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Quantum heat engines: Limit cycles and exceptional points
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We show that the inability of a quantum Otto cycle to reach a limit cycle is connected with the propagator of the
cycle being noncompact. For a working fluid consisting of quantum harmonic oscillators, the transition point in
parameter space where this instability occurs is associated with a non-Hermitian degeneracy (exceptional point)
of the eigenvalues of the propagator. In particular, a third-order exceptional point is observed at the transition
from the region where the eigenvalues are complex numbers to the region where all the eigenvalues are real.
Within this region we find another exceptional point, this time of second order, at which the trajectory becomes
divergent. The onset of the divergent behavior corresponds to the modulus of one of the eigenvalues becoming
larger than one. The physical origin of this phenomenon is that the hot and cold heat baths are unable to dissipate
the frictional internal heat generated in the adiabatic strokes of the cycle. This behavior is contrasted with that of
quantum spins as working fluid which have a compact Hamiltonian and thus no exceptional points. All arguments
are rigorously proved in terms of the systems’ associated Lie algebras.
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I. INTRODUCTION

When an engine is started up, typically after a short transient
time it settles to a steady-state operation mode: the limit cycle.
An engine cycle has reached a limit cycle when the internal
variables of the working medium become periodic; i.e., no
energy or entropy is accumulated. Proper operation allows the
engine to shuttle heat from the hot to the cold bath while
extracting power. When the cycle time is reduced, friction
causes additional heat to be generated in the working medium.
The cycle adjusts by increasing the temperature gap between
the working medium and the baths leading to increased heat
exchange. In the extreme, this leads to a situation where heat
is dissipated to both the hot and cold baths and power is only
consumed. But when even this mechanism is not sufficient
to stabilize the cycle one can expect a breakdown of the
limit cycle. Here we study this phenomenon in the context
of finite-time quantum thermodynamics. The working fluid of
the engine consists of an ensemble of independent quantum
harmonic oscillators.
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The energy of a quantum harmonic oscillator is represented
by the Hamiltonian operator Ĥ , which can be written as

Ĥ = h̄ω
(
N̂ + 1

2

)
. (1)

Here ω denotes the angular frequency of the oscillator and N̂

is the number operator. The expectation value of the energy is
thus determined by ω and by the expectation value of N̂ . The
frequency ω is a scalar parameter which is determined by the
dynamical laws governing the system. It can also be written as
ω = √

k/m, where k denotes the spring constant and m denotes
the mass of the oscillator. However, the number operator is
related to the particular state which the system assumes: its
expectation value is a measure of the degree of excitation of
the system.

When an ensemble of harmonic oscillators is used as work-
ing fluid of a thermodynamic machine, such as a heat engine
or a refrigerator, both contributions to the energy change:
the changes represent the energy exchange mechanisms be-
tween the working fluid and the surroundings. Changing ω

corresponds to modifying the separation between the energy
levels, as happens when work is exchanged with the system,
whereas changing N corresponds to modifying the probability
distribution among the energy levels; a change in N occurs
either when heat or work is exchanged with the system. We can
represent a thermodynamic cycle on an (N + 1

2 )-ω diagram,
reminiscent of the pressure-volume diagram, which is often
used to represent thermodynamic cycles of machines having a
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FIG. 1. Comparison between a normal cycle, in the left panel, and a divergent cycle for which the steady state will never be reached, in
the right panel. The dashed curves represent the frequency dependence of the thermal equilibrium value of 〈N̂〉 for the temperatures of the hot
and cold heat reservoirs. The thin black rectangle inscribed between these curves is the long-time limit trajectory. The times allocated for the
adiabatic processes are τHC = τCH = 0.1. For the left panel τH = τC = 2, while for the right panel τC = 0.4 and τH = 0.29. The values of the
other parameters are listed in Sec. II D.

classical gas as working fluid. An example of such a diagram
is shown in Fig. 1(a). This trajectory shows the quantum
analogue of the classical Otto cycle, where the mechanical and
thermal energy exchanges take place during different steps of
the cycles, i.e., adiabatic and isochoric, respectively.

As shown in Ref. [1], and as will be discussed extensively in
the present work, in the finite-time regime there is no guarantee
that the system will converge to a limit cycle. The trajectory
plotted in Fig. 1(b) shows a case where the system is not able
to reach steady-state operation. The energy is poured into the
working fluid cycle after cycle in the form of mechanical work,
and, despite the contact with the heat reservoirs, the system
is not capable of dissipating the energy fast enough. From a
classical point of view this behavior would not be surprising:
nothing guarantees a priori that a system subject to a cyclic
mechanical and thermal forcing will ever exhibit a periodic
behavior.

However, the Lindblad formalism, which has been intro-
duced to describe quantum open system and the heat exchange
mechanism between such systems and a thermal reservoir,
has always been assumed to ensure the existence of a limit
cycle solution. Lindblad [2] has proven that the conditional
entropy decreases when applying a trace preserving completely
positive map L to both the state represented by its density
operator ρ̂ and the reference state ρ̂ref:

D(Lρ̂||Lρ̂ref) � D(ρ̂||ρ̂ref), (2)

where D(ρ̂||ρ̂ ′) = Tr[ρ̂(log ρ̂ − log ρ̂ ′)] is the conditional en-
tropy distance between the states ρ̂ and ρ̂ref. An interpretation
of this inequality is that a completely positive map reduces
the distinguishability between two states. This observation
has been employed to prove the monotonic approach to

equilibrium, provided that the reference state ρ̂ref is the only
invariant of the mapping L, i.e., Lρ̂ref = ρ̂ref [3,4]. The same
reasoning can prove a monotonic approach to the limit cycle
[5]. The mapping imposed by the cycle of operation of a heat
engine is a product of the individual evolution steps along
the branches composing the cycle of operation. Each one of
these evolution steps is a completely positive map, so that the
total evolution Ucyc that represents one cycle of operation is
also a completely positive map. If a state ρ̂lc is found that is a
single invariant of Ucyc, i.e., Ucycρ̂lc = ρ̂lc, then any initial state
ρ̂init will monotonically approach the limit cycle. The largest
eigenvalue of Ucyc with a value of 1 is associated with the
invariant limit cycle state Ucycr ρ̂lc = 1ρ̂lc, the fixed point of
Ucyc. The other eigenvalues determine the rate of approach to
the limit cycle.

The Lindblad-Gorini-Kossakowski-Sudarshan (L-GKS)
formalism [6,7] has been applied to the study of many models
of quantum heat engines; however, in some cases it may
be particularly important to address whether the underlying
assumptions are verified or not. Can we guarantee a single
nondegenerate eigenvalue of 1? In all previously studied cases
of a reciprocating quantum heat engine a single nondegenerate
eigenvalue of 1 was the only case found. The theorems on
trace preserving completely positive maps are all based on
C∗ algebra, which means that the dynamical algebra of the
system is compact. Can the results be generalized to discrete
noncompact cases such as the harmonic oscillator? Lindblad
in his study of the Brownian harmonic oscillator conjectured:
In the present case of a harmonic oscillator the condition
that L is bounded cannot hold. We will assume this form for
the generator with Ĥ and L unbounded as the simplest
way to construct an appropriate model [8]. The master
equation in Lindblad’s form for the harmonic oscillator is well
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established [9,10]; nevertheless, the noncompact character of
the resulting map has not been challenged.

