Thermodynamic lengths and intrinsic time scales in molecular relaxation
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A connection is made between a thermodynamic length defined on the full space of statistical
mechanical states and dissipation (entropy produced) in any irreversible process undergone by a
system interacting with an environment which is in equilibrium. Vibrational and rotational
relaxation are studied for the two cases when the environment has a fixed temperature and when
its temperature varies with time. The metric lower bound on entropy produced is found to be
excellent. The variation of the instantaneous relaxation time of these microscopic systems is
contrasted with the behavior of a macroscopic conjugate-linear (Onsager-type) system.

I. INTRODUCTION

The concept of thermodynamic length was introduced
recently by Salamon and Berry,’ based on a metric structure
due to Weinhold.? A path in the state space of a thermody-
namic system is associated with a process undergone by the
system. The square of the length of this path multiplied by
the ratio of the internal relaxation time of the system to the
duration of the process provides a lower bound to the dissi-
pation in the process, a bound which is more realistic than
the reversible one of zero. Although Weinhold’s metric
structure was defined in energy terms, Ruppeiner® has ap-
plied a similar structure in entropy terms, and Salamon,
Nulton, and Ihrig* have shown that the two metric struc-
tures are conformally equivalent, i.e., the squares of their
line elements ds* differ only by a factor: the thermodynamic
temperature 7. The metric sructure defined in entropy terms
has been extended to the statistical mechanical state space of
probability distributions and, subject to the assumption of
maximum entropy, has been shown equivalent to the metric
structure defined on the set of macroscopic states.’ This led
naturally to the tantalizing conjecture that such structure
could be extended even to nonequilibrium situations where
the states represented by the distributions do not necessarily
maximize the entropy.

The present paper establishes such a connection
between a thermodynamic length defined on the full space of
statistical mechanical states and dissipation (entropy pro-
duced) in any irreversible process undergone by a system
interacting with an environment which is in equilibrium.
The examples of vibrational and rotational relaxation, which
represent low- and high-temperature regimes, respectively,
are discussed for the two cases when such relaxation occurs
in contact with a bath at a fixed temperature 7¢ and when
the bath temperature varies with time.

il. GEOMETRIC BACKGROUND

The metric structure we consider here is defined by the
second derivative of the microscopic entropy of the system
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S=—k3pInp, (1)

with respect to the state probabilities p,, i.e., setting Boltz-
mann’s constant k = 1 in the remainder of the paper,

DS, = (375 /3pidp;} = { — 6,,/p:). )
The associated length of a path p(¢) is given by

L= J: [ —pD3S, p]%dt = J: [gp,?/pi]l/z dt, (3)

where 7is the duration of the physical process corresponding
to p(t).

The entropy produced in a relaxation process from state
p to a state of equilibrium p¢ is equal to the entropy deficiency
or information content® of p relative to p*:

AS* =I(pp*) = 3 p: In(p:/pj). (4)

A consequence of this theorem is that a process, during
which a system evolves from p° to p' while equilibrating to
an environment which would eventually bring the stystem to
equilibrium at p°, produces an amount of entropy equal to

AS“=1I(p°p%) —I(p',p9) (5)

This result is more in line with our present interests since we
consider an environmental distribution p® which varies with
time. Accordingly we take the limit of Eq. {5) in which p° and
p' differ only infinitesimally for a given p*:

L
o dp

--[[za Ip./pf) . (©

v _a_I ‘) . = —
AS* = J-ap(p,p)dp

This expression for the dissipation in a relaxation pro-
cess is related to the geometry of Eq. (3) through the defini-
tion of an instantaneous relaxation time

z piln(p,/p})
€= ———ow— (7
z pi/p;i
The reason for our name for € can be seen by considering the
case when p is close enough to p° that the logarithms in the

© 1985 American Institute of Physics 5849

Downloaded 05 Oct 2004 to 130.225.102.2. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5850

numerator can be replaced by a truncated first order power
series. Then Eq. (7) becomes

Zpi{pi — piVp;
€ ————————. {8)
Zp%/Pi

If the relaxation of p to p®is linear in p, such as the solution of
a master equation, and if p has been equilibrating with p°
sufficiently long that all but the slowest mode has died out,
then p — p°~ — ep, where € is indeed the conventional re-
laxation time of the system, i.e., — 1/€ is the numerically
smallest eigenvalue of the transition rate matrix in the mas-
ter equation. In general, however, € is given by the formal
expression in Eq. {7), and one of the main goals of this paper
is to study the behavior of € for some sample systems.
Combining the definition of €, Eq. (7) with Eq. (6) gives

ast=[ e slpdi=¢ [ S pi/p,di o)
fi 0 i

(3]

on applying the mean value theorem. Finally, using the
Cauchy-Schwarz inequality

J:f’dz)—::-U:fdt)z (10)

yields the bound

AS“>€eL*/r=AS" (11)
with equality when 2,p?/p; is constant along the path. This
bound, although identical in appearance to the ones derived
for macroscopic systems,”** does not presuppose an equili-
brated system along the process path with a maximized en-
tropy. Thus this result for a statistical mechanical system is
more general than the one derived in Ref. 5.

