Optimal staging of endoreversible heat engines
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One way to classify performance indices of irreversible heat engines is according to how the
indices change when one engine is replaced by two (or more) of the same kind in series. We
investigate the performance of two endoreversible engines (i.e., heat engines with the only
irreversibility being heat resistance to the surroundings) which are put in series to form a single
engine, whose power output is maximized. In this unconstrained optimization the interface
between the two stages, which for the present model is the intermediate temperature and the
relative timing of the two engines, is arbitrary and can be used to satisfy other,
nonthermodynamic constraints. Adding any constraint on the volume of the working gas does
not lift this indeterminacy. The optimum composite system is equivalent to a single
endoreversible engine, thus displaying a sequencing property similar to Carnot engines.

PACS numbers: 05.70.Ln, 05.70.Ce

. INTRODUCTION

The bounds on performance criteria in classical ther-
modynamics are provided by reversible processes. These
bounds are of great interest because they are generally inde-
pendent of the particular machinery employed to perform
the processes which attain the bounds. The general study of
irreversible engines has in part been stimulated by the fact
that classical reversible thermodynamics provides bounds
that are usually too optimistic to be useful benchmarks for
real processes. The problem, of course, is that the inevitable
losses associated with operating machinery at nonvanishing
rates are neglected. Several previous studies'™ have attempt-
ed to repair this situation by incorporating the most impor-
tant losses into the reference process.

In addition to the bounds there are other features of
reversible processes which require reexamination when irre-
versibilities are considered. For example, the maximum effi-
ciency for extracting work from a system composed of two
heat reservoirs is the same whether one uses a single Carnot
engine or several Carnot engines in series, parallel, or any
combination thereof. In this paper we examine how perfor-
mance criteria are affected for a class of irreversible engines
when one such engine is replaced by two of these engines in
series, by which we mean that the low-temperature reservoir
of one engine is the high-temperature reservoir of the next
(Fig. 1).

Unlike reversible engines, irreversible engines generally
must be operated differently when different performance in-
dices are optimized. Our purpose in studying the sequencing
of irreversible engines was originally to see if it was possible
to classify performance indices by their sequencing proper-
ties. We had expected different behavior depending on
whether, for example, we maximized efficiency or average
power output. As will be shown in this paper, this did not
happen. Despite the more complex behavior of irreversible
engines, they display a sequencing property similar to Car-
not engines.
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The class of engines we shall study are endoreversible”
heat engines where the only irreversibility is due to heat re-
sistances between the heat reservoirs and the reversible (e.g.,
Carnot) engine. We call such engines CA engines because the
efficiency at maximum-average-power output was first cal-
culated by Curzon and Ahlborn.' Complete, unconstrained
optimizations of engines with only heat resistance losses, but
without assuming a specific work cycle, were carried out in
Refs. 5 and 6 for systems without and with volume con-
straints. In the present paper we investigate the optimal stag-
ing of two CA engines. There is some practical inspiration
for this model from machines like two-stage refrigerators,
which are usually employed to make liquid air,'’ multistage
compressors for high pressure, and power plant turbines,
which are often sequenced for high, medium, and low
pressure.

We should emphasize that is not an unrestricted opti-
mization (as in Refs. 5 and 6) since each of the engines are
required to be of CA type. We use the CA-engine because it is
the simplest irreversible engine. Furthermore, the CA-en-
gine is not as unrealistic as it may appear at first sight. For
example, the requirement that the isentropic branches occur
in negligible time means that they must occur on a time scale
that is fast compared to the slow rates for heat leaks to the
environment but slow compared to the rapid internal relax-
ation of pressure gradients in the working fluid. An analysis
of reversible, adiabatic branches may be found in Ref. 11.