In the present paper we will show a breakdown of the
approach to the limit cycle. This breakdown is associated
with a non-Hermitian degeneracy of the cycle propagator. For
special values of the cycle parameters the spectrum of the
non-Hermitian propagator Ucyc is incomplete. This is due to
the coalescence of several eigenvectors, referred to as a non-
Hermitian degeneracy. This difference between Hermitian
degeneracy and non-Hermitian degeneracy is essential. In the
Hermitian degeneracy, several different orthogonal eigenvec-
tors are associated with the same eigenvalue. In the case of
non-Hermitian degeneracy several eigenvectors coalesce to a
single eigenvector [11, Chapter 9]. As a result, the matrix Ucyc

is not diagonalizable.

II. MATHEMATICAL DESCRIPTION

A. The equations of motion in the Heisenberg picture

In the Schrödinger picture the mathematical description of
the time evolution requires the introduction of superoperators,
such as L and Ucyc. A superoperator is a linear operator
acting on the vector space of trace-class operators, such as the
density operator ρ̂, representing mixed states. We approach the
problem within the Heisenberg picture. Instead of employing
superoperators, the Heisenberg formalism involves a linear
operator acting on the vector space of Hermitian operators (the
observables). Both the trace-class operators and the Hermitian
operators referred to above are defined over the underlying
Hilbert space of pure states of the system.

To write the equations of motion in closed form, we need
a finite set of Hermitian operators which is closed under the
application of the commutator between any pair of operators
in the set. Such a set defines a Lie algebra, which we will
denote with the letter g. In particular, we consider a vector
space over the field R of the real numbers, which is spanned
by the set of anti-Hermitian operators {iX̂j }, where X̂j denotes
a Hermitian operator and i denotes the imaginary unit. We will
use the symbolˆto indicate operators acting on the Hilbert space
of the system. This vector space of anti-Hermitian operators,
equipped with the Lie brackets consisting of the commutator
between operators, is the Lie algebra g. In fact a Lie algebra
is defined as a vector space equipped with a binary operation
called Lie bracket which must be bilinear, alternating, and must
obey the Jacobi identity. The commutator obeys all these three
properties: it is bilinear, it is alternating, meaning that [X̂,X̂] =
0 ∀X̂ ∈ g, and satisfies the Jacobi identity: [X̂,[Ŷ ,Ẑ]] +
[Ẑ,[X̂,Ŷ ]] + [Ŷ ,[Ẑ,X̂]] = 0 ∀X̂,Ŷ ,Ẑ ∈ g. A Lie algebra is
associated to a Lie group: a continuous symmetry group which
is compatible with a differential structure.

For the basis {iX̂j } the commutation relations can be ex-
pressed in term of the structure constant �h

j
k ∈ R, according

to the following equation:

[iX̂h,iX̂
j ] =

∑
k

�h
j
k iX̂k. (3)

We will denote matrices with bold letters, as A, and vectors
with underlined letters, as B. Upper indices, as in X̂j , indicate
the components of a column vector, while lower indices

indicate the components of row vectors. We will denote by
X̂ the vector of operators in the basis: X̂ = (X̂1,X̂2, . . . )T .
It is convenient to introduce the set of matrices {Ah}, whose
coefficients ah

j

k are equal to the coefficients of the structure
constant:

ah
j

k = �h
j
k. (4)

The matrix Ah corresponds to the linear transformation adiX̂h

consisting of taking the commutator with the operator iX̂h.
Using this notation, Eq. (3) is written as

adiX̂h
(iX̂) ≡ [iX̂h,iX̂] = Ah iX̂. (5)

For a set of Hermitian operators {X̂j } to be closed with respect
to the equations of motion, it is necessary that the Hamiltonian
operator Ĥ be a linear combination with real coefficients of
the set {X̂j }:

Ĥ =
∑

h

chX̂h with ch ∈ R, ∀h. (6)

Some Hamiltonians, e.g., an oscillator governed by an ex-
plicitly time-dependent potential or a nonharmonic potential
(e.g., containing a quartic term), cannot be expressed as a
combination of elements of a finite-dimensional Lie algebra.
In that case, the mathematical treatment discussed in this
paper cannot be applied to such systems. However, as will
be discussed in Sec. II C, the Hamiltonian operator describing
a quantum harmonic oscillator can be expressed as a linear
combination of the elements of a finite-dimensional Lie algebra
[12]. The Heisenberg equation of motion for a Hermitian
operator X̂j which does not depend explicitly on the time t

is given by

d

dt
X̂j = i

h̄
[Ĥ ,X̂j ] = 1

h̄

∑
h

chi[X̂h,X̂
j ]

= 1

h̄

∑
h

∑
k

ch�h
j
k X̂k. (7)

The evolution equation can be written in matrix form:

d

dt
X̂ = 1

h̄

∑
h

ch AhX̂ = AX̂, (8)

where the matrix A is defined by

A = 1

h̄

∑
h

ch Ah ⇐⇒ a
j

k = 1

h̄

∑
h

ch�h
j
k. (9)

The transposed matrices Ah
T correspond to the expansion

of the adjoint representation of the algebra g. If Ŷ = ∑
j yj X̂j

and Ẑ = ∑
k zkX̂k = [iX̂h,Ŷ ], then we have zk = ∑

j �hj
kyj .

Since a representation of a Lie algebra is a homeomorphism,
the Lie brackets of the original algebra are mapped into
Lie brackets of its representation [13]. This means that the
structure constant is the same, i.e., the commutators between
two matrices Ah

T and Aj
T are given by[

Ah
T ,Aj

T
] =

∑
k

�hj
k Ak

T . (10)
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The set of matrices {Ah} will be useful in the following sections
for the purpose of highlighting the invariance properties obeyed
by the equations of motion.

