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Résumé. — Nous déerivons une nouvelle méthode pour cestimer les propriétés thermodynamiques dans des
problemes de recuit simulé, méthode qui utilise des données acquises durant le recuit simulé. La mcthode est
bas¢e sur estimation des probabilités de transition éncrgic-¢nergic ¢t ¢st bicn adaptée a des simulations de
type recuit simulé, dans lesquelics le systeme n'est jamais a I’équilibre.

Abstract. — The paper describes a new method for the estimation of thermodynamic propertics for simulated
anncaling problems using data obtaincd during a simulated anncaling run. The method works by cstimating
cnergy-to-cnergy transition probabilitics and is well adapted to simulations such as simulated anncaling, in

which the system is never in cquilibrium.

1. Introduction.

Simulated anncaling, the recent technique intro-
duccd by Kirkpatrick et al. [1], cxploits an analogy
between physical systems and combinatorial optimi-
zation problems. The analogy gives risc to an
algorithm for finding ncar optimal solutions to NP
problems by simulating the cooling of the corre-
sponding physical systcm. The algorithm has proved
most cffective in a number of contexts of scicntific
and industrial import [2-6], being superior to the
best known heuristics on many problems.

The basic analogy ariscs by identifying states of
the combinatorial problem with states of a statistical
mechanical system and identifying the cost function
with thc cnergy of such a system. The system is
allowed to cquilibrate by random walk according to
the Mctropolis algorithm [7] for progressively lower
tcmperaures 7, with the aim of rcaching the equilib-
rium distribution at a sufficiently low 7 such that the
ground statc, i.c thc solution of thc combinatorial
optimization problem, has apprcciable probability.

‘This paper introduces an cffective technique for

the cstimation of the thermodynamic propertics of
the system over a whole range of temperatures from
data gathcred during an anncaling run. As such it is
a competitor to the mcthod of McDonald and
Singer [8, 9]. Our technique works by cstimating a
lumped transition probability matrix and is more
cffective for use with data collected whiic varying
the temperature. Our method allows onc to cstimatce
the density of states, the mecan cnergy, the heat
capacity, and thc rclaxation timc for a range of
temperaturcs over which there has been an adequate
sampling of artempred moves. We will refer to these
propertics collectively as a thermodynamic portrait
of the system. In scction 6 we present two cxamples
comparing cxact thcrmodynamic portraits with thosc
mcasurcd during simulations. However, it is beyond
the scope of this paper to attempt physical intcrpre-
tations of thc optimal solutions found.

Such a portrait is uscful for implementing
schedules {7,} which depend on thermodynamic
propertics [10-14, 3], including thc schedule with
constant thermodynamic speed which keeps the
mcan cnergy at a fixed number of standard devia-
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tions from the cquilibrium energy |3, 11-13]. Such
schedules have been shown to yicld a marked
improvement of the performance of the simulated
anncaling algorithm [3, 11, 13, 14]. In particular,
they have yiclded a factor of 7 improvement on a
scismic dcconvolution problem [13], a factor of
3 improvement on logic minimization [3], and a
factor of 100 improvement (with modificd move
class as well) on the traveling salesman problem [3].
While this docs not show that knowing ther-
modynamic propertics can help for simulated an-
ncaling problems gencrally, it strongly suggests a
closcr cxamination of schedules which ¢xploit such
propertics. The present paper docs not arguc for
such mcthods nor docs it attempt to discuss the
significancc of the thermodynamic properties found.
Its scopc encompasscs only the description of a noisc
resistant method for observing such propertics.

2. Dynamics for simulated annealing.

Simulated anncaling is bascd on the Monte Carlo
simulation of physical systems. As such it uscs the
Mectropolis algorithm {7] which involves a random
walk through the state space of the system. Lct
02 = {w} rcpresent this state space, let £: 2 - R
be the cost function (energy) defined on the state
space, and lct T be the adjustable parameter in the
algorithm representing the temperature of the heat
bath in which the corresponding physical system is
immersed. At cach step of the algorithm a neighbour
w' of the current state o, is sclected at random to
become the candidate for the next state. It actually
bcecomes the next state only with probability

A {1 if AE=0 (1)
aeeeptanes = exp(—- AE/T) if AE=0,
where AE = E(w')— E(w,). If this candidate is
acceptated, then w,, | = ', clse the next state is
thc samc as the old statec, w,,; = w,. Thus to
complcte the definition of the dynamics for the
algorithm, wc must specify (i) the schedule of
temperatures as a function of time 7(¢), and (ii) a
definition of which states are to bc considered
ncighbours.

