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Abstract

Physical, mathematical, and observational grounds are employed to show
that there is no physically meaningful global temperature for the Earth in
the context of the issue of global warming. While it is always possible to con-
struct statistics for any given set of local temperature data, an infinite range
of such statistics is mathematically permissible if physical principles provide
no explicit basis for choosing among them. Distinct and equally valid sta-
tistical rules can and do show opposite trends when applied to the results of
computations from physical models and real data in the atmosphere. A given
temperature field can be interpreted as both ‘‘warming’’ and ‘‘cooling’’ simul-
taneously, making the concept of warming in the context of the issue of
global warming physically ill-posed.

1. Introduction

It is widely held that the atmosphere and oceans have been warming over the
past half century. The basis of this view is that there is an upward trend in
the graph of a statistical measure or statistic called the ‘‘global temperature’’
[1, 2]. It arises from projecting a sampling of the fluctuating temperature field
of the Earth onto a single number (e.g., [3, 4]) at discrete monthly or annual
intervals. Proponents claim that this statistical measure or statistic represents
a measurement of the annual global temperature to an accuracy of e0.05�C



(see [5]). Moreover, they presume that small changes in it, up or down, have
direct and unequivocal physical meaning.

While that statistics is nothing more than an average over temperatures, it is
regarded as the temperature, as if an average over temperatures is actually a
temperature itself, and as if the out-of-equilibrium climate system has only
one temperature. But an average of temperature data sampled from a non-
equilibrium field is not a temperature. Moreover, it hardly needs stating that
the Earth does not have just one temperature. It is not in global thermody-
namic equilibrium – neither within itself nor with its surroundings.

It is not even approximately so for the climatological questions asked of the
temperature field. Even when viewed from space at such a distance that the
Earth appears as a point source, the radiation from it deviates from a black
body distribution and so has no one temperature [6]. There is also no unique
‘‘temperature at the top of the atmosphere’’. The temperature field of the Earth
as a whole is not thermodynamically representable by a single temperature.

The global temperature statistic is also described as the average, as if there
is only one kind of average. Of course there is an infinity of mathematically
legitimate options. Indeed, over one hundred di¤erent averages over temper-
atures have been used in meteorology and climate studies [7] with more ap-
pearing regularly. For the case of temperature, or any other thermodynamic
intensity, there is no physical basis for choosing any one of these from the in-
finite domain of distinct mathematical options.

The international standards organization ISO tried to choose one but failed
[8]. The problem is not a mere absence of a convention for selecting one from
among many mathematically di¤erent but physically equivalent measures for
a single underlying property. The problem is that there is no single underlying
property, because there is no global temperature. But this does not stop aver-
ages from being made.

There is no experimental or theoretical way to falsify any particular choice of
averaging rule, if averages are (falsely) proclaimed to be temperatures. Pro-
claiming them to be temperatures leads to a paradox, as any two ad hoc

choices applied to a particular out-of-equilibrium field can have mutually
contradictory behaviors: the system can seem to be both warming and
cooling simultaneously. Paradoxically, whether the system is ‘‘warming’’ or
‘‘cooling’’ becomes a property of the choice of average – a choice which is in-
dependent of the system.

The resolution of this paradox is not through adoption of a convention. It is
resolved by recognizing that it is an abuse of terminology to use the terms
‘‘warming’’ and ‘‘cooling’’ to denote upward or downward trends in averages
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of temperature data in such circumstances. Statistics might go up or down,
but the system itself cannot be said to be warming or cooling based on what
they do, outside of special circumstances.

By the same token, di¤erent statistics produced by di¤erent averaging rules
should not be expected to behave the same, since they are not measuring a
single, well-defined physical quantity. Unfortunately, it has long been consid-
ered a problem in climatological debates that the well-known global temper-
ature averages behave di¤erently from each other. Debates as to which is the
correct one are fundamentally false, with no correct resolution. They have an
interminable aspect, as has been illustrated in comparisons of satellite and
ground-measured ‘‘global temperatures’’ [9], or of di¤erent versions of the
satellite-measured series [10, 11], or in debates about whether the medieval
era was ‘‘warmer’’ than the present, e.g. [12]. We argue herein that these dis-
putes have their root in attempting to estimate a physical quantity that does
not actually exist, and hence there is no prospect of resolution on scientific
grounds.

But if the statistics are not actually temperatures, what then are they? Can
they be used as indices to warn us of subtle dangers, like the proverbial ca-
nary in the coal mine? Or are they just examples of an infinity of ad hoc num-
bers extractable from measurements that might be followed to no end?

So far the proponents of global temperatures have been able to avoid this
question. They have not substantiated exactly how changes upward or down-
ward in their statistical measure or statistic might a¤ect dynamics and local
states within the atmosphere and oceans. However, that has not stopped
many remarkable attributions of cause: small increases in their global statis-
tical measure or statistic have been cited to explain hurricane formation [13],
viral infections in frogs [14], encephalitis in horses, and even pulmonary dis-
ease, delirium, and suicide in humans [15].