B. The time-evolution equation

We now consider the general solution to the equation of
motion expressed by Eq. (8). The solution can be formally
written in terms of the time-evolution matrix U(t):

X̂(t) = U(t) X̂(0). (11)

The matrix U(t) satisfies the following differential equation:

d

dt
U = A U with U(0) = 1. (12)

The solution to this equation can always be written in terms of
the exponential of a matrix �:

U(t) = exp(�(t)). (13)

Three cases exist [14]. The simplest case is when the matrix A
is time-independent. In this case � is given by

�(t) = t A. (14)

The second case is when A is time dependent but satisfies
the property [A(t),A(t ′)] = 0,∀t,t ′, i.e., when A has no
autocorrelation. The solution is then given by

�(t) =
∫ t

0
dt ′ A(t ′). (15)

The solution, for the general case [A(t),A(t ′)] �= 0, can be
written in terms of the Magnus expansion. The matrix � is
written as a sum of a series:

�(t) =
∞∑

k=1

�k(t). (16)

The various terms of the expansion involve nested commuta-
tors between the matrix A at different time instants:

�1(t) =
∫ t

0
dt1 A(t1),

�2(t) = 1

2

∫ t

0
dt1

∫ t1

0
dt2 [A(t1),A(t2)],

�3(t) = 1

6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ([A(t1),[A(t2),A(t3)]]

+ [A(t3),[A(t2),A(t1)]]).

. . . (17)

In the following sections it will be necessary to consider the
latter case for which the time-evolution equation is expressed in
terms of the Magnus expansion. We will consider the equation
of motion obeyed by the expectation values of the operators
in the algebra. The expectation value of an operator X̂ will be
denoted by X.

C. Equations of motions for the harmonic oscillator

The Hamiltonian operator Ĥ is generally written in terms
of the position operator Q̂ and the momentum operator P̂ :

Ĥ (t) = 1

2m
P̂ 2 + 1

2
m[ω(t)]2 Q̂2. (18)

It is convenient to consider the following real Lie algebra of
anti-Hermitian time-independent operators:

[iQ̂2,iD̂] = −4h̄ iQ̂2,

[iD̂,iP̂ 2] = −4h̄ iP̂ 2, (19)

[iP̂ 2,iQ̂2] = +2ih̄ iD̂.

Here the operator denoted by D̂ is the position-momentum
correlation operator, defined as

D̂ = Q̂P̂ + P̂ Q̂. (20)

Many studies [15–17] on quantum heat machines having as
working medium an ensemble of harmonic oscillators choose
a different basis for the Lie algebra. However, any result is
independent of the choice of basis and could be equivalently
derived with any set of linearly independent operators spanning
the same space. In the present work we decided to adopt
the basis {Q̂2,D̂,P̂ 2} because, not depending explicitly on
the time, it will make the mathematical derivations more
transparent.

With our choice of basis, the set of matrices {Ah}, defined
by Eq. (4), are given by

A1 = h̄

⎛
⎝ 0 0 0

−4 0 0
0 −2 0

⎞
⎠; A2 = h̄

⎛
⎝+4 0 0

0 0 0
0 0 −4

⎞
⎠;

A3 = h̄

⎛
⎝0 +2 0

0 0 +4
0 0 0

⎞
⎠. (21)

Here A1, A2, and A3 correspond to the operators Q̂2, D̂, and
P̂ 2, respectively. As mentioned in the previous section, the
matrices {Ah} form a real Lie algebra:

[A1,A2] = +4h̄ A1,

[A2,A3] = +4h̄ A3, (22)

[A3,A1] = −2h̄ A2.

The reason why the commutation relations of Eq. (22) present
a minus sign, when compared to the relations for the orig-
inal algebra given by Eq. (19), is that the matrices {Ah}
are the transpose of the matrices {Ah

T } giving the adjoint
representation.

The dynamical matrix A for the basis {Q̂2,D̂,P̂ 2} is derived
from Eq. (7) [18]. Using the symbols k = mω2 and J = 1/m,
the Hamiltonian operator is written as

Ĥ = (J/2)P̂ 2 + (k/2)Q̂2. (23)

Therefore, according to Eq. (9), the matrix A can be decom-
posed as

A = (J/2)A3 + (k/2)A1. (24)

It should be stressed that all the relations presented so far
retain the same form when the coefficients J and k are time-
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dependent. During the adiabatic processes, the frequency ω is
time dependent and therefore the coefficient k = mω2 is too.

The evolution equation for an isochoric processes, which
involves heat coupling between the system and a thermal
reservoir, requires the use of the Lindblad equation. For the
harmonic oscillator Lindblad’s equation is expressed in the
Heisenberg picture as the following equation of motion [16]:

d

dt
X̂j = i

h̄
[Ĥ ,X̂j ] + k↓

(
â†X̂j â − 1

2
{â†â,X̂j }

)

+ k↑

(
âX̂j â† − 1

2
{ââ†,X̂j }

)
. (25)

Here the operators â and â† are the annihilation and creation
operators, respectively. The two coefficients k↑ and k↓ are
known as transition rates. To satisfy the detailed balance
condition, the ratio between the transition rates must satisfy
the relation k↑/k↓ = exp(−βh̄ω), where β = 1/kBT is the
inverse temperature. Equation (25) is based on the assumption
that the Hamiltonian operator Ĥ does not depend explicitly on
the time.

The nonunitary terms in the equation of motion, Eq. (25),
require the introduction of the identity operator 1̂. In matrix
form this equation can be then expressed as [18]

d

dt

⎛
⎜⎝

Q2

D

P 2

1

⎞
⎟⎠ =

⎛
⎜⎜⎝

−� +J 0 �
k
Heq

−2k −� +2J 0
0 −k −� �

J
Heq

0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎝

Q2

D

P 2

1

⎞
⎟⎠,

(26)

where Heq = (h̄ω/2)coth(βh̄ω/2) is the thermal equilibrium
energy corresponding to the inverse temperature β, and � =
k↓ − k↑ denotes the heat conductance. When the identity op-
erator is introduced, we modify the definitions of the matrices
{Ah} expressed by Eq. (21) by filling with zeros the coefficients
corresponding to the fourth component.

D. The Otto cycle

As mentioned, the Lindblad form of the equation of motion
is valid as long as the Hamiltonian operator is not explicitly
time dependent. For this reason we select a thermodynamic
cycle where the heat transfer and mechanical work transfer
never occur simultaneously, i.e., the Otto cycle. During one
cycle of operation of the engine, the ensemble of oscillators
undergoes the following four processes in order: hot isochore,
expansion adiabat, cold isochore, and compression adiabat.

The hot and cold frequencies are denoted by ωH and ωC ,
respectively. Adopting the same notation, the inverse tempera-
tures are denoted by βH and βC , the heat conductances by �H

and �C , the times allocated for each of these four processes
by τH , τHC , τC , and τCH , and the evolution matrices by UH ,
UHC , UC , and UCH . The total duration of a complete cycle
is the sum τ = τH + τHC + τC + τCH , and the time-evolution
matrix U(τ ) is the ordered product of the evolution matrices
for the four processes:

U(τ ) = UCH UCUHCUH . (27)

To facilitate the comparison between the different results
presented in this work, we fix the parameters which are used

to calculate all the figures corresponding to the harmonic
oscillator:

ωH = 30, ωC = 15, βH = 0.008, βC = 0.03,

�H = �C = 0.7, m = 1, h̄ = 1. (28)

During the expansion adiabat the frequency varies from ωH to
ωC , and conversely for the compression adiabat. The time de-
pendence of the frequency is selected so that the dimensionless
adiabatic parameter, μ = ω̇/ω2 is constant. With this choice
the time-evolution matrix for the adiabatic processes can be
calculated analytically [15,19].