The plan of this paper is as follows. In Sec. Il we review
the results for a single CA engine and consider a simple ex-
ample of the sequencing of two CA engines. This example is
made simple because the reservoir connecting the two en-
gines is taken to have a constant temperature. In Sec. ITI, we
present the detailed specification of the model we study. In
Secs. IV and V the optimal cycle for maximum average pow-
er is computed. For those not interested in the mathematical
details the results are presented and discussed starting with
Eq. (62). In Sec. VI we consider the performance criteria of
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FIG. 1. Two staged CA engines. In the numerical examples 7, and 7, are
the same as in Fig. 2. The first column results from the staging of two
individually optimized CA engines with the intermediate temperature T a
constant. The second column results from an unconstrained optimization of
the whole system.

maxium efficiency, maximum effectiveness, and minimum
entropy production. Finally Sec. VII contains our conclu-
sions.

il. A SIMPLE EXAMPLE OF SEQUENCING

For comparison let us recapitulate the results for a sin-
gle CA engine operating at maximum power' between reser-
voirs at temperatures 7;, and T, (see Fig. 2). The actual
operating temperatures for the reversible cycle are

T, =Ty,(1 +x),
(1)
T, =T, (1 +x7"),
where
x=(T,/Ty)'"?, (2)

when the heat conductances « and «’ are the same. The corre-
sponding thermal efficiency is calculated to be

No=1—x=1—(T,/Ty)"? (3)
at the maximume-average-power output
Whax = iKTn(l — x)z = }gK(\/TH — \/71)2’ (4)

where the engine is in contact with each reservoir for half the
cycling period, and the adiabatic branches have a negligible
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duration. Note the resemblance between Eq. (3) and the Car-
not efficiency 9,,,, =1 — T, /Ty. A numerical example
with Ty = 1.00 and 7, = 0.36 is indicated on Fig. 2.

Next let us put two CA engines on top of each other,
separated by a reservoir at temperature T (see Fig. 1), but
requiring that, on the average, this reservoir does not act as a
heat source or sink. For simplicity we again take all the heat
conductances equal and assume each engine operates at
maximum average power output. Then, if the average rate of
heat withdrawn from T, is ¢,, and we define

y=(T/Ty)""?, (5)
the average power output of the top engine is
w, = (1 —ylg,. (6)

Since the average heat flow out of the top engine and into the
bottom engine is yg,, the average power output of the second
engine is

wy = (1 —x/y) (yg,) = (y — x)g,, (7
sincex/y = (T, /T)"/2 Thus the the total average power pro-
duction is

w=w, +w, = (I - xg,. ®)

Note that Eq. (8) leads to the same efficiency as a single
CA engine operated between the reservoirs T, and T, . This
is just the same results one finds for Carnot engines; there is
no change in efficiency if a single engine operating between
two given reservoirs is replaced by staged engines. In the
Appendix we show that this result follows simply from the
fact that the output of one engine is the input of the second
engine and the fact that at maximum power output 1 — pisa
ratio of the form F (T, )/F (T).

The intermediate temperatures can be calculated from
analogs of Eq. (1) and the requirement that

g =T~ -1 9)
4
equals
K
q-» =—4—T(1 — x/y). (10)
T Z gV 7 100
®
Th 080
w
1 048
W
T 0.36

FIG. 2. A single CA engine operated between reservoirs T, and 7, . In the
example at right we have taken 7, = 1.00 and 7, = 0.36.
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The results are
Ty, =iTy(3+x), T,; =§{T4(1 +x)(1 + 3x),
T, =iTy(1 +x)3+x), T, =Tyx(1+3x), (11)
T=1T,(1 +x)

If we now calculate g, for the staged engines we find
K
q =—8—T,,(1 ~ x), (12)

which is half the result for a single engine with the same
cycling time. Thus the staged engines generate half the aver-
age power or, what is the same thing, do half the work in one
period that the single engine does when they have the same
heat conductances . This factor is easy to understand. If we
call the thermal resistance of a CA engine 1/«, + 1/«,,
where «, («;) is the heat conductance at the high-(low)tem-
perature end of the engine, then if x, = x, = « for all en-
gines, the staged engine has twice the thermal resistance that
the single engine does.

