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Abstract. Using computer experiments on a simple three-state system and an NP-complete
system of permanents we compare different proposed simulated annealing schedules in order
to find the cooling strategy which has the least total entropy production during the annealing
process for given initial and final states and fixed number of iterations. The schedules considered
are constant thermodynamic speed, exponential, logarithmic, and linear cooling schedules. The
constant thermodynamic speed schedule is shown to be the best. We are actually considering
two different schedules with constant thermodynamic speed, the original one valid for near-
equilibrium processes, and a version based on the natural timescale valid also at higher speeds.
The latter one delivers better results, especially in case of fast cooling or when the system is
far from equilibrium. Also with the lowest energy encountered during the entire optimization
(the best-so-far-energy) as the indicator of merit, constant thermodynamic speed is superior.
Finally, we have compared two different estimators of the relaxation time. One estimator is
using the second largest eigenvalue of the thermalized form of the transition probability matrix
and the other is using a simpler approximation for small deviations from equilibrium. These
two different expressions only agree at high temperatures.

1. Introduction

The loss of available work is an important objective to be minimized for any process,
especially in thermodynamics. It is equivalent to minimizing the total entropy production
which is a measure of the degree of thermodynamic irreversibility or inefficiency of the
process. The process, in this connection, may be either a physical process or a combinatorial
process as simulated annealing [1, 19]. Simulated annealing [1] is based on an analogy to
statistical mechanics. Having defined this analogy in section 2, a combinatorial problem
can be viewed as a thermodynamic system and therefore all the equilibrium properties can
be resolved by standard statistical mechanical methods.

Adopting constant thermodynamic speed annealing schedules has proven excellent at
finding low-energy solutions to problems, justifying investigations of further improvements.
Therefore the aim of this paper is to identify a cooling schedule which minimizes the total
entropy production, and thus the inefficiency of the computation, for a given optimization.
Traditionally simulated annealing is a quite time-consuming procedure, because care must
be taken to proceed close to equilibrium so as not to be caught in highlying local minima.
We are comparing here annealing schedules applied at higher speeds.

Salamonet al [2] transferred optimality results from finite-time thermodynamics [3] to
the context of simulated annealing and made the conjecture that constant thermodynamic
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speed is also the optimal annealing schedule. A consequence of their schedule is to keep
the system and its driving reservoir close to equilibrium during the entire annealing process.
Extensive use was made of thermodynamic properties in deriving this adaptive schedule.

Later, for a simple three-state system, Hoffmann and Salamon [4] have shown that a
logarithmic cooling schedule is optimal in the asymptotic long-time regime. They have also
shown that thermodynamic speed is not constant in this limit but decreases with time.

Andresen and Gordon [5] derived an improved lower bound on the entropy production
for a finite-time process. Their derivation arrived at constant thermodynamic speed from
first principles. They improved the original derivation [3] of the optimal schedule by not
requiring the system to be close to equilibrium with the reservoir, i.e. they did not restrict
the procedure to slow processes. They also showed that the rate of total entropy production
is constant during the optimal annealing process when expressed in terms of the natural
timescale of the system.

Considering the variety of annealing schedules proposed on abstract grounds, we
decided to compare these different schedules, including the traditional exponential and linear
cooling strategies, numerically on two representative problems using the best values for the
free parameters. The results of this computer experiment show that the newest constant
thermodynamic speed schedule [5] is producing the least entropy throughout the annealing
process.

We start the paper with brief descriptions of the simulated annealing algorithm
(section 2), the different annealing schedules (section 3), the entropy production expressions
(section 4), and the two test systems (section 5). Results are presented and discussed in
section 6.

2. Simulated annealing

Simulated annealing [1] solves combinatorial optimization problems by an analogy to
statistical mechanics. Our aim is to minimize total entropy production during the process
while reaching the lowest energy state, the ground state, in a given time.

Simulated annealing has been used in a large number of problems, including NP-hard†
combinatorial problems. In combinatorial optimization problems the aim is developing
efficient techniques for finding minimum (or maximum) values of a function with many
degrees of freedom and many local minima.