The awkwardness of such claims is obscured because the concept of averag-
ing is so routine. In fact, it is so pervasive that it may even seem implausible
to mount a critique. But it should only be routine where it makes sense. Per-
sonal income and height are meaningful at the individual level, and no con-
ceptual problems emerge when adding or averaging over a population. But
there are certainly examples where averaging or adding destroys the meaning
of a variable. In economics, for example, an exchange rate is meaningful
when comparing two currencies, but the ideas of a ‘‘global exchange rate’’ or
a sum over exchange rates are both nonsensical. Regardless of the fact that
enough data exist to compute something analogous to a ‘‘global temperature’’
for the money markets, neither the level nor the trend in such a statistics would
provide any meaningful information about the global economy. Another ex-
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ample: Individual telephone numbers are both meaningful and useful, while
the sum or average over telephone numbers in a directory have no meaning.

The notion of being globally ‘‘hotter’’ or ‘‘colder’’ for out-of-equilibrium sys-
tems is not altogether without merit. Miami in January, with temperatures
ranging from 20 to 30�C, say, is certainly warmer than Toronto at, say, �15
to �5�C. However, this ranking of relative warmth is not based on averages,
but on the ranges in respective temperature fields. Since the ranges do not
overlap, all averages will agree which field seems to be the warmer. It is inde-
pendent of the choice of average.

Not so for the case of comparisons of Earth’s temperature field at times a few
years apart. The range over the globe (about �80�C to þ40�C) is essentially
the same for both when compared to statistical trends in averages (i.e., about
e0:1�C yr�1), which are three orders of magnitude smaller. In cases where
ranges overlap, not all averages over a given set of actual observations agree
on trends (see Section 3), throwing into doubt for this case what ‘‘warmer’’ or
‘‘cooler’’ means.

It is clear that there are many misconceptions about non-equilibrium temper-
atures fields. This paper serves to expose and identify them with specific ref-
erence to the measurement of climate change. They may be summarized by
the following points, which are treated in detail later in the paper:

1. Sums or averages over the individual temperatures in the field are not tem-
peratures. Neither are they proxies for internal energy.

2. Temperatures from a field (individually or averaged) neither drive dy-
namics nor thermodynamics. Instead, dynamics is driven by gradients
and di¤erences, in temperatures and other variables.

3. A global spatial average cannot be an index for local conditions, otherwise
nonlocal dependence (i.e., ‘‘thermodynamics at a distance’’) for local con-
ditions would be required.

4. The utility of any global spatial average of the temperature field as an
index for global conditions has been presumed but not demonstrated.

5. It is easily demonstrated that di¤erent spatial averaging rules over temper-
atures can have contrary trends in time (i.e., some increase while others
decrease in time) when the two fields being compared have range-overlap,
as they do in this context. This is demonstrated here in a basic example
and subsequently with actual atmospheric temperature-field observations.

6. No ground has been provided for choosing any one such statistics over the
rest as the one proper index for global climate.

7. If there are no physical or pragmatic grounds for choosing one over an-
other, and one increases while the other decreases, there is no basis for
concluding that the atmosphere as a whole is either warming or cooling.
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2. Averaging and physical temperature

2.1. Temperature versus average of temperature data

Thermodynamic variables come in two varieties: extensive and intensive. Ex-
tensive variables are proportional to the size of the system. They are additive.
In this category we find volume, mass, energy, entropy, particle number, etc.
We can combine two systems and the values of extensive variables for the
whole system will simply be the sum of the values from the two components.
Correspondingly, a mean subsystem (loosely called the average) will have this
sum divided by the number of components. Such an average over a quantity
like mass is meaningful because the sum is meaningful. For example, average
mass is of importance to airlines because it is helpful to estimate the total
load of an aircraft without having to weigh every passenger.

Intensive variables, by contrast, are independent of system size and represent
a quality of the system: temperature, pressure, chemical potential, etc. In this
case, combining two systems will not yield an overall intensive quantity equal
to the sum of its components. For example, two identical subsystems do not
have a total temperature or pressure twice those of its components. A sum
over intensive variables carries no physical meaning. Dividing meaningless
totals by the number of components cannot reverse this outcome. In special
circumstances averaging might approximate the equilibrium temperature after
mixing, but this is irrelevant to the analysis of an out-of-equilibrium case like
the Earth’s climate.

Setting mixing aside, consider two disjoint isolated equilibrium systems,
a and b, with functions of state Ua ¼ f aðX a

1 ;X
a

2 ; . . . ;X
a
n Þ and Ub ¼

f bðX b
1 ;X

b
2 ; . . . ;X

b
n Þ respectively, where Ua and Ub are the respective internal

energies. X a
j and X b

j represent the corresponding extensive variables in sys-
tems a and b, respectively. Obviously, given f a, the extensive variables for
system a completely define the thermodynamic state of system a. Similarly
for system b.