The latter is known as the move class and typically
takes the form of an undirccted graph structure on
the statc spacc. We will denote by N (w ) the set of
ncighbours ot a statc w in this graph. We remark
that for ccrtain problems one may have scveral
altecrnative move classcs available. An important
family of such problems involves minimization of a
function on rcal m-spacc R™. Here it is common to
make moves which change onc variable at a time and
cycle through the m variables [6, 13]. We discuss the
modifications necessary when we define a move class
corresponding to cach variable in turn in scction 6
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below in connection with a scismic deconvolution
problem.

The matrix Il = [I1g,] of infinite-temperature
transition probabilities from state « to B is defined
by

0 i

) BN (o)
o = 1) e )

if BeN(a),

where [N (a )| is the number of necighbours of «.
These are the transition probabilitics if the algorithm
automatically accepts cach attempted move, i.c.. if
T =o. At a finitc tcmperature thc acceptance
decision is superimposed on II in equation (2) to
give I'(T) defined by

g, cxp(=AE/T) if AE=0, a #
g, = 11, if AE=0, a #8
1— % g, if « =8,
E#a

3)
where now AE = E(B)— E(a). Equation (3) dec-
fincs what we will call the Boltzmannization opcrator
B, which scnds a transition probability matrix on a
statc spacc cquipped with an cnergy function to a
finite temperaturc version of the transition matrix :

B(IT) = I'(T). 4)

Before any function cvaluations, the algorithm
begins with a uniform level of ignorance concerning
the location of the optimum. This corresponds to a
uniform distribution. According to the analogy, this
is represented by infinite tempceraturc. An casy way
to force the stationary distribution to be uniform [15,
16] at T = oo is to make |N (w )| constant over w,
i.c. to make cach vertex have the same number of
ncighbours. This property is cxpressed in the lan-
guage of graph theory [17] as making the graph
regular. I given by equation (2) with N (w ) corre-
sponding to a regular undirected graph guarantees
that IT is symmetric. This is the present counterpart
of microscopic reversibility.

3. Lumping.

Since the number of states |{2] is astronomical for
the problems of interest (of the order of 10! % for
graph partitioning problems of industrial interest), it
is not feasible to deal with the |2 | x |2 | matrix II
directly. By the physical analogy we will refer to the
description at the level of (2 as microscopic. Rather
than deal with a microscopic description of the
process, we introduce a new coarse-grained state
space whose points consist of subsets of £2[18, 19].
The simplest and most important case is when each
subset contains all states with the same energy, i.e.
A; = {0 |E(w) = E;}. We will refer to this descrip-
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tion as macroscopic and say that it lumps all states at
each energy. (Here and in the following we use latin
letters to index macroscopic quantities and greek
letters to index microscopic quantities.) Intermediate
meso descriptions are also possible and can be
physically interesting [20)].

In lumping the description at some temperature 77
to any mcso- or macroscopic level, we introduce
transition probabilitics p(B|A) between any two
subscts A and B of microstates in ¢2. To assign
rcasonable values to such transition probabilities
working from the I',,, consider the likclihood of a

transition from subsct A to subsct B of (2. If
a € A, a transition to B occurs from « if the
transition occurs to some 8 in B, i.c. with probability
p(Bla)= ¥ Iy, . 5)

BeB

This just cxpresses the fact that a move occurs from
a to B if and only if a move occurs to some 8 in B.
Given only that we start from somc « in a subset A,
the likelihood of rcaching the disjoint subset B
depends on the distribution for starting from the
differcnt o’s in A. Denoting this distribution by
pala), we have

P(BIA)=% p(Bla)ps(a).

a€ A

(6)

The matrix G(T) of lumped transition prob-
abilities at temperature T between subsets A,
1 =1, ... n, of a partition of {2, i.e.

G =pP(AA) . (7

can be computed using two matrices V and U of size
nx || and | 2| x n respectively such that [18, 19]

G=VIU=L() (8)

where L is a lumping operator, and V and U are
defined by

B {1 ifweA, )
“ 0 else
pPale) ifweA,
v, - { A (10)
0 clse .