Below we examine the behavior of L and € in relaxation
processes with fixed and moving environments. Gas phase
vibrational and rotational relaxations provide respectively,
examples of systems evolving through states which maxi-
mize entropy and which have a well defined temperature at
each instant, and systems evolving through states which do
not maximize entropy for any known constraints and do not
have a temperature.

ill. VIBRATIONAL RELAXATION
A. Theory

Consider a dilute system of harmonic oscillators in con-
tact with a fixed heat bath of temperature T °. The bath may,
e.g., be an excess of harmonic oscillators in an equilibrium
distribution, an inert ideal gas, or a radiation field, so that
equilibration of the system with the bath is effected by vib—
vib, vib-trans, or vib-rad energy transfer, respectively. In a
classic paper,” Montroll and Shuler solved the ensuing linear
master equation exactly and calculated the relaxation behav-
ior of this system for different initial distributions using Lan-
dau-Teller collisional transition probabilities.

If the system is initially in a Boltzmann distribution

p=(1—e)e " (12)

corresponding to the temperature 7 ° or the reduced variable
0° = hv/kT?®, where v is the frequency of the oscillator, p; (¢ )
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will relax toward the equilibrium distribution
pi=(1—e" %", 8°= hv/kT*, through a sequence of
Boltzmann distributions

pilt) =(1—e et (13)
with the apparent reduced system temperature’

o(¢) = 1n[e_m“ —et )=t e
e—xz(l __ee‘-é") _(1 __es“)

]. (14)

The relaxation constant « is k,, for vib-vib, k j,(1 — e~ %)
for vib—trans, where k,, and k , are the collisional transition
rates for transitions between levels 1 and 0 of the oscillator,
and A4,,, the Einstein coefficient for spontaneous emission
between the levels 1 and O, for radiative energy transfer.
Next, let the environment evolve in a given manner,
&°(t). The system will only relax infinitesimally toward the
current environment before it has changed, so the rate is
given by the time derivative of Eq. {14) evaluated at t = 0:

= —k(1 —e” 9 — 1)/(e” —1). (15)

The temperature path followed by the system when pulled
by the environment 8%t ) is the solution of this differential
equation. However, it is easier to determine that environ-
ment path which induces a certain system behavior simply
by solving Eq. (15) for &,
0e® + Kke®(1 — e")]

6e® + k(1 —e® |’
In this manner we find for example that a linear evolution in
time of the system temperature, T'(t) = a't corresponds to
@ (t) = 1/at,witha = a’'k /hv,andis obtained by the environ-
ment  evolution 6¢t)=1/at+In{l + (e~ V> - 1)/
[1 —xat*e~"* — 1)]}. The system will be in equilibrium
with its environment, 6 = 8¢, only in the limit t — . For
large times it is easy to verify that 8%t )~ (t + 1/x) which
establishes « not only as the explicitly introduced relaxation
constant [Eq. (14)], but also as the inverse of the lag time
when the system is relaxing toward an evolving environ-
ment. Below we will also find that 1/« is the instantaneous
relaxation time € asymptotically.

The thermodynamic length corresponding to the system

path now is according to Eqgs. (3), (13), and (15):

L= J' {Z [ + 1)e=?— il%~ /(1 —e-f’;}mdz.
' (17)

Splitting the sum into powers of i, it can be readily evaluated,
so

&) =1n[ (16)

L=|{Vl4¥e %—e® 6/(1—e~%dt
0

X (7)

=| JT¥x—=%X% /x(x-1dx (18)
X (0}
=sin“(1 —
N
+1n[3X2“3X+2+2(1 —2X W1 +X—X2]
SX(X —1)
with the substitution X = ¢~ ?*). Note that Eq. {3} is invar-
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FIG. 1. Time evolution of the thermodynamic length L for vibrational re-
laxation from 6° = 5 toward 8° = 10. « is the relaxation constant of the sys-
tem.

iant to any reparametrization of the path, which makes L,
Eq. (18), dependent only on the endpoints and not at all on
the path since it is described by a single parameter, the tem-
perature. This is a rather special situation, true only for an
initial Boltzmann distribution.