The partial derivatives, qUa=qX a
j and qUb=qX b

j , are the jth intensive vari-
ables for the respective systems. The temperature of each system is, of course,
the particular partial derivative with respect to the system’s entropy,

T ¼ qU=qS: ð1Þ

Together, the intensive variables form the tangent spaces of the respective
functions of state. As such, they are local properties of the state space and
are thus independent of the scale of the system.
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Let us propose that an average over temperatures from both systems is re-
quired to be a temperature. This proposition produces a contradiction. The
state, and the temperature, of system a, say, is completely determined by the
variables fX a

i g and does not change in response to a change only in fX b
i g.

But any average is a function of both temperatures. Thus, while each temper-
ature is a function of the extensive variables in its own system only, the aver-
age must depend explicitly on both sets of extensive variables, fX a

i g and
fX b

k g. That is it must depend on both states and it can change as a result of
a change in either one. Then the average cannot be a temperature for system
a, because system a is mathematically and thermodynamically independent of
system b by assumption. Similarly, it cannot be a temperature for system b.
Consequently, the average is not a temperature anywhere in the system,
which contradicts the proposition that the average is a temperature.

While it is thus simple, obvious, and unavoidable that there is no one physi-
cally defined temperature for the combined system, the example illustrates the
contradiction that arises in requiring an average over a local equilibrium tem-
perature field to be itself a temperature of anything.

With reference to global temperature statistics, consider a projection of the
full temperature field, Tðr; tÞ, onto a single real value, XðtÞ, at time t, usually
the present. For concreteness, consider an average of temperatures:

XðtMÞ ¼ 1

N

XN
i¼1

Tðri; tMÞ � 1

M

XM
j¼1

Tðri; tjÞ
" #

: ð2Þ

Outside of small details, such as mappings of actual measurements onto a
uniform grid on the surface, X is a common statistical measure actually used
in discussions of global warming, intended to quantify temperature changes
over the entire globe at time tM , by deviations from a sliding average in the
past. This statistical measure is also known as the global temperature anom-
aly. The summation over i estimates a spatial integration of the field over the
surface of the Earth, where Tðri; tMÞ is the air temperature at location ri and
time tM , and the summation over j accounts for a customary interval of time
from the past to establish a local time mean (30 years is traditional).

X is explicitly a function of Tðrk; tÞ for all rk (i.e., X ¼ f ðTðr1; t1Þ;Tðr2; t1Þ;
. . .Tðr1; t2Þ;Tðr2; t2Þ; . . .TðrN ; tMÞÞ). In contrast, local equilibrium states in a
field are defined at a particular location, r. Other locations not in an infinites-
imal neighborhood are independent, just as systems a and b are independent
of each other. The statistical measure X, on the other hand, exhibits the same
property as an average of temperatures between the systems a and b: it de-
pends on the states of all the local subsystems, not just the state at any one
location.
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Thus the same paradox arises as for systems a and b. If X is supposed to be
important at r, it also depends explicitly on states at all remote locations frkg.
However, chemical, physical, or biological processes governed by tempera-
ture at r are not functions of temperature other than at r. So if one insists on
X defining processes like the melting of glaciers at some location, say, the melt-
ing is forced into being a function of temperatures elsewhere on the planet,
too, which is physically untenable. Claiming otherwise is tantamount to tem-
perature at a distance! While forces at a distance are considered an acceptable
concept for classical gravity and electromagnetism, they are not suitable for
thermodynamic processes.

It is worth noting in passing that X su¤ers from the additional problem that it
also depends explicitly on temperatures from the past. So in the picture im-
plied by them, not only are the fate of glaciers today explicitly dependent on
temperatures in a remote desert, say, but also on temperatures in that desert
from twenty years ago.

On top of this problem, even if we let the two systems a and b come to equi-
librium so that the temperature is the same everywhere and all possible defi-
nitions of average are equivalent (see Section 3), this common temperature
will not be uniquely specified by the original states of a and b. It will also de-
pend on the path taken by the process. Suppose two thermal systems a and b

have equal heat capacities but initially di¤erent temperatures T a and T b. After
putting them in thermal contact, they will equilibrate at the common temper-
ature ðT a þ T bÞ=2. If on the other hand they equilibrate reversibly, i.e., while
producing work, their common final temperature will be

ffiffiffiffiffiffiffiffiffiffiffiffi
T aT b

p
.

Even in this simplest case, ‘‘averaging’’ between these two systems is not
unique.

2.2. Average over temperature field as index or proxy

The argument is often heard that the global temperature, however it is cal-
culated, while not being really what is physically driving the climate, is a
good index or proxy for whatever does drive it. Science and engineering
are used to such indirect measurements. Temperature itself, for example, is
almost never measured according to its thermodynamic definition, T ¼
ðqU=qSÞV ;N1;N2;N3...

