)

and we look for a state function f such that the
differential form

(P ~aaV)av +f[(TV)dS - (k/a)(T - To) dV] =d®
(22)
is exact.

Applying the ideal gas law, with C, the molar
heat capacity at constant volume and » the number
of moles of gas, we have

d® =[nRTV™'-qaV+nRTf-a k(T - T, fldV
+nfVC,dT . (23)

The condition that cross-partial derivatives be
equal gives

nfC, +nVC, L =nRV -1 +nRf +nrT 2L
Y% oT (o

- - 3
~a tkf—a" k(T - T,,) -;74 .
Using one arbitrary condition, we set 9f/67T =0
to obtain

f=ﬂ——1—
V (@ *k-nR) °

When (25) is substituted into (23), the exact differ-
ential becomes

(25)

d® =AdT -2BVdAV+CV~-1av, (26)
where
n?RC
A= T-nr» B0
and
- 1 a _1
¢ _1“<nR B K)

nC, a
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By integrating (26), we obtain the potential
® =AT -BVZ+CInV.

=A (&—"—mwﬂ -BV®. (27)
nC, a

This potential @ has the property that A@ is the

value of the useful work delivered in a quasistatic

process which proceeds according to Eg. (18).

The calculation involved in the above example
is considerably easier than actual integration of
the equations of motion. It requires finding any
solution of a partial differential equaticn in which
one can choose some terms equal to zero.

The technique in the example above can be used
only when it is possible to eliminate explicit time
dependence from the equations of motion. Other-
wise we must resign ourselves to including time
in the set of thermodynamic variables. This yields
a potential explicitly dependent on time, We can
extend the construction of Thecrem 1 to deal with
processes that satisfy Assumptions 1 and 2.

Corollary 2

If a process satisfies assumptions 1 and 2, and
the pressure P and volume V are described by the
differential equations®

dP/dt=FP,V,t) and dV/dt=G(P,V,t), (28)

then a time-dependent potential @ (#) can be con-
structed for the process, such that® is a poten-
tial for the work done in the process.

Proof. We construct the invariant differential
forms

d0,=dP - Fdt and 40,=dV -Gdt, (29)

and make the work form exact by adding functional
multiples of these Cartan integrals of motion:

de =dW +f,d0, +f>d0,. (30)

The resulting potential @ is a function of state and
time whose changes are the work done during a
process proceeding according to the differential
equations

d6,/dat=0, de,/dt=0. (31)

We now extend Corollary 2 to an arbitrary number
of coordinates.

Corollary 3

Suppose a given process satisfying Assumption 1
and 2, and a complete set of coordinate X;,
i=1...n, where n is the number of degrees of
freedom of a system. If the time evolution of the
X,’s is described by the differential equations

aXi .
—df=Fi(X,, X, h,
then a potential @ (X,...X,, ¢) can be constructed
for the process.
Again we choose f;’s such that

AW +f;(Fidt - dX;)

is exact. We have now completed the extension of
the development of a potential @ by the Legendre
transform method to all processes satisfying as-
sumptions 1 and 2. We shall refer to this gen-
eralization of the Legendre construction to time-
dependent processes as the Legendre-Cartan con-
struction.

We have in mind for Egs. (28), Euler-Lagrange
equations as well as equations of external con-
straint.

VI. CONNECTION TO A VARIATIONAL APPROACH

We now examine the connection of the potential
formalism developed above to the optimal control
theory mentioned in the introduction.5® The op-
timal control theory approach proceeds briefly
as follows. We have part of the process deter-
mined, and we adjust the remaining “free part”
of the process to optimize a given process vari-
able. Consider for example a slight variant of
example 4 above in which we retain the equation
for heat conduction through the walls, and adjust
the rate of motion of the piston to maximize work
output. In terms of the mathematical formalism
employed, the determined part of the process is
an incomplete system of differential equations.
Since the process must satisfy these equations,
they are called the constraint equations. The pro-
cess variable to be optimized is expressed as an
integral. The Euler-Lagrange equations that re-
sult from the requirement that this integral be
stationary, complete our system of differential
equations. Thentogether with the initial and final
states of the process we have the optimal process
completely determined.

As mentioned in the Introduction, the explicit
solution of the equations of motion for such opti-
mal processes is possible only for the simplest
examples.?* We can however settle for less in-
formation and ask only for the value of the opti-
mized process variable for the optimally running
process.

Theorem 3

If we can construct a potential for a process
variable by using the Legendre-Cartan construc-
tion based on constraint equations and Euler-
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Lagrange differential equations, then changes in
this potential tell us the value of the process vari-
able for that process satisfying the condition of
optimal control. The process variable plays the
role of object function, and the variations leading
to the Euler-Lagrange equations are taken with
respect to the control variables.

Proof. The potential is constructed by making
an exact differential from the integrand that gives
rise to the process variable. To the integrand we
add precisely those differential forms that vanish
along the path for the process. The path is either
completely fixed by external constraints (and thus
trivially optimal) or is nontrivially optimal be-
cause it is required to satisfy a variational con-
dition. Since these forms are zero along the op-
timal path, they do not alter the value of the in-
tegral on that path. We thereby evaluate the op-
timized process variable without having to solve
the Euler-Lagrange equations and find the path
explicitly.

The Legendre-Cartan differential forms must
be found from either the constraint or the Euler-
Lagrange equations. Unfortunately the computa-
tion schemes discussed in the previous sections

apply only if the equations of motion for the pro-
cess satisfy the stringent conditions of Assump-
tions 1 and 2 of Sec. V. Further work is needed

to extend the construction to less restrictive as-
sumptions.? Potentials for realistic processes
ought to provide a valuable tool for thermodynamic
design. )

VII. CONCLUSION

The above results show a step-by-step extension
of the thermodynamic Legendre transform—the
assignment of state functions to limiting values of
process variables—to progressively larger classes
of processes. Similar work on extending the other
standard constructions of classical thermodynam-
ics to encompass real time processes is needed.
We will discuss these other extensions in forth-
coming articles.
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