The mechanical work extracted from the working medium
during each adiabatic step is the opposite of the difference be-
tween the expectation value of Ĥ at the end and the beginning
of the step. For example, the work extracted during the expan-
sion adiabat is given by: WHC = −[H (τH + τHC) − H (τH )].
The total work Wtot extracted during one cycle is obtained as
the net sum of the two contributions from the compression
and expansion adiabats: Wtot = WHC + WCH . The average
power P tot extracted from the system is the work divided by
the duration of the cycle τ :

P tot = Wtot

τ
. (29)

An example of a power landscape as function of the isochore
times τH and τC is shown in Fig. 2(a). The white regions
correspond to divergent behavior as the trajectory shown in
Fig. 1(b), when the system is not able to converge to a
limit cycle. Gray regions correspond to cycles where the heat
transfer has the wrong sign for at least one of the isochoric
steps. Black regions correspond to cycles providing negative
work. For the regions of normal operation of the engine the
color indicates the total power output P tot according to the
scale shown on the right-hand side of the axes. One example
of such a normal trajectory is shown in Fig. 1(a). Note that
the border between gray and white regions does not coincide
with the boundaries of the regions with real eigenvalues (see
Sec. III B).

For consistency we will now briefly review the essentials
of the procedure discussed in Ref. [1], which concerns the
determination of limit cycles, and the classification of their
stability. Since the identity operator 1̂ does not evolve with
time, it is insightful to consider the analogy with homogeneous
coordinate systems. From this point on we will denote with the
symbol˜the 3 × 1 vectors and 3 × 3 matrix blocks acting on the
first three variables Q2, D, and P 2. In this notation, the matrix
A giving the equations of motion is written as in Eq. (A1).
Because of the properties discussed in Appendix 1, the time-
evolution equations presented in Sec. II B applied to a matrix
A of this form always produce a time-evolution matrix U with
the structure of Eq. (A4). The 3 × 3 matrix Ũ is the linear part
of the evolution, the vector C̃ acts as a translation in the space
of the first three variables. The relation X(t + τ ) = U(τ )X(t)
is thus analogous to: X̃(t + τ ) = Ũ(τ )X̃(t) + C̃(τ ). A point

X̃
0

is invariant under the previous equation if at the time t = 0
it satisfies

X̃
0 = Ũ(τ )X̃

0 + C̃(τ ) = [1̃ − Ũ(τ )]−1 C̃(τ ). (30)
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FIG. 2. Left panel: power landscape for τHC = τCH = 0.1. The white regions correspond to choices of parameters for which the system is
not able to converge to a limit cycle, as for the trajectory shown in Fig. 1(b). Right panel: eigenvalues of the 3 × 3 block Ũ of the time-evolution
matrix for one cycle. The dark and bright shades of the same hue indicate the real and imaginary parts of the same eigenvalues, respectively.
Dashed multicolored lines indicate that the curves of the corresponding colors overlap. When one of the eigenvalues, in this case u+, has
modulus greater than 1, the limit cycle can never be reached. This figure corresponds to the segment highlighted by the horizontal red line
shown in the left panel, τC = 0.4.

This equation expresses the fact that the invertibility of 1̃ −
Ũ(τ ) is a sufficient condition for the existence of an invariant
point X̃

0
, which can also be called a stationary solution.

The invertibility of 1̃ − Ũ(τ ) does not guarantee that the
stationary solution is stable, i.e., an attractive equilibrium
point. An equilibrium point X̃

0
is attractive if it is obtained from

an arbitrary initial state by iteratively applying the one-cycle
evolution for an infinite number of cycles. As discussed in
Ref. [1], this condition can be verified if and only if the moduli
of all the eigenvalues of the 3 × 3 matrix Ũ(τ ) are strictly
smaller than 1.

The eigenvalues of Ũ are plotted in Fig. 2(b) as functions
of the hot isochore time τH . The colors red, green, and blue
identify the three different eigenvalues. For each of the three
colors there is a darker shade, indicating the real part, and
a brighter shade, indicating the imaginary part. As can be
noticed, in the middle region of the graph, delimited by the
thick vertical black lines, all three eigenvalues are real. As we
will show in the next sections, when the eigenvalues are not
purely real, they are necessarily complex numbers with norm
equal to e−�(τH +τC ).

We can also see from the figure that in the smaller central
region delimited by the thin vertical black lines, the eigenvalue
u+ corresponding to the blue curve is greater than 1. In this
region the system is not able to converge to a limit cycle,
behaving as the example shown in Fig. 1(b).

III. THE ROLE OF EXCEPTIONAL POINTS

A. Decomposing the equations of motion

In this section we consider a decomposition of the equations
of motions which clarifies that the effect of the diagonal terms

in Eq. (26) can be factored out and resolved from the remaining
terms of the equations. This factorization will be used in the
next section to highlight the nature of the transition between
the oscillatory behavior, when the eigenvalues of Ũ(τ ) are
complex, and the exponential behavior, when the eigenvalues
of Ũ(τ ) are real.

We start by considering the matrices defined in Eq. (21),
which, according to the notation introduced in Sec. II D, will be
denoted by Ãh since they are 3 × 3 matrix blocks. Moreover,
we introduce the matrix Ã0 which commutes with the other
three matrices:

Ã0 =
⎛
⎝+1 0 0

0 +1 0
0 0 +1

⎞
⎠. (31)

We notice that the first 3 × 3 block of A from Eq. (26) can be
written as

Ã = −� Ã0 + (J/2) Ã3 + (k/2) Ã1. (32)

This equation generalizes Eq. (24) by including the diagonal
terms proportional to the heat conductance �. During the
isochoric processes A is time independent and U can be
calculated by taking the exponential of t A. We now use the
property expressed by Eq. (A5) in the Appendix. For the hot
isochore process (and similarly for the cold one) we have

ŨH = e−�τH exp{τH [(J/2) Ã3 + (k/2) Ã1]}. (33)

Since Ã0 is proportional to the identity matrix 1̃, the expo-
nential of the matrix � Ã0 can be written as a multiplying
scalar. Because of the property expressed by Eq. (A7) from
Appendix 1, the 3 × 3 block of the one-cycle evolution matrix
U(τ ) can be obtained by multiplying the 3 × 3 blocks of the
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four evolution matrices corresponding to the adiabatic and
isochoric processes composing the cycle:

Ũ(τ ) = ŨCH ŨCŨHCŨH . (34)

The effect of the dissipative processes on the 3 × 3 block Ũ(τ )
is to introduce a multiplicative scalar factor e−�(τH +τC ).