, but by measuring a volume, bending, electrical conduc-
tance, eigenfrequency of a crystal, radiation spectrum, etc. All such measure-
ments rely on di¤erent assumptions being met. Physicists and chemists are
well aware of these restrictions. However, no such physical arguments have
been made for using a statistic as an index for climate driving force. Not
even a statistical correlation has been forwarded for such a connection. ISO
standards for measuring and calculating such an index were optimistically
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promised after the Johannesburg climate meeting [8], and standards have
been published regarding measurement of greenhouse gases, but the ISO has
been conspicuously quiet on the measurement of a global temperature.

If temperature field averages are not temperatures, can they function as an
index or as a proxy for climate dynamics? While an index need not be a phys-
ical variable explicitly, there are nonetheless unavoidable requirements before
a statistic can be regarded as an index. An index is a statistic produced by a
consistently applied rule that characterizes some, usually complex, process
usefully, even though the precise connections between it and the process may
not be fully known or understood. As an index, the statistic usefully encapsu-
lates a possibly large set of data into one dimension for a specific purpose.

Proposing a statistic to be an index can be risky. What is regarded as ‘‘useful’’
may prove to be quite imprecise and subjective. Therefore, the burden to
demonstrate the utility of a statistic as an index must lay with those who pro-
pose it as one. Similarly, the burden should never be to prove a statistic is not
an index.

However, a peculiar circumstance exists for the case of averages over the tem-
perature field. False, but common, impressions that such averages are actual
physical variables generally, and temperatures in particular, have left the task
of demonstrating the utility of such statistics undone. The apparent physical
origins have led to the most uncritical thinking about what trends in such sta-
tistical measures or statistics might imply.

While it is impossible to prove that such averages are not useful in any man-
ner whatsoever, it can be shown that temperature field averages cannot be
useful in certain specific roles in which they are cited. For example, upward
trends in X are said, uncritically, to indicate trends in underlying dynamics,
such as changes in the numbers or severity of storms, and trends in rainfall,
not to mention melting of glaciers or many other local physical dynamical
processes.

What connection exists between these dynamical processes and such aver-
ages? No physically precise reasoning has been proposed as the basis of such
a connection. Indeed, it is unlikely that there is any such connection because
intensive variables, like temperature, do not generally drive dynamics, and in
particular do not drive the dynamics of the atmosphere and oceans, whose
dynamics are caused by gradients, or di¤erences in thermodynamic inten-
sities, rather than the intensities themselves.

To be more explicit, consider a free thermodynamic mixing process between
two subsystems a and b, isolated from everything except each other. In the ab-
sence of sources and sinks due to chemical reactions, extensive quantities
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summed over subsystems a and b, except entropy, will not change. The change
in entropy is equivalent to the existence of the process:

dS ¼ 1

T a
� 1

T b

� �
dU a þ Pa

T a
� Pb

T b

� �
dV a � ma

1

T a
� mb

1

T b

� �
dNa

1 þ � � � ; ð3Þ

where T is the temperature, P the pressure, and mi is the chemical potential of
species i. Superscripts refer to the subsystems a and b. When the subsystems
are in equilibrium with each other, all intensities are the same in both systems
(T a ¼ T b, Pa ¼ Pb, etc.). In that case dS vanishes and nothing happens. No-
where in Eq. (3) do intensities enter in isolation. Di¤erences cause processes.

It is true that phase changes and rates of chemical and biological processes
depend parametrically on (local) absolute temperature. However, if there are
no di¤erences in intensities, like di¤erences in chemical potential for chemical
reactions, thermodynamic processes would not happen in the first place. Even
the sensation of warming or cooling is not a consequence of a single temper-
ature, but rather because of the thermodynamic forces that are set up be-
tween the intensities in our bodies and those of our surroundings. Thus two
people can disagree on whether a given room is cold or hot.

If absolute intensities do not drive climate dynamics, there is no reason to ex-
pect that averages over them will. Moreover, at least for small changes, an
average over the temperature field can be insensitive to climate change. Be-
cause of the local independence of functions from their gradients, an average
can change in time without any appreciable changes in dynamics, while great
climate changes can be envisioned under a constant average.

For example, simply rotating thermodynamic intensity fields with respect to
the Earth’s surface leaves field averages invariant but can imply significant
climate change. In the special case of X, invariance only requires changes
that leave the sums in Eq. (2) unchanged. There is an infinite range of possi-
bilities of such changes with X invariant that would constitute significant cli-
mate change. Indeed, an overlooked type of climate modeling experiment is
climate change under fixed temperature field averages.