Thus G(T) is the lumped analog of I'(T). Note that
this definition requires a distribution Pa, on cach of
the subscts A; in the partition.

The stochastic matrix G now defines a new
Markov process whose states are the subsets A,.
This new Markov process depends on the Pa, and
will be a coarse grained equivalent to the dynamics
of the microscopic process provided a double tran-
sition gives the same result for both processes [18] :

VU = (VIUY. (11)
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Except for very special I' (e.g. where I'p, has the
same valuc for all « € A and all B € B, sce Ref.
[18]), this will not hold for any choicc of the
Pa,- On the other hand, onc can show [18] that if
cquation (11) works for any Pa,- then it works for
Pa, cqualing the cquilibrium distribution relativized
to A,

Pafw)=y(w)/ ¥ y(£). (12)

£€A;

where v is the equilibrium distribution for I' on the
full microscopic space (2. In gencral the microscopic
Markov process viewed at the macroscopic level will
not be Markoffian ; instcad it will show apparcnt
memory cffects. If however the process has reached
cquilibrium, and the Pa, arc taken to equal the

cquilibrium distribution relativized to A, (henccforth
assumed for any lumping cffort), then on the macro-
scopic level of description the processes described by
I' and G are equivalent [18].

For the present paper, the all important special
application of the above lumping procedurc consists
of lumping the infinitc-temperature transition matrix
I using the energy subsets A; = {w |E(w) = E;} in
which casc the stationary distribution is changed
from uniform to being the density of states p with
pi=|A;|/|€]. In this casc we will denote the
lumped matrix by P. Our estimating procedures
below work by collecting runtime estimates of P.

4. A commutative diagram.

Starting from the microscopic infinite-temperature
description I of the dynamics, which was defined
from the graph structure on the set of states, we
defined a finite-temperature version I' and a lumped
version P. It is natural at this stage to consider the
finite-temperature version of the lumped process
and its relation to the lumped version G of the finite-
temperature process. Formally, the question con-
cerns the commutativity between the Boltzmanni-
zation operator B; and the lumping operator
L. Provided the energy is constant on all sets in the
partition {A;,i =1,...n} defining the lumping
operator L,

L(B;(I1)) = B(L(IT)) (13)

if and only if IT satisfies microscopic reversibility.

Microscopic reversibility is the microscopic coun-
terpart of dctailed balance [21], and in physical
terms it states that, at cquilibrium, the flows in the
two dircctions between any pair of states are equal.
Mathematically for a stochastic matrix M and a
vector m, we say that M and m satisfy microscopic
reversibility provided

Mg, my =M,z my . (14)
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Note that if a vector m satisfies microscopic reversibi-
lity with respect to a stochastic matrix M then m
must be the stationary distribution of M, i.e.,

m, = Z M,z mg . (15)
B
Then the symmetry of II implies that the uniform
distribution satisfies microscopic reversibility relative
to II. It then follows that the lumped P satisfies
microscopic reversibility with the density of states p
defined above, T satisfies microscopic reversibility
with the distribution v, = ¢ “/7/Y ¢ /" and G
:
satisfies microscopic reversibility with the distri-
butiong; = p; e E’/T/Z pje £/T Thus microscopic
i
reversibility is satistied and we have
By (P) = B, (L(I1)) = L(By(I)) =
=L(I(T))=G(T). (16)

We extend By and L to vectors in the natural way
(cf. Egs. (8) and (3)) using,

L(m)=Vm (17)
and
B,(m)= (m, e "/ /Z(T). ...,
E

Tz, (18)

m, e

where tr signifies transpose, and Z(7') is the associat-
ed partition function
Z(T)y =Y mje 77 . (19)
j
Letting F represent the operator which sends a
stochastic matrix to its stationary distribution, we
can see that the three operators L, By, and

F commute on the subset of stochastic matrices
satisfying detailed balance. In particular, the equilib-

-
L N -
g«
Fig. 1. — Diagram illustrating thc commutativity of the

lumping L and Boltzmannization B, opcrators with cach
other and with the operator F which sends a stochastic
matrix to its stationary distribution. The commutativity
holds only for matrices satisfying microscopic reversibility.
Expecrimental data is used by the method described in the
paper in the form of the frequency of attempted encrgy
changes. These are stored in the matrix Q which is used to
estimate P.
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rium energy distribution g(7") may be computed by
any one of several ways, e.g.,

B, (p) = B;(F(L(IT))) = F(B,(L(D))) =
= F(G(T)) =g(T).