B. Transition to real eigenvalues:
Third-order non-Hermitian degeneracy

We will now show that the transition between real and
complex eigenvalues involves an exceptional point where the
three eigenvectors coalesce. This transition corresponds to,
e.g., the values of τH indicated by the thick vertical black lines
of Fig. 2(b). When the norm of the eigenvalues is smaller than
one, complex eigenvalues correspond to a stable spiral, while
real eigenvalues correspond to a stable node.

For now we consider the 3 × 3 matrix Ũ(τ ) disregarding
the factor e−�(τH +τC ). Disregarding this factor is equivalent to
setting � = 0. The problem is reduced to finding the evolution
matrix having time derivative given by

Ã(t) = (J (t)/2) Ã3 + (k(t)/2) Ã1. (35)

The solution of the corresponding differential equation re-
quires the use of a Magnus expansion because Ã is time-
dependent and exhibits autocorrelation. It follows from the
expression of the various terms appearing in the expansion,
that if Ã belongs to a Lie algebra, then �̃ does too, and it is
always possible to express it as a linear combination of the
matrices Ã1, Ã2, and Ã3:

�̃(τ ) = α1 Ã1 + α2 Ã2 + α3 Ã3. (36)

The coefficients α1, α2, and α3 are real. The eigenvalues of
�̃ are w0 = 0 and w± = ±

√
α2

3 − 4α1α2. This shows that one
of the eigenvalues of Ũ = exp(�̃) is always equal to u0 = 1,
plotted in green in Fig. 2(b). Since all the involved coefficients
are real, the eigenvalues of �̃ can either be all real, or one
real and two complex conjugates. If we are in the second
case, the simultaneous requirements that they are opposite
and complex conjugate of each other, implies that they must
be purely imaginary. The two conjugate eigenvalues w± are
thus either ±λ or ±iλ, with λ ∈ R. Since the eigenvalues are
continuous functions of the parameters, such as τH , the only
way they can go from ±λ to ±iλ is by becoming 0, in which
case the three eigenvalues of �̃ are all 0. In this point all the
eigenvalues of Ũ thus are equal to 1.

Applying Gaussian elimination on the matrix �̃(τ ), we
obtain the following matrix:

�̃
′
(τ ) =

⎛
⎝1 0 −α1/α2

0 1 +α3/α2

0 0 0

⎞
⎠. (37)

Since there are two nonzero rows in �̃
′
, the rank of �̃ is always

2. The same result remains true as long as at least one of the
three coefficients α1, α2, α3 is �= 0.

Because of the rank-nullity theorem, the dimension of the
kernel of �̃

′
is always 1. The kernel can also be thought as

the eigenspace corresponding to the eigenvalue 0. A matrix
�̃ and its exponential Ũ always have the same eigenvectors;

the eigenvalues of Ũ are the exponential of the eigenvalues of
�. This property is true even in the nondiagonalizable case as
it follows directly from the definition of the exponential of a
matrix: Ũ = ∑∞

k=0
1
k! �̃

k
. Therefore, the eigenspace associated

with the eigenvalue of Ũ which is equal to 1 has dimension
always equal to 1, thus implying threefold non-Hermitian
degeneracy at the transition from complex to real eigenvalues.

The eigenvalues of �̃ are plotted as functions of τH in
Fig. 3(a). This figure includes the factor e−�(τH +τC ), which has
the effect of translating the real part of the eigenvalues of �̃ by
−�(τH + τC). As can be seen from the figure, the eigenvalue
w0, plotted in green, is always equal to −�(τH + τC). Except
for this translation, the eigenvalues w± are either purely
imaginary or purely real and always opposite of each other.
With the translation the real parts are symmetric with respect
to the line −�(τH + τC). The transition between real and
imaginary is indicated by the thick vertical black lines.

To confirm the presence of non-Hermitian degeneracy we
consider the matrix T having the eigenvectors of U as columns.
The signature of non-Hermitian degeneracy is vanishing of the
determinant: when U is not diagonalizable, T is singular, since
two or more of its columns are linearly dependent. The absolute
value of the determinant of T is plotted in blue in Fig. 3(b). The
determinant vanishes for the values of τH indicated by the thick
vertical black lines, indicating the transition between real and
complex eigenvalues. We already notice that the determinant
is also zero on the points indicated by the thin vertical black
lines, and this is the subject of the next section.

C. Transition to divergent behavior:
Second-order non-Hermitian degeneracy

In this section we consider the fourth column of the matrix
U , and we will show that the transition between convergent
and divergent behavior involves an exceptional point. This
transition corresponds to, e.g., the values of τH indicated by
the thin vertical black lines of Fig. 2(b). In the region where
the eigenvalues are real, and at least one of the eigenvalues is
larger than 1, the equilibrium point is unstable.

We now consider the full 4 × 4 matrix �, still omitting
the e−�(τH +τC ) factor for now. When the fourth coordinate is
included, the most general form of matrix � can be written as

� =

⎛
⎜⎝

+α3 +α1 0 c1

−2α2 0 +2α1 c2

0 −α2 −α3 c3

0 0 0 0

⎞
⎟⎠. (38)

The eigenvalues of �̃ were w0 = 0 and w± = ±
√

α2
3 − 4α1α2.

The matrix � has one additional eigenvalue which is equal to
0 (see Appendix 1). Gaussian elimination gives

�′ =

⎛
⎜⎝

1 0 −α1/α2 0
0 1 +α3/α2 0
0 0 0 1
0 0 0 0

⎞
⎟⎠. (39)

The rank of � is thus 3, and therefore the eigenspace associated
with the degenerate eigenvalue 0 has dimension 1. Therefore,
whenever two of the eigenvalues of the 4 × 4 matrix �

are simultaneously equal to 0, a second-order non-Hermitian
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FIG. 3. Left panel: eigenvalues of �̃. Dashed segments indicate coincidence of the relevant colors. As can be noticed, in the middle region
delimited by the thick vertical lines the eigenvalues are purely real. Outside of this region the real part of all the eigenvalues is equal to
−�(τH + τC). At the transition between these two regions all the eigenvalues are exactly equal to −�(τH + τC). Right panel: the blue curve
shows the absolute value of the determinant det(T ) of the matrix T having as columns the eigenvectors of the time-evolution matrix U(τ ).
When the determinant is zero we are at an exceptional point, i.e., non-Hermitian degeneracy. For both panels τHC = τCH = 0.1 and τC = 0.4,
as in Fig. 2(b).

degeneracy is present. Since w0 = 0, this degeneracy would
always be present if it was not for the e−�(τH +τC ) factor
multiplying the first three eigenvalues of U . The quantity
�(τH + τC) is subtracted from the first three eigenvalues of
�. The degeneracy can thus only appear when w+ is equal
to 0, corresponding to the point where u+ is 1. This point
is where the transition from convergent to divergent behavior
occurs. As can be seen from Fig. 3(b), the determinant vanishes
for the values of τH indicated by the thin vertical black lines,
indicating the transition from convergent to divergent behavior.