Ultimately, it can be no surprise that local states are not well represented by a
globally based statistic, casting further doubt on the role of X as an index. It
is also worth remembering that an invariant X would not generally imply in-
variance for other temperature field statistics, from di¤erent averaging rules.
As there are an infinite number of such statistics extractable from a field, there
is also the question of whether the di¤erent statistics convey the same mes-
sage or not, if any is conveyed at all. It is di‰cult to claim a statistic is a use-
ful index when many very similar statistics seem to say something di¤erent.
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Thus the proponents of X as an index have been able to avoid two crucial
tasks:

i) They have not been required to justify or demonstrate the physical useful-
ness of a statistic extracted from the temperature field.

ii) They have not answered why X is the statistical measure of choice and not
some other extract of the temperature field with potentially very di¤erent
behavior.

The very di¤erent behaviors of other statistics are discussed in Section 3.

2.3. Field average as energy proxy

If a field average is not a temperature, and it is not an index, can it be simply a
direct proxy for internal energy instead? This calls for statistics like X to be
given up as drivers of climate or as indicators of local dynamics. Instead, tem-
perature is to be viewed as equivalent to energy, and thus the numerator of the
right side of Eq. (1) is to represent changes in the global internal energy. Then
any physical meaning is born by changes in energy instead of temperature.

This strategy has two problems. First, substituting temperature for internal
energy amounts to extensifying an intensity, and second, the role for a global
averaged internal energy in climate is unclear, especially given the few per-
cent that we could expect it to vary.

Despite popular thinking otherwise, temperature and energy are not equiva-
lent. Temperatures can be very high at very low energies. While heat is a form
of energy, temperature is, fundamentally, a measure of how energy is spread
over quantum states. For example, radiation from a small laser powered by
flashlight batteries can have temperatures peaking as high as P1011 K. This
is higher than many stellar interiors but one cannot even feel the heat of the
beam on one’s hand [6].

The myth of the equivalence of temperature and energy comes from the pro-
portionality of internal energy U to temperature T , through a heat capacity.
In the case of an ideal gas with no internal molecular structure, we have

UðN;TÞ ¼ 3

2
NkT : ð4Þ

While Eq. (4) is not an equation of state in extensive variables alone, it is eas-
ily derived from one by di¤erentiating it according to the definition Eq. (1).
In the result, U is not only proportional to T but to N as well, so, being in-
dependent, changes in T are not equivalent to changes in U .

Introducing a local version of Eq. (4) by dividing through by volume, V ,
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uðn;TÞ ¼ 3

2
nkT ; ð5Þ

where uCU=V and nCN=V , we see the same issue holds locally: measuring
changes in T cannot determine changes in u in environments where the num-
ber density is also variable.

But are changes in n large enough to matter for the processes in this case?
Using Boyle’s law and Eq. (5),

du

u
¼ dP

P
¼ dn

n
þ dT

T
: ð6Þ

As dP=P is about 5% across the entire Earth’s surface while dT=T would be
closer to 20%, variation of n cannot be ignored, globally speaking, in com-
parison to variation in T for the processes actually in question. As T varies
about four times as much as u over the Earth, temperature cannot be a proxy
for internal energy in climate. In fact, these numbers suggest that places of high
T tend to correspond to low n, which agrees with the well-known tendency of
aircraft to have diminished takeo¤ performance at high air temperatures.

Even if trends in global U were measurable and known (they are not), the
question remains what it would mean for climate dynamics. Like variations
in X, significance is simply presumed without further consideration.

3. Averaging without physics

The notion of averaging exists independently of physics. Loosely speaking, it
is nothing more than holding one mathematical object to stand in for many.
Usually we think of a single number standing in for a set of numbers or
standing in for a more complex mathematical object. While having a single
representative taken in place of many can be convenient, clearly something
is lost in it. The representative may not exhibit what is physically relevant,
as the selection rule need not be set by the physics.

Setting aside the statistical analysis of physical data, averages arise within
physical theory in two basic ways. They can emerge, for example, as an inter-
pretation of a previously existing structure rather than as an intrinsic prop-
erty. In the case of quantum mechanics, the term expectation value is used
for an eigenvalue that characterizes a mathematical operator and thus a
quantum state. The expectation value has the character of, if not the name
of, an average, but it need not be interpreted as one. The interpretation is def-
initely after the fact.
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In other physical applications, averages arise in a somewhat ad hoc manner.
They are simply sums over physical quantities that have been normalized. In
principle, normalization is a convenience. It is not essential, and so neither is
the notion of averaged quantities essential to the mathematics in such physical
theories. What is essential is that the sums have meaning in the first instance.

As we saw in the preceding, sums are not generally meaningful over all vari-
ables. Temperature, pressure, and chemical potential are just a few of the ex-
ceptions. Nonetheless, it may happen that a variable is not additive, while a
transformation on that variable is. For example, a variable defined by the
square of internal energy is not additive, but its square root is. The physics
thus presents a coordinate system for that quantity that is preferred over an-
other. Similarly, normalization of the corresponding sums results in a pre-
ferred average.