The numerical values, with the same choice of reservoir
temperatures as in Fig. 2, are indicated in the first column on
Fig. 1. The reason for this little exercise, besides the interest-
ing result of unchanged efficiency [Eq. (8)], is to provide a
comparison for the less restricted results of the following
sections, where all the intermediate temperatures are opti-
mized simultaneously and permitted to vary in time.

Finally, note that with the exception of one tempera-
ture, T, say, only temperature ratios enter into the calcula-
tion. As a consequence, an arbitrary number of engines may
be squeezed in between Ty and T, . The overall efficiency
will remain unchanged, see Appendix, but the average pow-
er generated will decrease.

Iil. MODEL

The system we want to study is depicted in Fig. 1. It
consists of two CA engines operating between the fixed-tem-
perature reservoirs at T, and 7, and coupled through the
intermediatereservoirat T (¢ ). Theimportant difference from
the system described in Sec. II is that this reservoir has a
finite heat capacity C, and its temperature may therefore
vary in time as the CA engines go through their cycles. The
heat conductances linking the reservoirs to the reversible
engines are all constant. Each of the CA engines are assumed
to contain a reversible (e.g., Carnot) engine with is in contact
with the hot reservoir (through «;, 1 = 1 or 2) for the period ¢;
and in contact with the cold reservoir (through «;) for the
period 7 — ¢;, so that the total cycle time for both is 7. How-
ever, cycle 2 is shifted ¢, in time relative to cycle 1. The
adiabatic branches, not slowed down by heat transfer, are
assumed to transpire in zero time. Thus one period is divided
into four segments:

(1) te[0,2,[: engine 1 connected to T, engine 2to T,

(2) te[to,t,[: engine 1 connected to T4, engine 2 to T,

(3) te[t,,t, + t,[: engine 1 connected to 7, engine 2 to 7,

(4) teft, + t,,7[: engine 1 connected to T, engine2to 7T .
(This is for 0 < ¢, < t,, as will be assumed in the rest of the
paper. In case ¢, < f, < 7 the segments come in the order 3, 1,
4, 2 without affecting any of our conclusions.) Figure 3
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shows a possible time variation of the temperature of the
intermediatereservoir, T'(¢ )and of the “isotherms” of the two
reversible engines.

In the search for the time sequence which produces the
maximum average power, W /r = (W, + W,)/1, wekeepthe
reservoir temperatures T, and 7, and the cycle time 7 fixed
while letting all the other quantities vary: T,,,, T,,, 7, T},,,
7,5, t,, t2 t,. The variables are connected through the re-
quirements of heat balance in the intermediate reservoir,

CT=xki(T), = T)— KT —T,,), (13)

and reversibility of the internal engines,

A&=fkﬂh—hdﬂhw
0

_fK;(T,, — TVY/T,,dt=0,

(14)

ASQ=J" Ko T = T, o)/ Ty dt

ty

T to
—f ~—f/cg(T,z—T,_)/T,zdt=O.
L+, (4]
The average power produced is w = (W, + W,)/7, where
W, =J ki(Ty — T, )de
0
- [wim, - Tar
1
(15)

1+ o
¢n=f kAT — T, )t

—f ~fﬁUﬁ—EW~
o+t 0

The optimization will be carried out by the method of opti-
mal control'? with W = W, + W, as the objective function

10 l T T ]
Tht
(o)
(=4
=2
g ! T
Q.
&
Tha
Ty T
[ L ! ! -
0 tg t1 tz" tg T
TIME

FIG. 3. Temperature sequence during one period for the system shown in
Fig. 1 resulting from unconstrained optimization, i.e., corresponding to the
last column of Fig. 1.
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and Eqgs. (13) and (14) as constraints, so that the Hamilton-
ian'? of the problem H is defined by

JHdt: W, + W, +f o) (T,, — T)dt
0 4

o+ 2
- f Uko(T — T, )dt — 4,48, — A,4S,.