IV. EXISTENCE OF LIMIT CYCLE

A. Sufficient condition on the structure constant

We will now show that when the structure constant is
invariant under cyclic permutation of the indices, the existence
of a limit cycle is guaranteed.

The matrix exponential of a skew-symmetric matrix is an
orthogonal matrix, and the eigenvalues of an orthogonal matrix
always have absolute value equal to 1. Because of the results
of Sec. II D, we can focus on the matrix �̃ appearing in the
Magnus expansion.

Remembering that the commutator between two skew-
symmetric matrices is also skew symmetric, we conclude that
if Ã is skew symmetric then all the terms �k appearing in the
Magnus expansion are skew symmetric, and so is the sum �.

For the matrix A to be skew symmetric, the structure con-
stant �hj

k must be antisymmetric with respect to an exchange
between the indices j and k. The structure constant is always
antisymmetric in the first two indices, �hj

k = −�jh
k , since this

corresponds to exchanging the operators in the commutator
of the left-hand side of its definition, given by Eq. (3). If the

structure constant is also invariant under cyclic permutations of
the indices, then it is completely antisymmetric in all indices.
In fact, exchanging j and k would give

�hk
j = �jh

k = −�hj
k. (40)

As we will see in Sec. IV D, the structure constant of the spin
system satisfies this property and the existence of a limit cycle
is guaranteed.

B. Sufficient condition on the Lie algebra

In this section we discuss the invariance of the structure
constant under cyclic permutation of the indices. In particular,
we review a sufficient condition for this property to be verified.
This condition defines a class of Lie algebras which guarantees
the invariance property: for a compact semisimple Lie algebra
there is always a basis for which the structure constant is
invariant under cyclic permutation of the indices. We assume
a finite-dimensional Lie algebra g defined over the field of
the real numbers R. It is convenient to work with the adjoint
representation, whose generic elements will be denoted X

and Y . The killing form in the adjoint representation is the
symmetric bilinear form K defined as

K(X,Y ) = Traceg(XY ). (41)

The notation Traceg has the purpose of stressing that the trace
is to be intended with respect to the finite-dimensional vector
space of the elements composing the Lie algebra g.

Since a representation is a homeomorphism between Lie
algebras, the structure constant of the adjoint representation
is the same as the one for the original Lie algebra. By
Cartan’s criterion for semisimplicity, a finite-dimensional real
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Lie algebra is semisimple if and only if the killing form is
nondegenerate [13]. Moreover, it can be shown that the killing
form of a compact Lie algebra is negative semidefinite [20].
These two properties together imply that the killing form of
a finite-dimensional compact semisimple real Lie algebra is
negative definite.

Since the killing form K is always a symmetric and bilinear
form, when it is also definite it can be used to construct a scalar
product. Therefore, the scalar product between two elements
X and Y can be defined as

〈X|Y 〉 = −K(X,Y ). (42)

Once the algebra has been equipped with a scalar product, one
can choose an orthonormal basis {Ak}. Such a basis can always
be extracted from an arbitrary basis by means of the Gram-
Schmidt process. The scalar product between two elements Ai

and Aj is thus given by

〈Ai |Aj 〉 = −Kij = −Trace(AiAj ) = δij . (43)

We now review the derivation discussed in Ref. [21]. We
start by considering the commutator between two elements,
expressed in terms of the structure constant:

[Aj,Ak] =
∑

i

�jk
i Ai. (44)

It is then possible to take advantage of the property expressed
by Eq. (43) and write

Trace(Al[Aj ,Ak]) =
∑

i

�jk
i Trace(AlAi)

=
∑

i

�jk
i(−δli) = −�jk

l. (45)

We can exploit the cyclic property of the trace to manipulate
the same expression in a different way:

Trace(Al[Aj,Ak]) = Trace(Al AjAk) − Trace(Al AkAj )

= Trace(AkAl Aj ) − Trace(AlAk Aj )

= Trace([Ak,Al]Aj )

=
∑

i

�kl
i Trace(AiAj )

=
∑

i

�kl
i (−δij ) = −�kl

j . (46)

Since the starting point of Eqs. (45) and (46) is the same, we
can equate their respective results. Removing the minus sign
gives

�jk
l = �kl

j , (47)

which expresses the cyclic property of �. In conclusion, as long
as the Lie algebra of operators is finite-dimensional, compact,
and semisimple, there is a basis under which the structure
constant is invariant under cyclic permutation of the indices
and thus completely antisymmetric.

As a counterexample we consider the harmonic oscillator.
As can be calculated from the matrices {Ah} defined in
Eq. (21), the matrix representation of the killing form for the

corresponding algebra is given by

K = h̄2

⎛
⎝ 0 0 −16

0 +32 0
−16 0 0

⎞
⎠. (48)

The eigenvalues of K are 32 h̄2 and ± 16 h̄2, showing that the
killing form is indefinite. Therefore, the arguments presented
in this section do not apply to the harmonic oscillator.

C. Dimensionality of the Hilbert space

As we will argue in the present section, a finite-dimensional
Hilbert space does not admit divergent behavior. We consider
a finite-dimensional Hilbert space H over the field C of the
complex numbers. We will argue that the real Lie algebra
u(M) of all anti-Hermitian operators over H has dimension
M2 and there is a basis for which the structure constant is
completely antisymmetric. Let M be the dimensionality of the
Hilbert space and the set {|ψm〉}m=1=,...,M be an orthonormal
basis. A basis for the real vector space of all anti-Hermitian
operators is given by

X̂n = i|ψn〉〈ψn|, with 1 � n � M,

Ŷnm = 1√
2

(|ψn〉〈ψm| − |ψm〉〈ψn|),

with 1 � n < m � M,

Ẑnm = i√
2

(|ψn〉〈ψm| + |ψm〉〈ψn|),

with 1 � n < m � M. (49)

We thus have the M diagonal operators X̂n, the M(M −
1)/2 “anti-symmetric” operators Ŷnm, and the M(M − 1)/2
“symmetric” operators Ẑnm. All together there are thus M2

anti-Hermitian operators which we will collectively denote by
{An}. This algebra is the generator of the unitary group U (M),
and it can be shown that it is compact. However, the algebra
is not semisimple, since it contains the operator i1̂, which
commutes with all the remaining operators. This operator
forms a one-dimensional abelian ideal of u(M), which prevents
the algebra from being semisimple.