However, for thermodynamic intensities there is no preferred coordinate sys-
tem. The sum has little physical meaning, so all transformations are in play.
Normalized sums are not invariant under all transformations. Thus more
than one average is unavoidable. Statisticians have long known this. Unlike
physicists, they work with data unconnected to underlying physical theory
and have uncovered classes of averages that reflect this. One is faced with
having an infinity of averages, having all possible values within the range of
the data set.

The most well known of the class are the Hölder or power means [16]. These
arise from transforming the mean under simple powers. Alternatively, they
can be deduced by varying geometric assumptions about what constitutes
the length of a vector. This method has pedagogical significance because it
forces an enlightening conflict between conventional biases: one cannot have
both the classical mean and Euclidean distance. This class of average is by no
means exhaustive.

This section makes three contributions to a thermodynamic discussion of non-
equilibrium fields:

1. A simple thermodynamic example is shown where di¤erent averages over
given temperatures exhibit contradictory time trends. Thus the notions of
warming and cooling are problematic for non-equilibrium temperature
fields.

2. Global conditions are deduced for when it is possible to say, unequivo-
cally, that one temperature field is warmer or cooler than another.

3. It is demonstrated that any value of a data set can represent the mean in
some coordinate system. If there is no preferred coordinate system given
for the average because the physics does not provide one, then any value
in the data set can stand as an average of the temperature field.
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3.1. Warming and cooling simultaneously?

3.1.1. The averaging operator and the origin of contradictory trends For the
case of a finite data set, an averaging operator, A, maps the set onto a real
number within the domain of the original data. Clearly, a value that does not
satisfy this requirement would be a pathological representative of the set. In
the case of temperature data, the domain of A is the range of data from the
original field.

Thus the resulting real number is within the interval induced by the original
set. This definition is still quite general. All of the well-known (standard)
averages, such as the mean, the mode, the median, the root mean square,
the harmonic mean, the geometric mean, or the infinity of nonstandard, un-
named others satisfy this requirement, without necessarily being equivalent to
each other. It also follows from this definition that a set made up of identical
data values can have only a single average value, independent of the type of
averaging operation. That single value corresponds to the single repeated
data value.

The aim of these mappings is of course beyond the mathematics and beyond
any statistical theory. Neither mathematics nor statistics su‰ce to determine
whether any result of such mappings achieve any aim. Moreover, the data
and its underlying physics do not depend in any way on A.

On the basis of the definition, A is not a unique operation unless some addi-
tional rules, R, beyond the fundamental definition are specified (cf. the impor-
tance of path followed as discussed at the end of Section 2.1). Thus if we av-
erage over a set f to get x, we must specify the operation, AR in terms of R,

ARðfÞ ¼ x: ð7Þ

If there are two di¤erent rules, Ra and Rb, and one set, f, then in general the
averages are di¤erent,

ARa
ðfÞ ¼ xa

ð8Þ
ARb

ðfÞ ¼ xb;

where xaAxb. Furthermore, if the f is a function of t (i.e. fðtÞ), then _xxaðtÞ
and _xxbðtÞ can have opposite signs. This idea is illustrated in the following
physical example.

3.1.2. A physical example of contradictory trends Let us consider a specific
example involving temperature. A glass of ice water at 2�C is sitting beside a
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cup of co¤ee at 33�C. The two remain isolated, but are allowed to relax to
room temperature, which is 20�C, according to Newtonian cooling (heating).
To complete the example, a plausible relaxation time of eight minutes for
each container was set for the sake of this illustration, but the phenomenon
we will find is not unique to this value. In this manner, the ice water is al-
lowed to warm, while the co¤ee cools accordingly.

For this example, the two independent temperatures were averaged in four
di¤erent ways. They are not exhaustive by any means. Furthermore, exam-
ples with other temperature units and other averages may be formulated, but
these would not add materially to the value of the example.

The averages used are:

AR�1
ðT1;T2Þ ¼

T�1
1 þ T�1

2

2

� ��1

;

ð9Þ
AR1

ðT1;T2Þ ¼
T1 þ T2

2

� �
;

AR2
ðT1;T2Þ ¼

T 2
1 þ T 2

2

2

� �1=2

;

AR4
ðT1;T2Þ ¼

T 4
1 þ T 4

2

2

� �1=4

:

R�1 is the harmonic mean. It is precedented, for example, in the case of tem-
perature in connection with minimum entropy production and the radiation
field [17]. It also appears in connection with average resistance in a parallel cir-
cuit and in average travel times on a road network with varying speed limits.

R1 is the simple mean, often used over small temperature ranges and in con-
nection with simple Newtonian heat exchange.

R2 is the root mean square, which is well precedented in statistics and statis-
tical mechanics. In the latter case, it appears particularly in connection with
kinetic energy. It can also emerge in connection with the potential energy of a
spring.