B. Resuits

We use Eqgs. (12)(14) together with Egs. (2), (3), (7), and
(11) to calculate the thermodynamic length L, instantaneous
relaxation time ¢, and entropy production bound AS* for
this relaxation to a fixed environment and compare it with
the actual entropy production calculated by Eq. (5},

ASUt)=T1(0)—I(t)
=3 pilnpl/pf) — 3 pilt) In [pi(e)/pi]. (19)

Figure 1 shows the thermodynamic length L as a func-
tion of process duration. For large times, i.e., when the relax-

sS v - . . , :
[3:3d
’,, “~~\ .
4 S vib
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FIG. 2. Time evolution of the accumulated entropy produced in the vibra-
tional relaxation from 8% = 5 toward & * = 10, AS * {—), and of the bound
AS* with the exact mean value € {---) as well as with €= 1/k {...).

vib
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nt
FIG. 3. Time evolution of the instantaneous relaxation constant e for vibra-
tional cooling (vibl), vibrational heating (vibt), and rotational relaxation
from a nonthermal initial distribution {rot}. « is the relaxation constant of
each of the systems.

ation is almost complete, L approaches L { «0 ) exponentially.
Figure 2 contains the exact accumulated entropy production
AS* and the geometric bound ASZ at each instant of the
relaxation. It is apparent that AS* is an excellent bound on
AS*for ¢ less than about two relaxation times {t S 2/«). The
fact that AS “ has a maximum and approaches a small posi-
tive value for t — o« indicates that, whereas the time path
followed by the physical system results in a monotonically
increasing AS ¥, the optimal solution for long times proceeds
slower initially thereby reducing the overall entropy produc-
tion. Usually we do not have such detailed control of the
microscopic process, and the portion of AS * past the maxi-
mum should be disregarded, although it is of course still a
bound on AS™.

The good agreement between AS ~ and AS*in Fig. 2 is
admittedly at least partly due to our use of an average relaxa-
tion time € in Eq. (11) calculated from the exact relaxation
path via Egs. {7) and {9). However, as shown in Fig. 3,
€ — 1/kfort — o, and thus we could, with some uncertain-
ty from the averaging process, simply have used € = 1/«
based on the known relaxation constant for the process. The
result with this €is also shown in Fig. 2. The usefulness of the
bound equation {11) for more complicated real systems de-
pends on this possibility of substituting an empirical value
for €. Whereas the bound unfortunately looses its rigor by
doing so, except in those cases where general statements can
be made about the approach of € to 1/« (see below), the error
introduced will usually be small, since the difference goes
exponentially to zero with time and with decreasing differ-
ence between initial and environment temperatures.

Another interesting feature is how € approaches 1/k.
Quite generally for vibrational relaxation the approach is
from above for cooling of the system (7°> T} and from
below for heating (T'° < T°). This is not what is expectedin a
macroscopic system following conjugate-linear (Onsager-
type) dynamics, as we will discuss in Sec. V, but it can be
readily deduced from the microscopic dynamics in Eqgs. (12)-
{14). If we apply an asymptotic expansion of p;(t} to € [Eq.

- Kt

{7)] we find to lowest order ine ",
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1 _1(+eM1-e""%
K K 2l —e %)
Thus € approaches its final value with the same final value as

arelaxation constant. Except for the last factor in the numer-
ator of Eq. (20) all quantities are positive. However,

1—e"-% is positive for 8°>64T°<T*), negative for
&° < &(T° > T which yields the observed behavior.

- Kt

(20)

IV. ROTATIONAL RELAXATION

A. Theory

In this section consider a system of rigid rotors in con-
tact with a heat bath (buffer gas) of temperature 7'°. This
system does not in general have a nice explicit time path, as
Eqgs. {13) and (14) for the harmonic oscillators, but for
0° = heB /xT°«1, where B is the rotational constant of the
rotor, the level probability distribution evolves as®

pst)=p5 + b5 —pile ™ (21)
from any initial distribution p° to a final Boltzmann distribu-
tion

P =N2J+ e~ TIV+1, (22)
Thus each level relaxes independently, but all with the same
relaxation constant . Note that even if the initial distribu-
tion is a Boltzmann distribution, p,(¢) will not follow a
Boltzmann distribution on the way to p5.