The lack of this property does not constitute an issue: it
is possible to extract a set of M − 1 traceless independent
operators {χ̂n}n=1,...,M−1 from the set {X̂n}n=1,...,M such that the
resulting subalgebra is compact and semisimple. The killing
form of this subalgebra is thus negative definite. The resulting
(M2 − 1)-dimensional algebra su(M) is the generator of the
special unitary group SU(M). The most well-known basis is
given by the generalized Gell-Mann matrices [22,23]:

χ̂n =
(

2

n(n + 1)

)1/2
(
−n|ψn+1〉〈ψn+1| +

n∑
k=1

|ψk〉〈ψk|
)

,

with 1 � n � M − 1. (50)

It can be shown that, over this basis, the structure constant of the
algebra is completely antisymmetric [23]. Since the operator
i1̂ commutes with any operator, when it is reintroduced in the
set of operators the structure constant will not lose the property
of being completely antisymmetric.
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It can also be shown that any subalgebra of an algebra whose
killing form is negative definite satisfies the same property. We
consider again the calculation of the killing form in the adjoint
representation. If the killing form K is negative definite there
is a basis {Aj }j=1,...,N over which its matrix elements Kmn are
given by

Kmn = Trace(AmAn) = −δnm. (51)

We now consider a rectangular matrix C which constructs the
sub-algebra {A′

j }j=1,...,N ′<N from the original algebra:

A′
j =

N∑
m=1

CjmAm, with j = 1, . . . ,N ′ < N. (52)

The matrix elements K ′
jk of the new killing form can be

calculated from the following equation:

K ′
jk = Trace(A′

jA
′
k) =−

∑
nm

CjmCknδnm

= −
∑

n

CjnCkn. (53)

In matrix form the killing form of the subalgebra expanded
over the basis {A′

j }j=1,...,N ′<N is thus expressed as

K ′ = −CCT . (54)

A matrix of the form CCT can be shown to be always
symmetric:

(CCT )T = (CT )T CT = CCT . (55)

Moreover, CCT is always positive semidefinite:

xT CCT x = (CT x)T (CT x) � 0. (56)

The equality can only occur for a nonzero vector x if C is
singular. If the matrix C defines a basis for the subalgebra it
must be nonsingular, thus guaranteeing that CCT is positive
definite, and that the killing form K ′ is negative definite.

It is worth mentioning that the expectation value of any
Hermitian operator L̂ defined over a finite-dimensional Hilbert
space H has an upper and a lower limit:

〈L̂〉 =
M∑

m=1

pmLm. (57)

Here pm denotes the probability associated with the eigen-ket
corresponding to the eigenvalue Lm. Denoting by |Lm〉 the
eigen-ket corresponding to the eigenvalue Lm, and by ρ̂ the
density operator, the probability pm is given by

pm = Trace(ρ̂|Lm〉〈Lm|). (58)

Since the probabilities satisfy 0 � pm � 1 and
∑

m pm = 1,
the upper limit of 〈L̂〉 is given by the largest eigenvalue of L̂,
and the lower limit is given by its smallest eigenvalue. This
argument alone would be sufficient to exclude the possibility
of diverging to infinity.

One would be tempted to apply the same arguments to
infinite-dimensional Hilbert spaces. However, since the trace
of an operator defined over an infinite-dimensional space H∞
might not exist, it is not guaranteed that the series involved
in the previous derivations are convergent. For this reason

not all the algebras of anti-Hermitian operators over H∞ are
characterized by a negative-definite killing form.

D. Comparison with the spin system

We now consider the case of two coupled spin systems in
the presence of an external oscillating magnetic field. This
system can be treated by considering the following algebra of
time-independent Hermitian operators [24]:

[B̂1,B̂2] = +
√

2iB̂3, (59)

[B̂2,B̂3] = +
√

2iB̂1, (60)

[B̂3,B̂1] = +
√

2iB̂2. (61)

It is apparent that the structure constant �hj
k is invariant under

cyclic permutation of the indices and therefore is completely
antisymmetric. As can be explicitly calculated, the matrix
representation of the killing form over this basis is proportional
to the identity matrix and is thus negative definite. The
Hamiltonian operator governing this system is defined as

Ĥ = h̄ω(t)B̂1 + h̄J B̂2. (62)

The equation of motion can then be written in matrix form as
in the following equation:

d

dt

⎛
⎝B1

B2

B3

⎞
⎠ =

⎛
⎝ 0 0 +J

0 0 −ω

−J +ω 0

⎞
⎠

⎛
⎝B1

B2

B3

⎞
⎠. (63)

Instead of the set of matrices A1, A2, and A3, defined in
Eq. (21), we see that A belongs to the semisimple compact
algebra so(3) of 3 × 3 skew-symmetric matrices, which gen-
erates the group of rotations SO(3).

As for the harmonic case, the equation of motion which
describes the isochoric steps must include the identity operator
as fourth element of the algebra. The evolution matrix is
modified by subtracting the matrix � A0 defined in Eq. (31)
and by populating the first three entries of the fourth column
with expressions which include � and the equilibrium energy
Heq:

d

dt

⎛
⎜⎝

B1

B2

B3

1

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

−� 0 +J �ω
�2 Heq

0 −� −ω �J
�2 Heq

−J +ω −� 0
0 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎝

B1

B2

B3

1

⎞
⎟⎠, (64)

where the constant � is given by: � = √
ω2 + J 2, and the

equilibrium energy is Heq = � tanh(−�β/2). The set of pa-
rameters used for the calculations of this section are

ωH =
√

41, ωC =
√

11, βH = 0.008,

βC = 0.03, �H = �C = 0.2, J = 2. (65)

The closed form of the limit cycle can be determined exactly
in the same way as for the harmonic oscillator. Because of the
results of the previous sections we already know that the limit
cycle exists for every possible choice of parameters.

The power landscape for the spin system as a function of
the isochore times τH and τC is shown in Fig. 4(a). As can
be noticed, the white islands indicating divergent behavior are
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FIG. 4. Left panel: power landscape for two coupled spins in presence of an oscillating magnetic field. This system can never exhibit
divergent behavior and indeed the white regions visible in Fig. 2(a) are not present here. The adiabat times are: τHC = τCH = 0.64. Right panel:
eigenvalues of the 3 × 3 block Ũ of the time-evolution matrix for one cycle. For the spin system the moduli of the eigenvalues are always equal
to e−�(τH +τC ) < 1, ensuring the existence of a limit cycle. This panel corresponds to the segment highlighted by the horizontal red line shown
in the left panel, i.e., τC = 1.6.

not present in this case. The eigenvalues of Ũ are plotted as
functions of τH in Fig. 4(b). For the spin system, the moduli
of all the eigenvalues are always equal to e−�(τH +τC ). Notice
that in the middle point where the eigenvalues u+ and y− are
almost equal, they actually lie on opposite sides of the zero
line. Even in the case of a triple degeneracy, Ũ could only
become proportional to the identity matrix and the degeneracy
would be Hermitian.

V. DISCUSSION AND CONCLUSIONS

The equations of motion of open quantum systems as
described by the Lindblad formalism are linear, as they are for
closed systems. The study of the limit cycles of quantum heat
machines is thus analogous to the classification of equilibrium
points of linear dynamical systems. The stability of the equilib-
rium points is linked to the eigenvalues of the time-evolution
matrix for one cycle: as long as all the eigenvalues have
modulus smaller than 1 the equilibrium is stable, but as soon
as one of the eigenvalues has modulus greater than 1 we can
observe divergent behavior.