(16)
H is constant throughout the cycle. 1, and 4, are ordinary
Lagrange multipliers corresponding to the integral con-
straints [Eq. (14)], whereas /(¢ } is the adjoint variable associ-
ated with T (¢) via the differential constraint, Eq. (13). The
connection between the two is the Hamiltonian equations

; JH
Y=o
(17)
7=
Y
The remaining optimality equations are
dH JdH dH oH _ 0, (18)

aTh 1 aTll aThZ aTIZ

which must be solved for each of the four time segments.
When joining those into a complete cycle we can further take
advantage of the continuity of T'(r Jand ¢(t ) across the switch-
ing points.

We will for simplicity set «, = x| =, =«3 = 1 and
C = 1in the following derivation and only quote the general
results at the end.

IV. SINGLE-BRANCH OPTIMIZATIONS
A. Branch 1, #[0,%[

Neither engine is connected to T during this time seg-
ment, so the Hamiltonian is simply

H=(TH - Thl)“ — A /Ty, ) — (T, _TLHI —/12/le)

(19)
and
; 0H
= —=— =0, 20
JH
= - 14+A,(T,/T3,)=0, (21)
aTk } I( h hl
JH
= — 14+ A,(T,/T})=0,
aT,Z 2( L I2)
which makes
¥(t) = const=t,, (22)
A=T4,/Ty, (23a)
A, =TH/T, (23b)
Thus T, and T, are constant in this interval, and H
becomes
H = (TH - Thl)z/TH + (le - TL)Z/TL
=T - R+ T - 1], (24)
r;

where we have introduced the dimensionless ratios
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R,=T,,/Ty,
(25a)
ra=T,/T,.
Later we will need the corresponding ratios
R,=T,,/T,
(25b)
rn=T/T,.

These ratios may be time dependent, but they are all less than
one. Since the intermediate reservoir is isolated during this
segment its temperature is constant, 7{¢) = T,,.

B. Branch 2, te{ty, t4[
Only engine 2 is connected to 7, so
H=(T, =T, 1 -4,/T,,)
H(T =T} (1 = A/ Ty ) =~ YT = T,,),  (26)

Y= —14+4/T,, + ¥, (27)
oH :1+/{|T11/Ti| =0, (28a)
hl
9H 4 A,T/T, + =0 (28b)
aT,,
Eq. (28a) gives the same result for this branch as Eq. (23a),
A =T% /T, =TyR73, (29)
whereas Eq. (28b) can be solved for ¢,
v=1-4,T/T,,, (30}
which simplifies the Hamiltonian to
1 /1
H=T,(1 —R\} T——(——l)z. 31
H( l) + L r% RZ ( )

Since this must have the same (constant) value as in the pre-
vious branch, Eq. (24), the ratio R, must also be constant and
equal to

R,=2—r) " {32)
Now Eq. (13) can be solved for T'{¢},

T=—-T+T,,=—T, (33)
where

v=1—R,, (34)
to give

T(ty=Te (35)
and, through Eq. (30),

Yit)=1— (T /To(1/raR3)e™ ™" (36)

C.Branch 3, tty, 11 + fol

Here both engines are connected to 7, and arguments
analogous to the ones we have just used yield

r, = const,

R, = const, (37)
T2,/T? =riR} =21,/4, (38)
T({t)= Tit)e 1, (39)

M. H. Rubin and B. Andresen 4

Downloaded 05 Oct 2004 to 130.225.102.2. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



Ye)=1—[T/T(t)]AR ™"
= [TL/T(ZI)]rZ_ZR 2_297"7"); (40)
where
y=2—(1/r) —R,. (41)

Using our earlier definition of x in Eq. (2), Eq. (38) assumes
the very symmetric form

x =rR,rR,. (42)