R4 would appear in connection with black body radiation.

The results of the Newtonian cooling calculations are shown in Figure 1. It is
clear that the starting ‘‘system temperature’’ varies widely depending on the
averaging formula chosen. Because of the property that all averages must be
the same for a set composed of equal values, all averages must approach the
room temperature. All of these averages clearly exhibit this proper behavior.

14 C. Essex et al.
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Clearly, whether the system seems ‘‘warmer’’ or ‘‘cooler’’ at time t ¼ 5, say, in
relation to t ¼ 0 depends on the average chosen. But the data are independent
of the averaging rule used, therefore the sign of the derivatives is not intrinsic
to the data, but a property of the averaging rule selected.

If the physics does not prescribe one rule to be used over another, as it does
not for temperature, we may use any rule. If one interpreter of the data chooses
one rule, while another chooses a di¤erent rule, there is no way to settle a
disagreement as to whether the system is getting ‘‘warmer’’ or ‘‘cooler’’ with
time.

Alternatively, if one has a change of opinion about what rule to use, the
ranking of the two systems may be instantaneously reversed. In a mathemat-
ical sense, this would just be a quantitative alteration in the time derivative.
However, ‘‘warming’’ versus ‘‘cooling’’ is a qualitative distinction for thermo-
dynamics. Changing the sign of the derivative reverses the ranking of the two
states catastrophically, in the sense of a qualitative change that is extrinsic to
the system studied. That is, rank order is catastrophically reversed by simply
changing how the data are interpreted – a rank order catastrophe.

There are only two options: admit the possibility that non-equilibrium sys-
tems can simultaneously warm and cool or take the position that these terms

Figure 1 Four averages over one thermodynamic system. The rules for each, denoted by R�1,
R1, R2 and R4 are defined in Eq. (9).
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have no meaning in such cases. We adopt the latter convention. In either
case, the ice water is warming and the co¤ee is cooling, and while that is hap-
pening they are not in thermodynamic equilibrium with one another or with
the room. There is no physically coherent way to reduce this dynamic to
changes in a single temperature number for the system as a whole.

Arbitrary averages can and do give contradictory behaviors in more complex
cases, too, as we shall see below. Averaging does not represent any means of
avoiding the fact that a system is not in global thermodynamic equilibrium.
Thus, in the case of non-equilibrium thermodynamics, temperature averages
fail in the most basic role of an average, which is for one value to represent
many.

3.2. Range overlap and global ranking of fields

In Sections 3.1.1 and 3.1.2 it was shown that objects out of equilibrium can-
not necessarily be compared to each other as being ‘‘hotter’’ or ‘‘cooler’’. It
makes problematic the claim that Earth’s temperature field is warmer or
cooler today than it was a hundred years ago, or that one century is hotter
than another century.

In contrast, it is obviously valid to make the observation that the temperature
field of the Sun is hotter than the temperature field of Pluto, yet each of these
bodies have non-equilibrium temperature fields. What makes this comparison
di¤erent? The simple answer is that there are no common values in the re-
spective temperature fields. This was not the case for the example in the pre-
ceding section, where the interval spanned by the range of temperature at
time t ¼ 0 contained the interval spanned at later times.

In the case of a temperature field on Pluto, the Sun, or the Earth, we work
with a subset of the field which constitutes a finite number of values. This is
a practical necessity even if it is not a mathematical one. The range of values
from the field induces the domain of the averaging operation. This domain is
an interval, which according to the definition in 3.1.1 limits what an average
can be. Consider the interval operation, I, which defines the domain of the
data set f. For two non-overlapping data sets f1 and f2,

Iðf1ÞBIðf2Þ ¼ u: ð10Þ

This condition is global in that it is entirely independent of specific locations
in the original field. It follows that

ARðf1Þ �ARðf2Þ ð11Þ
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has no zeros over all possible rules R satisfying the definition in Section 3.1.1.
No zeros in Eq. (11) means it never changes sign, so there cannot be a rank
order catastrophe as R is varied over all rules. If the global condition Eq. (10)
holds, then it is not ambiguous to say that one set is warmer or cooler than
the other. In the case of the Sun and Pluto, it is reasonable to expect that Eq.
(11) holds, so that we may say that the Sun is hotter than Pluto without con-
tradicting the preceding.

But if

Iðf1ÞBIðf2ÞAu; ð12Þ

we will say that the fields yielding f1 and f2 have range overlap. In the case of
range overlap, we cannot guarantee that there are no zeros in Eq. (11) and
therefore there can be rank order catastrophes, which means that the ranking
of temperature fields as ‘‘warmer’’ or ‘‘cooler’’ is fundamentally problematic.
It is possible for Eq. (11) to have no zeros over all reasonable R in cases
where Eq. (12) holds if a local condition is applied such that every location
in the field is increasing or decreasing. This condition does not occur in real-
istic fields such as that of the Earth, and it is not global.