These relations are illustrated in figure 1.

The experimental technique described below will
estimate values of Il using data gathered during
simulations. These estimates typically do not satisty
microscopic reversibility and so one gets slightly
different predictions computing g different ways.

(20)

5. The method.

We arc now ready to describe our method. We
cmphasize that the needs of simulated anncaling for
accurate cstimators of thermodynamic propertics
arc unique in Monte Carlo methods in that the
estimates should be collected without spending time
on Metropolis moves at cquilibrium, i.c. once cquili-
brium has been approached closely, simulated an-
ncaling requircs the temperature to be lowered
further. The noisc levels arc very large and, while
scveral implementations reported in the literature
use estimated thermodynamic propertics to good
advantage [3, 11, 13, 14}, runtime cstimates of such
propertics without specifically parametrized models
have proved impossible to date.

Our method works by estimating the entries in P,
the infinite-temperature transition probability matrix
on the set of energics. These can be estimated during
the Metropolis algorithm by keeping track of attemp-
ted moves from the current energy to other encrgics
while the anncaling procceds. The entrics arc rela-
tive probabilitics of moving from cnergy £; to
encrgy E,. The actual cstimate is taken to be the
fraction of the time a move from cnergy E; is
attempted to cnergy E;. Specifically, we keep running
tallics

Q;; = number of attcmpted moves fromito;j (21)

which accumulate information and from which one
can construct the ¢stimators

I)II - Q/z/ Zka - (22)
k

Once P is known, the equilibrium properties of
the system such as mean cnergy £(7) and the heat
capacity C(7) may be computed by finding its
stationary distribution p which is the density of states
and which gives the partition function Z(7') by
means of formula (19). From Z all cquilibrium
propertics follow in the usual way, c.g.

E(T)=T?a(In Z)/aT

C(T)=dE/dT. (23)

The final part of the thermodynamic portrait, the
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rclaxation time « (1), is an cstimate of the local time
scale. This can be obtained from the sccond largest
eigenvalue A, of G = By(P) ; the largest eigenvalue
Ay =1 corresponding to equilibrium. From A, we
have

g=—1/InAs. (24)

An alternative route is the first auto correlation time
of the encrgy which is conveniently computed by
[11-13, 3]

(N)=T'C(1)/ Y9, Y (E-EYG, (25

J=i

and which can also be characterized as the relaxation
time of one Boltzmann distribution to a ncighbouring
Boltzmann distribution [12]. Under rather mild
assumptions the two estimators in cquations (24)
and (25) become identical for simulated anncaling
problems in the limit of low tempcraturcs.

‘The method outlined above is in certain respects a
continuous version of that of McDonald and Singer
[8.9]. They want to infer the cquilibrium distribution
g(T,) at some temperature 7, from a known equilib-
rium distribution g(7,) by estimating the density of
states p. If the two distributions have insufficient
overlap to allow the extrapolatior with acceptable
accuracy, one or more intermediate equilibrium
distributions are used to bridge the gap. Thus their
method involves generating large samples in order to
determine accurate g(7T) at a few temperatures. Our
method, on the other hand, operates by collecting a
few samples at very many temperatures, none of
which need to be at equilibrium. It is evident then
that our procedure is tailored to generate the
thermodynamic portrait as the calculation progres-
ses, i.e., specific to the needs of simulated annealing.

6. Examples.

Our two cxamples involve a graph partitioning
problem and a problem of scismic deconvolution.
Previous direct attempts to collect equilibrium state
data during simulated anncaling runs have failed for
both cxamples due to large levels of noise and lack
of apprcciable time spent at cach temperature after
cquilibration [3, 11]. As illustrated in figures 3 and 4
below, our method gives quite good portraits from
simulations. In particular anncaling schedules 7(¢)
using data from the portraits produced significant
improvement in the performance of simulated an-
nealing runs [11, 13].