D. Branch 4, te[t, + fo,{

This branch is very similar to branch 2 with the roles of
the engines interchanged. The solutions are

Ay =THL/T, =T, /7, 3)
ry=const =2 — (1/R}), (44)
T(t)=Tlt,+ toe =", (45)
Yle)=1- —j’—rfR 2ol —t: =t (46)
Tty + 1)
with
p=1—(1/r). (47)

V. CLOSING OF CYCLE

The solutions on the four time segments may now be
joined into a complete cycle by invoking the continuity of
T () and (¢ ) across the switching points. From this require-
ment we deduce that

(i) the integration constant T, of Eq. (35) is the same as
the constant temperature 7, in segment 1.

(ii) ¢y, Eq. (22) can be found from Eq. (36),

Yo=lty) =1 —(T./Tyry 'R ; (48)

(iii) T, (¢}is continuous at ¢,. This is not a trivial state-
ment, since only the state functions 7 (¢ jand ¥/(¢ ) are required
to be continuous, whereas the other functions in principle
could contain jumps, caused by jumps in the control func-
tions.

(iv) T, (¢)is continuous at f, + .

The constancy of H, A, and 4, have already been used
several times. It should be emphasized that the constancy of
H ensures the continuity of 7, | at#,and of T, at 7and thus
makes all the ratios »|, R, r,, R, constant in their respective
intervals of applicability. Finally, the periodicity and con-
tinuity of 7'(z) implies that

TO+)=T(r—),
or

T() — T(,e SME = Wl = Wl — Ll —plT — 8- ) (49)
and gives a relation between ¢, and ¢,

vty — t) + ¥l + 1y — 1) +ulr — t — 1)

=(1=Ry)(t, —t)) + [2—(1/r) — Ry}t + 1y — 1))

+ [1 = (1/r)Hr — 1, — 1)
= (1 = Ryt + [1 = (I/r|))(r —¢,) = 0. (50)

Note that both 7, and ¢, have dropped out of this equation.
Our four temperature ratios are connected through
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Eqgs. (32), (42), and (44), so all the expressions can be given in
terms of one of them, say R,. Then

rn=2-1/R,, (44)

r,=2x/[x — 14 2R)), (51)

R, =1[1+x/(2R, - 1)), (52)
and

v=I{[1-x/12R, - 1}], (53)

y=14[3— (2R, + x)/(2R, — 1)], (54)

pu=1—R,/2R, - 1), (55)

while the adjoint variable is related to the temperature T'in
all time segments as follows,

Ye)=1—Q2R, — 1)’ T,/T(t). (56)
A possible time variation for all temperatures involved is
shown in Fig. 3, and a numerical example with T, and 7, as
specified in the Introduction is listed in the second column of
Fig. 1.

At this point there are two equations left, Egs. (14},
which we use to determine ¢, and ¢,.

AS,:t,(}lT—l)—(r——tl)(l—r,):O (57)

ot =17 (58)
and

ASzztz(Rl — ) —(r—t)l—r)=0 (59)

tamir (60

Combining this with Eq. (50) we finally obtain the last piece
in our puzzle,

=13+ x), (61)

from which all the other quantities may be calculated.
The average power produced by this optimal composite
engine is w = W /7, where

W=§nm—Rm4i—n£Tmm+u—&)

r /2
/2 + 1, . 1 r
xf T(e)dt — —T,(— — 1) = =T, (1 —x)%
t{ 2 r 8
(62)

at efficiency

n=== [Ty =P/ [Tu(1 —x)]) = 1—x (63)
1

which is exactly the CA efficiency (cf. the Introduction).
This is a most remarkable result, especially when one notes
that the final results are independent of 7}, and ¢,. This means
that the relative phase of the two engines (z,) as well as the
intermediate temperature, T (as long as it is between T, | and
T,,, which are fixed) are immaterial. Even if one of the en-
gines deviates from maximum power output, the other will
exactly compensate for this (through a changed temperature
range) to make the composite engine appear as a single CA
engine. The staging of two CA engines, as described in Sec.
I1, is but one choice of the intermediate temperature 7. It is
worth repeating that the results presented above are for
equal heat conductances, «,, x| , k., k5, which greatly simpli-
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fies the expressions and, e.g., makes ¥ = 0, i.e., all tempera-
tures are constant in time segment 3 where both engines are
connected to the intermediate reservoir.