States in thermodynamic usage correspond to solutions in the combinatorial optimization
problem. Energy in thermodynamics is the cost function in simulated annealing. The ground
state, change of state, and temperature in thermodynamics translate to the optimal solution,
a neighbouring solution, and the control parameter in simulated annealing, respectively.
Therefore, the abstract system can be described as if it were a thermal physical system for
which the aim is to locate the ground state as the temperature is diminished.

A systemS of ‘walkers’ [16] explores the state space in a random but focused fashion
in order to locate the ground state, or an approximation to it, in a given amount of time.
The temperature is the control parameter which will take the systemS through this change.
In doing so the random search moves to a lower energy state with probability one but to a

† The name ‘NP’ stands for ‘nondeterministic polynomial time’. The class NP is the class of problems for which
a given proposed solution for a given input can be verified by a polynomial-time algorithm. The class of NP-
complete problems consists of the most difficult problems in NP, and no polynomial-time algorithm for solving
the members of this class has been found so far [14]. This implies that existing algorithms require exponentially
or faster increasing time as the size of the problem grows. If any single NP-complete problem can be solved in
polynomial time, then all problems in the class NP can also be solved in polynomial time.
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higher energy state only with probability

P = exp(−1E/kT ) (1)

where1E is the energy increase andT our control.
Lowering the temperature by itself is not a sufficient recipe for finding the ground

state. In addition to this the system should not be allowed to become significantly out of
equilibrium with its environment during the annealing. Otherwise it does not reach the
global minimum energy state but will freeze into one of the great many higher energy local
minima.

3. Annealing schedules

Most features in simulated annealing—state space, move class, cost function—are fixed by
definition. The only feature which is variable during the calculation is the temperature.
Therefore one of the most important features in simulated annealing is the choice of the
annealing schedule, and many attempts have been made to derive or suggest good schedules.

Our annealing procedure involves first ‘melting’ the system at a high temperature, then
repeatedly lowering the temperature by a constant factorα (0< α < 1), taking enough steps
at each temperature to keep the system close to equilibrium, until the system approaches
the ground state. This recipe results in an exponential schedule,

T (t) = T0α
t (2)

wheret , ‘time’ is the step count. This and a linear schedule

T (t) = T0− ηt (3)

have been used widely since they were introduced [1].
Of special theoretical importance is the logarithmic cooling scheme introduced by

Geman and Geman [7],

T (t) = c

log(t + d) (4)

whered is usually set equal to one. As the only existence theorem, it has been proven
that for c being greater than or equal to the largest energy barrier in the problem, this
schedule will lead the system to the global minimum state in the limit of infinite time [8].
However, due to its asymptotically extremely slow temperature decrease, this schedule is
utterly impractical. It simply undoes the exponential Boltzmann acceptance function in the
algorithm and amounts to a random search in state space.

For a three-level system Hoffmann and Salamon [4] set up equations to derive an optimal
schedule that minimizes the mean energy at a particular time. This optimum schedule did
not follow a set of Boltzmann distributions but rather a turnpike solution,

T (t) ∼ D − 1

log t
. (5)

All of the above schedules are predetermined, i.e. they are fixed before the calculation
starts and are not influenced by its progress. In contrast finite-time thermodynamic
optimization [3] suggests an analogous adaptive optimal schedule based on constant
thermodynamic speed,vs [20]. The speedvs is defined on thermodynamic state space
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with −D2S as the metric [9]. The schedule leading to least overall dissipation (entropy
production) is [10]

dT

dt
= −vsT
ε
√
C

(6)

whereC is the heat capacity, andε is the relaxation time of the system, both of which may
depend onT . In the derivation [10] it is assumed that eithervs is a small quantity orC(T )
andε(T ) are slowly varying. This adaptive schedule was later improved [5] so that it can
be used for systems far from equilibrium:

dT

dt
= −vsT
ε
√
C

√
1+ 2(T )ε(dT/dt)

T
+ · · ·

(7)

where

2(T ) = 1+ T

2C

∂C

∂T
. (8)

The original derivation [10], equation (6) contains only the dominant term of equation (7).

4. Entropy production

Entropy is a measure of disorder present in a system. The second law of thermodynamics
states that any isolated process cannot reduce the entropy of the universe (system plus
environment),1Su > 0. The corresponding loss of available work is connected through

−1A = Te1Su (9)

whereTe is the temperature of the environment. Since the entropy production depends on
the path taken to go from one equilibrium state to another, we attempt to find that path
which produces the least entropy.