As in the previous section we may let the environment
temperature T ¢ evolve in time which makes the system prob-
ability distribution follow the differential equation

Ps= —Kp; +Kp5(t) (23)
with pé(t) given by Eq. (22). The corresponding thermody-
namic length is

L= J:xh:(pi —puPps |t

=« [ 1w~ 117,

where (), is the ensemble average calculated over the equi-
librium distribution. However, since the rotational probabil-
ity distribution p{# ) cannot be described by asingle parameter
like 6{z) for the vibrational case, the integral is not readily
evaluated and depends in a complicated way on the actual
solution of Eq. (23), not just on the endpoints as Eq. (18) does.

(24)

B. Resuits

For the present calculations we use an initial distribu-
tion (see Fig. 4) and parameters representing the nascent ro-
tational distribution of HCI* in vibrational state n = 3 from
the H + Cl, reaction.’

We calculated the same quantities L, €, AS~, and AS'*
for rotational relaxation as we did in the previous section for
vibrational relaxation with almost identical conclusions. In
fact, graphs of the rotational results are indistinguishable
from Figs. 1 and 2. Since rotational relaxation is a high tem-
perature process (0 °«1) while vibrational relaxation nor-
mally is the opposite limit (8 °> 1) due to the larger vibration-
al quantum, these observations give considerable confidence
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FIG. 4. Initial rotational distribution p%-—} and final {thermal) distribution
p° at & = 0.046 ().

in AS” as a realistic lower bound to AS* for all tempera-

tures.
The evolution of the instantaneous relaxation time € is

somewhat different for this system as shown on Fig. 3. It
starts out very small {i.e., rapid relaxation), increases past
€{0} = 1/k, and finally approaches €{ « ) from above, as op-
posed to the monotonic evolution found for vibrational re-
laxation. An asymptotic expansion of the rotational € similar
to Eq. (20) yields

S B9 — 25’/ w5 )
1 7
E~— 4+ —

K K

e ", {25

22 ©% — p5V/p5

The sum in the denominator is positive, whereas the terms in
the numerator will have varying signs so that the value of
that sum depends on the difference between the initial and
final distributions in a nontrivial fashion and may be either
positive or negative.

V. RELAXATION BEHAVIOR

The surprising relaxation behavior found in the pre-
vious two sections, cf. Fig. 3, is distinctly different from that
observed in a macroscopic system following a conjugate-lin-
ear dynamical equation

X=R(Y-Y9, (26)
where the rates of change of the extensive variables X are
related to the difference in intensive variables between the
system (Y) and the environment (Y*) through the matrix R™!
which in general may depend on the state X but not on time
or rate explicitly. As detailed in Ref. 10, a general expression
for the instantaneous relaxation time is

€ =(Y — Y9)X/XMX, 27
where M denotes the metric in use.!*-> For conjugate-linear
systems we thus find
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€ = XRX/XMX, (28)
which, using Rayleigh’s principle,’” tells us that
A min <€A maxs (29)

where A, and 4_,,, are the smallest and largest eigenval-
ues, respectively, of M~ 'R using the conventional scalar
product. Thus, initially in a relaxation process € will be an
average of all the eigenvalues A,, distinctly less than 4.,
but progressively the more short-lived relaxation compo-
nents will die out, and € will approach A4, for large times in
a manner shown by the curve vibt in Fig. 3.

To explore the difference between microscopic and mac-
roscopic relaxation behaviors let us for a moment look at the
simplest possible reaction,

A=B (30)
b

with forward and reverse transition probabilities a and b. We
denote the state vector (population probabilities)
p, p’ = (B, A), which satisfies the dynamical equation

(3 %)

with equilibrium distribution p(w)=(a + b)"Ya,b)". In
this case the asymptotic solution of Eq. (31) is identical to the
exact solution,

) =(a+6) (S 4o L Jemrom (32

where ¢ is a constant determined by the initial condition. The
relaxation time calculated from Eg. (7) becomes asymptoti-
cally

~ 1 _C(a —b) e—(a+b)t. (33)
a+b 2ab

This expression obviously has the asymptotic value
(@ +b)~ " [cf. Eq. (32)), but it may approach it from either
side depending on the initial conditions (the sign of ¢) and on
the relative transition probabilities [the sign of (@ — b)]. It
was pointed out in Ref. 5 that the variable conjugate to p; in
statistical mechanics surprisingly is — In p,. Then the dyna-
mical equation (31) clearly is not of the conjugate-linear type
[Eq. (26)] and Eq. (29) no longer follows. Since most micro-
scopic systems follow master equation type dynamics like
Eq. (31) we should therefore not expect the same asymptotic
approach to the final relaxation times as for macroscopic
systems.
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