The practical implications of this result are that

(1) There is no thermodynamic basis for choosing be-
tween a single-stage and a multi-stage machine with the
same overall heat resistances, i.e., referring to Figs. 1 and 2,

K 'k T =k T ey T (64)

for a fixed cycle time 7. Of course if one uses the maximum
conductivity in all cases so all «’s are equal, then the right-
hand side of Eq. (64) is twice as large as the left-hand side
and, consequently, w is half as large for the sequenced en-
gines as for the single engine.

(2) There is no thermodynamic basis for choosing the
phasing or the intermediate temperature in a two-stage sys-
tem (within the limits mentioned above).

Both questions must be settled by engineering prefer-
ences or limits such as size of the machinery, materials
strength, and complexity.

One possible additional constraint which could be add-
ed to this problem to make it more realistic concerns the

volume swept by the two engines, e.g., the total volume or
the sum of the compression ratios. So far the “internal” en-

gines (triangles in Figs. 1 and 2) have only been assumed to be
reversible and exchange heat isothermally, but if we want to
consider the volume behavior, we must specify the precise
type of cycle used and the equation of state of the working
fluid. Only the Carnot, Stirling, and Ericsson cycles qualify
as exchanging heat isothermally (cf. the pressure-volume
(PV} and temperature-entropy (TS) diagrams in Ref. 7). Let
us for simplicity choose an ideal gas in a Carnot engine. Then

O =x0(Ty —T4,)
=nRT,, [In(V,,/V,,} = (v — 1) In(T,,, /T\)],
(65)

where n, is the number of moles of gas in the engine,
V,./V,, is the compression ratio, and y = C,/C, the ratio
of heat capacities. A similar equation holds for engine 2, and
it makes no difference that the branch in contact with T'is
not truly isothermal, because the other isotherm is, and two
branches are sufficient to completely define the endpoints of
the cycle. Eq. (65) can easily be solved for 7, to correspond to
any desired temperatures and compression ratio, so any vol-
ume constraint carries with it the freedom of adjusting the
amount of working fluid, and T, and ¢, are still indetermi-
nate. The choice must again be made on engineering
grounds.

V1. OTHER OBJECTIVE FUNCTIONS

The above analysis was carried out in order to maxi-
mize the power output of the engine (as was done in Ref. 1).
Other objective functions, like efficiency, effectiveness, and
entropy production, can be treated in a completely analo-
gous way by adding extra constraints to the Hamiltonian,
Eq. (16). For example, maximizing the efficiency 71 = W /Q,
can be done by maximizing W subject to fixed
Q, = t,k\T,; — T,,) = const. Doing that, the efficiency
becomes

6 J. Appl. Phys., Vol, 53, No. 1, January 1982

p=1_ xz/(l _8a ) (66)
T,1
Its natural limits are
n—1—x’=75. forQ—0 orr—ew, (67)
and
7— — o for Q,—T},7/8, (68)

so that the efficiency approaches the Carnot efficiency for
very slow operation and decreases for increased heat input.
For a single engine a similar optimization yields
n=1- xz/(l -~ —4&) (69)
Y HT
Thus the efficiency of the staged system is less than that for a
single-stage engine operating between the same high- and
low-temperature reservoirs with the same period and heat
influx Q,. The difference is the factor of 8, rather than 4 for
the single stage, multiplying Q, in Eq. (66). For our example
with T, /T, = 0.36 and taking 4Q,/7T;,7 = 0.1, the maxi-
mum efficiency of the single engine is ,,, = 0.60 while for
the two-stage engine it is 7,,,,, = 0.55. If in this example one
takes 7 /T, = 0.64, the efficiency of the two stages is
7,=029and 9, =037 and 1 — 9,,,, = (1 — 9,)(1 — n,)
as required by Eq. (A4). Thus staging the engines while keep-
ing the heat influx the same decreases the efficiency as would
be expected from the increase in thermal resistance.
be expected from the increase in thermal resistance.
The effectiveness, e = W /W, difffers, in this case,
from the efficiency only by a constant, since