The entropy production rates for the different annealing schedules used here are derived
from the basic equation

dSu = 1Y · dX (10)

where1Y is the vector of intensity differences between the system and the environment, and
dX is the corresponding vector of flow of extensity from the environment to the system.
The procedure is outlined in [5]. By introducing the respective temperature schedules,
equations (2)–(7), we arrive at the expressions listed below.

Linear cooling schedule equation (3):

dSu

dt
= εCη2

T 2

(
1− ε2(T )η

T
+ · · ·

)
. (11)

Exponential cooling schedule equation (2):

dSu

dt
= εC

ω2

(
1+ 2(T )ε

ω
+ · · ·

)
(12)

with

ω = −τ
ln(T (t)/T0)

(13)
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Figure 1. The simple three-state system.

whereτ is the total number of steps during the annealing,T0 is the start temperature, and
t is the time or step count.

Logarithmic cooling schedule equation (4):

dSu

dt
= εCT 2

c2(t + d)2
(

1− 2(T )εT
(t + d)c + · · ·

)
. (14)

Constant thermodynamic speed equation (8) [5]:

dSu

dt
= εC

T 2

(
dT

dt

)2(
1+ 2(T )ε

T

dT

dt
+ · · ·

)
. (15)

5. The systems

In this paper we study two previously defined systems. A very simple and small system and
an NP-hard problem. Both are chosen not for their own sake but as examples of two extreme
computational situations. It should be pointed out that these systems are non-stochastic in
nature which means that the statistical component of the calculations is only in the annealing
procedure itself, not in the system definition as would for example have been the case for
a spin glass or a travelling salesman problem (TSP).

The simple system is a four-state system which is reduced to a three-state system by
lumping [4], figure 1. Lumping means combining all the states of a given energy into a
single level in order to reduce the size of the problem [16]. The state space has states with
energies 0, 1, and 3. There is one local (E = 1) and one global (E = 0) minimum [4].
The system is set up in such a way that there is no direct connection betweenE(1) = 0
andE(2) = 1 in one time step, but the move can be done in two steps by going through
E(3) = 3. Being very small, this system does not satisfy the expectations of simulated
annealing of a large state space and is thus at the low end of complexity of systems studied.

The second example involves computing the permanent of ann×n (0,1)-matrixA, i.e. a
square matrix with entries either zero or one. This computation is chosen as an example of
a large NP-hard problem [11–14] and is thus a typical difficult simulated annealing problem.
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Figure 2. The entropy production rate and the total accumulated entropy production for a
slow cooling of the permanent system using 13 673 integration steps.—— TDS2, – – – TDS1,
- - - - exponential,· · · · · · logarithmic, and —· — linear cooling. TDS2 and TDS1 are almost
the same, in both graphs. The logarithmic curve is not visible in the right graph because the
overall entropy production for logarithmic cooling is around 109.

Simulated annealing has been used to sample the possible values of the permanent of fully
irreducible (0,1)-matrices. Interest in permanents is based on the fact that they are ‘complete’
for the class #P of enumeration problems, which is as hard as counting the number of
accepting computations of any non-deterministic polynomial time Touring machine [11]. It
is worth noting that this problem is NP-hard due to the complexity of the individual function
evaluation (calculation of the permanent), not because of an exponentially large number of
function evaluations. Thus we are facing a ‘doubly’ hard problem.

The permanent of a matrixA is defined as

Per(A) =
∑
σ

n∏
i=1

Aiσ(i) (16)

whereσ runs over all permutations of 1, . . . , n. We have made use of graph theory to
define the move class since there is a one-to-one correspondence between directed graphs
and (0, 1)-matrices. However, these details are not important for the present comparison
but they are explained in [15]. Specifically, we search for the largest permanent values of
eight-dimensional directed graphs. This results in a 14× 14 A-matrix and energies in the
range [−129,−9], as we define the energyE = −Per(A).
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Figure 3. The entropy production rate and the total accumulated entropy production for a fast
cooling of the permanent system using 141 integration steps.—— TDS2, – – – TDS1,- - - -
exponential,· · · · · · logarithmic, and —· — linear cooling. At this cooling rate the difference
between the TDS2 and TDS1 curves is clear in both graphs.