6.1 GRAPH PARTITIONING. — Graph partitioning
involves dividing the vertices of a given graph into
two subscts while minimizing the number of c¢dges
running from one subsct to the other. Qur implemen-
tation requires the two subscts of the vertex partition
to be the same size. Industrially intcresting appli-
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cations include partitioning the clements of a circuit
to fit onto two chips whilc minimizing the number of
wircs between the chips. Physically interesting reali-
zations include finding the ground state of a spin
glass by associating a spin to cach vertex. Each spin
points up or down according to which subsct of the
partition the vertex belongs to, and an edge between
vertices corresponds to coupling between the spins.
Our constraint of an even partitioning of the graph
corresponds to requiring a constant magnetization of
zero for the spin glass.

The graph used here is a [20, 2] necklace [20, 25]
shown in its simplest form in figure 2. In general an
[m. n] necklace is a graph consisting of m identical
units connected in a circular fashion. where cach
unit is a completely connected graph of 1 nodes.
This graph was chosen for its high degree of sym-
metry which allowed a direct combinatorial calcu-
lation [25] of its energy-lumped density of states p
and transition probability matrix P’ for the theoretical
portrait as well as its ground state cnergy (cqual to
2). Clearly a necklace is not as complicated as a
random graph, and its partitioning is not NP com-
plete, but it has proven a convenicnt compromise
between complexity and analytical feasibility. Sub-
scquent anncaling cxperiments on random graphs
have been of comparable difficulty, supporting our
belicf that the algorithm depends only on ther-
modynamic propertics. The experimental data was
obtained during simulated anncaling runs, i.c. using
the Mectropolis [7] algorithm at progressively lower
temperatures. All together 1.37 x 10% steps were
attempted in a state space with 3.87 x 10" states.
The accumulated counts in Q. equation (21), were
finally used to decterminc the density of states
p(L£), average cnergy E(T). heat capacity C (7).
and rclaxation time ¢ (T) using cquations (22, 23 and
25).

Fig. 2. —[20, 2] nccklace.

Figurc 3 compares the cssentially exact theoretical
and the cnergy-lumped cxperimental results. The
density of states shows cexcellent agreement, and the
average cnergy shows only a slight discrepancy at
low cnergics, leading to a 15 % overestimation of the
maximum of the hcat capacity but at the correct
tempcraturc. This modest build up of error is to be
cxpected since C is a derivative of E which in turn is



1490

0,3

0,2 4
— p(E) theor.
-+ p(E) expt.

p(E)

0.1

0,0 * T *

& 107 — E(T) theor.
- E(T) expt.
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Fig. 3. — Thermodynamic portrait of the partitioning of a
[20, 2] nccklace with states lumped to the 20 possible
cnergy levels. Full curves are theoretical results from an
almost cxact combinatorial analysis of the problem, points
arc cxperimentally evaluated based on a compilation of
attempted steps during simulated annealing runs. p(E) is
the density of states as a function of statc cnergy ;
E(T) thc average cnergy as a function of heat bath
temperature ; C(7) the heat capacity ; and #(7) the
rclaxation time.

a derivative of Z. Also the relaxation times agree
nicely down to a temperaturc of about 0.4, just
under the maximum of C, below which any ¢
calculated from P becomes essentially constant. The
true relaxation time & calculated from II of course
keeps growing. This effect is due to the lumping
together of local minima with other more transient
states. (This will be discussed further in Ref. [20].)
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6.2 SEISMIC DECONVOLUTION. — The seismic re-
flection method attempts to find the thicknesses and
sound velocities of subsurface strata using data on
the recordings of ground motion sct up by a scismic
cnergy source. The associated deconvolution prob-
lem is of great industrial significance in asscssing the
prospectivity of an arca in the exploration for oil and
gas. In cssence it works as follows : from the surface
a signal w(z) is sent vertically down into the earth’s
crust which is modeled as a stack of layers. The
signal is rcflected at cach interface resulting in a
compositc signal s(7) at the surface. The unknowns
arc the travel times of the signal between the surface
and the layer interfaces, and the reflection coct-
ficicnts of thesc interfaces. Assuming a linear re-
lation between signal and response, the responsc is

s(t) =

(d['r(t’)w(t—[’)+§ , (26)

v

where € is a noisc term and

r(t):ZakS(t~tk) (27)

is the reflectivity of the carth’s crust. Here ¢, is twice
the travel time from the surface down through laycr
k, and a, is thc strength of the reflection at the
bottom of layer k. The deconvolution estimates the
paramcters f, and a, which minimizc the difference
between the monitored signal and the predicted one.
Traditional methods [26] scck local minima, but
such problems typically have many local minima [13,
27], and it is imperative to locate the global minimum
wich is cxactly the intended purposc of simulated
anncaling.