Wrcv = Ql(l - xl), (70)
and its optimal behavior is identical to the one just quoted for
n.

It is easy to show that minimizing the entropy produc-
tion per cycle for fixed Q, is the same as maximizing the

effectiveness for fixed Q,. To see this we observe that the
total entropy production per cycle is

TL Tll
Since the actual work done per cycleis W = Q, — Q,,
4 7,
AS = — — + &(1 - -—L). (72)
. T. Ty

Using Eq. (70) and the definition of effectiveness, we then
find
AS = (Wrcv - W\)/TL
=(1—-aWw. /T, (73)

where W, and T, are constant, so that minimum AS corre-
sponds to maximum e.

Vil. CONCLUSIONS

Using a model for a two-stage thermal engine, we have
determined the configuration which produces the most pow-
er. We have found that the interface between the two stages
{temperature and timing) is, within limits, arbitrary and can
be used to satisfy other, nonthermodynamic constraints. The
building block in finite-time thermodynamics is the CA en-
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gine, which in many respects behaves similarly to the Carnot
engine of reversible thermodynamics. Thus CA engines can
be staged to form an overall CA engine, and the uncon-
strained staging optimization also yields CA behavior. This
is the first attempt to look at composite systems in finite-time
thermodynamics and should facilitate its application to
more complex systems based on the models solved so far.
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APPENDIX

In this appendix, we provide a derivation of the result of
Sec. Il in a simple way that illustrates the importance of the
heat output and input of successive engines being equal and
of the form of 1 — 7.

Consider a sequence of N engines. The efficiency of the
J'" engine is

n =1-0//0, (A1)
where Q; is the heat input per cycle, and Q ; is the heat ouput
per cycle. Now suppose

@/ =0, forj=12,. ,N—1 (A2)
Then

(=71 =98) =QH/Q\
But the efficiency of the entire engine is just given by
7=1-04/Q,s0
l—n=(1—mn).1—ny). (Ad)
Next suppose that, if we optimize the operation of a

single engine for some choice of objective function such as
maximum average power output, that

1= =AT)f(Ty), (A3)
where T, is the temperature of the high-temperature reser-
voir and T, is the temperature of the low-temperature reser-
voir. Suppose we select a series of reservoir temperatures

(A3)
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THZT1>T2>--->TV+1=TL, (A6)

and operate each sequenced engine in its optimal mode so
that

V=, =f(T; .\ VT, (A7)
then Eq. (A4) implies that
L= =Ty  Vf(T)=FTVf(Ty) (A8)

That is, the efficiency of the sequenced engines equals that of
a single engine. This is the case for Carnot engines where
f(T) = AT and CA engines, wheref(T ) = B v/T. It does not
follow that the work done per cycle is the same for the se-
quenced engines as for the single engine.

If 7 is not itself an extremum, then the individual en-
gines in the sequenced case need not be operated optimally in
order for the overall efficiency to be equal to 1 — f(T, )/
f(T,,.) Thisoccursiftheaverage power is maximized.” Thus
there is some freedom in selecting the operation of the indi-
vidual engines. If the objective function is the efficiency it-
self, then it is clear from Eq. (A4) that each engine must be
operated at maximum efficiency; however, even in this case
the intermediate reservoir temperatures may be selected ar-
bitrarily provided they remain ordered according to Eq.
{A6).
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