6. Results

6.1. Experimental comparison of schedules

As mentioned in section 5, we have considered two different problems. The simple three-
state system was defined in [4] while the NP-hard problem of permanents was used to show
the power of simulated annealing in [15].

For a given initial state, a fixed number of iterations, and the same initial and final
temperatures we have numerically compared the above mentioned schedules, i.e. exponential
cooling equation (2), linear cooling equation (3), logarithmic cooling equation (4), simple
constant thermodynamic speed cooling (using only the first term in a power expansion away
from equilibrium) equation (6), and improved constant thermodynamic speed (taking into
account the second term as well) equation (7). To distinguish between the two constant
thermodynamic speed schedules we will call the former TDS1 and the latter TDS2. We have
also taken bothc and d in equation (4) to be parameters in order to satisfy the common
boundary conditions. Initially we let the system ‘simmer’ at infinite temperature until it
equilibrates before starting the actual annealing. The stop temperature is set low enough to
reach the ground state(s) in a fast cooling.

In figures 2–4 we compare the results for the permanent problem. While working with
this system and making different runs with different start and stop temperatures, we learned
that if the system starts to anneal withT = 9, it may reach the ground state at around
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Figure 4. The entropy production rate and total accumulated entropy production for a yet faster
cooling of the permanent system using only 53 integration steps.—— TDS2, – – – TDS1,
- - - - exponential,· · · · · · logarithmic, and —· —linear and —— HS-logarithmic cooling.

T = 0.25 with a fairly slow cooling rate without wasting much computer time. Those two
temperatures have therefore been adopted as the common start and stop temperatures for all
runs. We have made several runs with different cooling rates.

For slow cooling in figure 2 the constant thermodynamic speed schedules TDS1 and
TDS2 result in an almost constant rate of entropy production as analytically derived for an
optimal linear process in [17]. The exponential cooling schedule, on the other hand, yields
an entropy production rate peaking at intermediate temperatures thus indicating a large
discrepancy between system and reservoir in this region. There is a second but smaller
peak at low temperatures. The entropy production rate using the logarithmic annealing
schedule starts out at the higher temperatures about 10 orders of magnitude above the
others and then decreases sharply at the lower temperatures. The linear cooling schedule
has a low entropy production rate at the beginning (high temperatures) which then grows
rapidly at lower temperatures. The overall entropy production is very low when the system
is cooling slowly, whereas a fast cooling produces a larger amount of entropy.

Figure 3 shows the results from a faster cooling annealing, i.e. fewer steps have been
taken and thus the system was further from equilibrium. The superiority of TDS2 over
TDS1 in producing less entropy is now more evident, as expected for a faster process.
Linear, exponential, and logarithmic schedules result in higher entropy productions. And
once again the total entropy production with logarithmic cooling is so high that the curve
cannot be seen in the range of figure 3(b).

Applying the logarithmic schedule in the manner of [4]—which from now on we will
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Figure 5. The entropy production rate and total accumulated entropy production for the simple
three-state system using 1468 integration steps.—— TDS2, – – – TDS1,- - - - exponential,
· · · · · · logarithmic, —· — linear and —— HS-logarithmic cooling.

call HS-logarithmic—using the highest energy barrier forc and settingd = 1 fixes the
temperature interval. In the next figure, figure 4, we reduce the start temperature to 2 in order
to permit a comparison between this schedule and the other schedules. The interesting point
is that there is very little difference between the behaviour of the system using logarithmic
cooling, i.e. consideringc andd as parameters, and HS-logarithmic. The entropy production
rates and the total productions are almost identical for these two schedules, and much higher
than for the other cooling schedules. TDS2 has the least total entropy production. Another
point worth mentioning is that at this high speed the exponential entropy production rate is
less than the linear one.

Figure 5 shows the entropy production rate of our five different schedules for the simple
three-state system. Clearly the logarithmic cooling schedule is performing the worst and the
TDS2 schedule is giving the best result. There is not much difference between the general
behaviour of this simple system and the NP-hard permanents.

A comparison of the total entropy productions in figures 2–5 indicates that quite
generally TDS2 results in the least entropy production and the logarithmic annealing
schedule the highest entropy production. Linear and exponential display the same overall
behaviour, while TDS1 is similar to TDS2 but slightly higher, increasing with speed. All
comparisons of the total entropy production among the different schedules are of course
done using the same number of annealing steps.