From a classical point of view, it it is not surprising that
a periodically driven dynamical system can be prevented
from reaching a steady regime by opportunely selecting the
parameters of the periodic driving force. The simplest example
is probably the undamped harmonic oscillator sinusoidally
driven at its resonance frequency. Here we observe a singularity
in the linear response function which physically means that the
induced oscillations will keep increasing in amplitude, without
ever reaching a limit-cycle. For the case of a sinusoidal driving
force, as long as the damping is not zero, this divergent behavior
is not possible: we can always find an equilibrium point

between the opposing trends of the damping and driving forces.
More generally, we can imagine many examples of classical
physical systems which, despite the presence of damping, can
be driven by a periodic excitation without ever reaching the
steady state regime. This happens when the energy dissipation
caused by the damping is not enough to counteract the energy
pumped into the system by the driving force. As we have shown
in the present paper, this behavior is also seen in an ensemble
of quantum harmonic oscillators undergoing an Otto cycle.

One of the peculiarities of finite-dimensional quantum
systems is the presence of an upper and lower bound to the
expectation values of any observable. This is due to the fact
that the spectra of the corresponding Hermitian operators, i.e.,
the possible outcomes of measurements of the observables,
are finite sets. Intuitively this implies that it is not possible to
observe divergent behavior for such systems. Employing the
formalism of Lie algebras, we studied the sufficient conditions
for a system which cannot exhibit divergence. If the underlying
algebra of operators is compact and semisimple, the killing
form is negative definite. When this is the case, there is a
basis over which the structure constant �ijk is completely
antisymmetric in all indices, and the corresponding equations
of motions will be described by a skew-symmetric matrix A.
Such a matrix always leads to an orthogonal time-evolution
matrix U(τ ). When such a system is coupled to heat reservoirs
providing a source of decoherence, the repeated application of
the same thermodynamic cycle will bring it closer and closer
to the steady-state regime. This is the case of the spin-system
discussed in Sec. IV D.

However, an infinite-dimensional system is not guaranteed
to obey the properties mentioned above. We analyzed this
aspect of finite-time quantum thermodynamics by studying the
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most well-known quantum heat machine whose underlying
Hilbert space is infinite-dimensional: a heat engine having
an ensemble of independent harmonic oscillators as working
medium. For some choices of the parameters governing its evo-
lution, here the times allocated for the four steps composing the
cycle, the system is unable to reach a steady-state regime. Un-
der these conditions the expectation values of the observables
describing the state of the system are unbounded: repeated
application of the cycle will lead to larger and larger values.

The transition from convergent to divergent behavior hap-
pens when the modulus of one the eigenvalues of the time-
evolution matrix U(τ ) becomes larger than one. As we argued
in the present work, if we start from a regime where the
eigenvalues are complex numbers of modulus smaller than
one, before reaching the divergent behavior we encounter a
transition to purely real eigenvalues. This transition is charac-
terized by a three-fold non-Hermitian degeneracy, i.e., three
eigenvalues are equal to e−�(τH +τC ), and the three correspond-
ing eigenvectors simultaneously coalesce. The coalescence is
due to the noncompact algebra and linked to the fact that the
Hamiltonian is explicitly time-dependent. This point would in
fact be exceptional even without the thermal coupling of the
system with the heat reservoirs [25].

Moreover, the transition to the divergent regime is char-
acterized by an additional twofold non-Hermitian degeneracy,
when two eigenvalues become equal to 1 and the corresponding
eigenvectors coalesce. In this case the coalescence is due to the
non-Hermitian dynamics describing the dissipative interaction
of the system with the heat reservoir. As long as thermal
coupling is present, this kind of degeneracy can also be
observed for quantum systems described by a compact Lie
algebra [26].

As in previous works on the topic of exceptional points
[25,26], the occurrence of non-Hermitian degeneracy indicates
the transition between two critically different behaviors: the
threefold non-Hermitian degeneracy corresponds to the point
where the stationary solution goes from a stable spiral to
a stable node; the twofold non-Hermitian degeneracy corre-
sponds to the point where the stationary solution goes from
a stable node to an unstable one. The phenomenon of non-
Hermitian degeneracy can only be observed in the presence of
an explicitly time-dependent Hamiltonian [25] or in the case of
open quantum systems [26]. As highlighted by our study, the
analysis of exceptional points potentially leads to interesting
phenomena.
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APPENDIX

1. Some properties of block triangular matrices
with a 1 on the diagonal

Let us consider a matrix A exhibiting the following block
structure:

A =

⎛
⎜⎝ Ã B̃

0 0 0 0

⎞
⎟⎠, (A1)

where Ã is a 3 × 3 matrix block and B̃ is a 3 × 1 column
vector. One of the eigenvalues of A is always 0. The other
three eigenvalues coincide with the eigenvalues of Ã. Also the
first three components of the corresponding eigenvectors are
the same as those of Ã, while the fourth component of these 3
eigenvector of A is 0. Nothing can be said, in general, about
the eigenvectors of A corresponding to the eigenvalue 0. If two
such matrices A and A′ are multiplied, the result is a matrix
A′′ presenting the same structure:

⎛
⎜⎝ Ã B̃

0 0 0 0

⎞
⎟⎠

⎛
⎜⎝ Ã

′
B̃

′

0 0 0 0

⎞
⎟⎠

=

⎛
⎜⎝ Ã

′′
B̃

′′

0 0 0 0

⎞
⎟⎠. (A2)

Where the block Ã
′′

is the product of the corresponding blocks
of the two matrices A and A′:

Ã
′′ = Ã Ã

′
. (A3)

We now consider the matrix exponential U = exp(A), which
is always of the form

U =

⎛
⎜⎝ Ũ C̃

0 0 0 1

⎞
⎟⎠, (A4)

where the matrix block Ũ is independent of B̃ and given by

Ũ = exp( Ã). (A5)

If B̃ is zero, then C̃ is also zero. One of the eigenvalues of U is
always 1 and the other three eigenvalues coincide with those of
Ũ . As before, the first three components of the corresponding
eigenvectors are the same as those of Ũ , while the fourth
component of these three eigenvectors of U is 0.

If a matrix such as U is multiplied by a matrix U ′ exhibit-
ing an analogous structure, the results obeys the following
property:

⎛
⎜⎝ Ũ C̃

0 0 0 1

⎞
⎟⎠

⎛
⎜⎝ Ũ

′
C̃

′

0 0 0 1

⎞
⎟⎠

=

⎛
⎜⎝ Ũ

′′
C̃

′′

0 0 0 1

⎞
⎟⎠. (A6)

Again, the matrix block Ũ
′′

is independent of C̃ and C̃
′
and is

given by the product

Ũ
′′ = Ũ Ũ

′
. (A7)
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