The small example considered here involves two
reflecting interfaces and thus contains four unknown
paramecters : two a’s and two 's. It was chosen so
that a direct evaluation of p by exhaustive exami-
nation of all statcs in a discretized grid was fecasible.
(This is a highly unusual situation for simulated
anncaling problems.) The cxperimental data was
collected during simulated anncaling runs with a
total of 5 x 10° attempted steps in a state spacc with
2 x 107 states.

A move class was adopted for which the four
paramecters werce visited cyclically. For cach visit, the
considered parameter was perturbed and a Met-
ropolis decision was made. While this move class is
commonly used in scismic applications of simulated
anncaling [6, 13, 27], in the language of scction 2 this
amounts to a diffcrent move class for cach parameter
in thc objective function. In particular it requircs a
separately estimated P for each of the move classes
and yields a proper Markov process only on using
the combined transition matrix P = P, P, P5... P
for a full cycle [28]. For the present method it is
probably advisable to adopt a scheme where the next
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parameter is randomly rather than cyclically selected
in which case estimating one P suffices.

Figure 4 compares the exact p, E, and C with the
corresponding experimental functions based on the
accumulated Q and equations (22)-(24). No theoreti-
cal ¢ was available since it would have required
knowledge of the transition matrix P (equation (24)
or (25)) which would have cntailed an exhaustive
cxamination of all 4 x 10" possible transitions. not

0,08
— p(E) theor.
0,06 - — p(E) expt.
0,04 -

0,02 1

0,00 T T
a) 0 200 E 400 600

150

100 1

50

4,01 — C(T) theor.
= C(T) expt.

1.0 7 ~=

1500

1000 A

~ - ¢(T) expt.
500 1

—T T

dy 0 10 20 1 30 40 50
Fig. 4. — Thermodynamic portrait of the deconvolution
of scismic reflection data in a two-layer model. Signatures
arc the same as in figurc 3.
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just the 2 x 10° states. Although agreement is not
quite as good as for the graph partitioning problem
in spitc of the larger coverage of the state space,
dynamic cstimation of the thermodynamic portrait
during the simulated anncaling run is a very attrac-
tive improvement over a priori cstimated quantitics.
In particular the double-maximum form of C would
have been hard to predict.

7. Conclusions.

The present paper presents a new competitor to the
technique of MacDonald and Singer [8, 9] for the
cstimation of thermodynamic propertics over a
range of temperaturcs. Whereas their method was
adapted to using a few well sampled temperaturcs,
the present method is based on a sliding tempera-
turc, and it appcars to be rather inscnsitive to the
temperature schedule used. While the present data
was collected using runs asscssing the cfficacy of
compcetitor schedules, real runtime implementations
arc made possible by carcful application of the
techniques outlined in this paper and arc presently
under development.

The problems of interest tend to be highly non-
crgodic at T=0 and, on thc time scale of the
obscrvation, at higher temperatures as well. There-
forc the system stays for extended times in certain
parts of the state space. Thus, on shorter time scales.
only the thermodynamic propertics of that local
rcgion of state space arc of interest for the behaviour
of the system. The method presented here can take
carc of this fact automatically.

Our method involved accumulating the matrix Q
which is the size of the state space squarcd. Without
using lumped states, that would have been entirely
out of thc question. Although, as discussed in
section 3, exact lumpability is rarc, judiciously cho-
sen lumping can provide a very good approximation.
A good rule of thumb is that cach subsct should be
choscn as homogencous as possible. One may lump
at many levels thereby obtaining much or little
detail. At any level, the point of the present article
holds truc : lumping provides a workable, noisc
resistant technique for runtime evaluation of ther-
modynamic propertics.
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two notions arc often confused [16], but strictly

speaking [22-24] microscopic reversibility is the

statement, cquation (14) about transition rates
between individual states of the system at equili-
brium, whereas detailed balance is the same
property at the macroscopic level. Thus detailed
balance is a slightly weaker property in that
circular reactions arc possible [22-24] violating

cquation (14).
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