An independent way to check the performance of an optimization method is to follow
the best-so-far-energy (BSFE) seen after a certain number of iterations [18]. BSFE(t) is
the lowest energy value seen up to iterationt . After all, one does run the annealing in
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Figure 6. The BSFE as the annealing progresses for the permanent system using 1510 integration
steps.—— TDS2, – – – TDS1,- - - - exponential,· · · · · · logarithmic, —· — linear cooling.
TDS2 and TDS1 curves are identical. The global minimum is−129.

order to find the global minimum. Figure 6 shows the BSFE as a function of iteration
number for the five different schedules used on the permanent problem. It is obvious how
superior TDS2 and TDS1 are as the annealing progresses. They have found the lowest
BSFE almost all the time along the annealing compared to other schedules, except that
in a short interval the logarithmic schedule is doing better. The logarithmic schedule is
almost like a quenching, at the early stage of the run it rapidly gives good results only to
get caught in a local minimum. TDS2 and TDS1 display similar behaviour initially but
they successfully overcome the energy barriers and eventually reach the global minimum.
Linear and exponential cooling perform poorly, and the final BSFE seen with these and the
logarithmic cooling are much higher than the global minimum.

In summary, TDS2 is superior to all the other annealing methods in the sense of
consistently having the least entropy production. Also the BSFE curves show that this
method is better than the other schedules in reaching the lowest energies within a finite
time. This conclusion is of course not surprising since the constant thermodynamic speed
schedules were developed analytically to be the optimal ones for a given duration. However,
this has not been verified experimentally previously which also means that we have had
no quantitative indication of how inferior the other schedules are. Figures 2–6 provide this
information for two systems which are representative of a very simple and a very hard
calculation.
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Figure 7. The relaxation timeε for the permanent system computed in two different ways
as described in section 6.2 at very low speed using 13 673 integration steps.—— using the
second largest eigenvalue equation (17), and – – –using the approximation equation (19). The
two relaxation calculations agree at high temperatures but at lower temperatures the approximate
value drops sharply.

6.2. Relaxation time

A technique has been introduced by Andresenet al [16] for the estimation of average energy,
heat capacity, and relaxation time, needed in equations (6)–(8), for an ensemble system as
the annealing calculation progresses. While the system is annealing, one collects information
about all attempted moves from any state to any other state. This information is gathered
in a matrixQ. We can normalize thisQ-matrix column by column and turn it into a good
estimate of the real transition probability matrixP from where the partition function and
thus all related thermodynamic quantities may be derived through the traditional methods
of statistical mechanics.

We are using this method in the present work to estimate the average energy and the
heat capacity. As for relaxation time, we use the second largest eigenvalue of theG matrix,
λ2, to find the exact value for the final approach to equilibrium,

ε = −1

lnλ2
(17)

whereG is the thermalized form of theP matrix [16]:

Gji = Pji exp

(
−Ej − Ei

T

)
. (18)
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The largest eigenvalue ofG, λ1 = 1, corresponds to equilibrium itself.
In [2, 10, 16] an estimate ofε has been provided for thermal, near-equilibrium relaxation:

ε(T ) ≈ T 2C(T )∑
i gi

∑
j>i(Ej − Ei)2Gji

(19)

wheregi is the equilibrium distribution at temperatureT .
The authors called this the ‘Boltzmann–Boltzmann’ relaxation time, because it is based

on a Boltzmann distribution relaxing to a nearby Boltzmann distribution at temperatureT .
They claim that this simpler expression is reasonable since the system does not depart much
from equilibrium during slow annealing [2].

We have compared these two estimators of the relaxation time, equations (17) and
(19). Figure 7 is the result of a very slow cooling from a high temperature of the
permanent problem. As can be seen, the two expressions agree at high temperatures while at
lower temperaturesε computed using the approximation equation (19) drops sharply. This
difference between the two ways of computing relaxation time appears for all annealing
schedules used in this work, at all cooling rates, and for both systems. The reason is that
equation (19) is a statement of local equilibration which at low temperatures is blind to
other areas of state space separated by large barriers, whereas equation (17) by construction
is global. As the size and complexity of the system increases, the difference becomes more
pronounced, and the global relaxation time may eventually diverge.
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