In the case of the Earth’s temperature field, the temperatures form a set of
values, fl . The field at time t1 is being compared to the field at time t2. In
that case, Eq. (12) holds. In fact, this is among the most extreme cases of
range overlap because,

Iðflðt1ÞÞQIðflðt2ÞÞ; ð13Þ

from which we conclude that ranking the Earth’s temperature fields at two
instants in time is highly problematic. It simply is not comparable to the case
of Pluto versus the Sun.

3.3. Coordinate transformations and means

A naive view suggests that the simple mean is always the appropriate scalar
summary for any set of data, including temperature data. But this is unten-
able for reasons more general than those related to the thermodynamic issues
discussed above.

Data have no intrinsic meaning. The context establishes the meaning. It also
establishes whether the numbers themselves are used or some other numbers
derived from the raw data. ‘‘Derived’’ data always raises the issue of coordi-
nate transformations on the raw data. As noted above, temperature data used
in climate measurement are inherently derived, since air temperature is never
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measured using the thermodynamic definition Eq. (1), but using instrument-
based proxies such as length, volume, electrical conductance, etc., not to men-
tion natural proxies such as tree ring widths and wood density, ice core layer
isotope ratios, and so forth.

Even in the absence of a distinction between raw and derived data, questions
about the natural form of an average emerge. A context for a data set may
take the form of an auxiliary structure on the data that induces a geometry.
The geometry can imply the natural form of an average that can di¤er from
the mean. In the absence of a context, di¤erent norms on vectors formed
from data can induce a class of averages, which have the same mathematics
as a range of transformations between raw and derived data. The change
from raw to derived data inevitably involves mappings and coordinate
transformations.

One physical quantity is measured, but another physical property is sought.
The two quantities are linked by a relationship that amounts to a coordinate
transformation. Consider a case where basic observational data must be
transformed to acquire the quantity for which an average value is sought.
Suppose that we measure a raw set fyig with N positive elements from which
we derive a set fxig by a nonsingular monotone transformation.

In examples such as kinetic speed or radiation energy as raw values, an aver-
age over derived kinetic energies or derived temperatures would be expressed
in terms of a power law. The raw and derived data are related by y ¼ xr for
positive r, then the mean of fyig is equivalent to the mean over fxr

i g,

AR1
ðfyigÞ ¼ AR1

ðfxr
i gÞ ¼

1

N

X
i

xr
i : ð14Þ

But the mean over the derived data is

AR1
ðfxigÞ ¼

1

N

X
i

xi: ð15Þ

Thus, in either case there are two data sets and two simple means – one for
each of the raw and derived sets. For the radiation example, we essentially
measure fT 4

i g, ignoring constants of the classical black body law. To get tem-
perature, we must transform the measurements by taking the 1/4 power. That
is r ¼ 4. Similarly, for the speed problem we measure fjvijg and take the
square, which means that r ¼ 1=2.

But what is not mandated by the naive view is which mean to work with.
That is, do we use the transformation to compute ðAR1

ðfyigÞÞ1=r or do we
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compute AR1
ðfy1=r

i gÞ instead? Do we take the mean first and then do the
transformation, or do we do the transformation and then take the mean? Sta-
tistical theory does not provide an answer.

Outside of exceptional cases,

ðAR1
ðfyigÞÞ1=rAAR1

ðfy1=r
i gÞ; ð16Þ

i.e., the mean operation does not generally commute with the powers. As a
consequence, the mean is not a coordinate system invariant.

3.3.1. Vector norms, geometry, and averaging The most important excep-
tion to Eq. (16) is when all the elements of fyig are identical to each other.
In this case, all acceptable definitions of averages must yield the same value.
Accordingly, for the degenerate class of sets where all elements are identical,
averages must also be invariants under transformations. This degenerate class
turns out to tell us about the geometry of averages.

Suppose one aims to find the average length of streets in a city. Let us use
fxig to denote the set of lengths of the city’s streets. Form a vector from this
set, 3x1; x2; . . . ; xN4. Vectors can have lengths in their own right. Seek an-
other vector with the same length but having all elements being equal. The
equicomponent vector that results is 3AR1

ðfxigÞ;AR1
ðfxigÞ; . . . ;AR1

ðfxigÞ4,
provided the vector’s length is computed as the sum of the (positive) elements
(e.g. x1 þ x2 þ � � � þ xN), which is the sum of the individual lengths of the
streets. In this case, the traditional mean emerges as the average, and the
length of the vector is nothing more than the summation of lengths of all of
the city streets, which seems to make particular sense for this case.

It is notable here that the naive view of the mean runs afoul of the
naive view of length. The latter would hold that the vector’s length
ought to be Euclidean (i.e., ðx2

1 þ x2
2 þ � � � þ x2

NÞ
1=2). But an equicomponent

vector of equal Euclidean length is 3AR2
ðfxigÞ;AR2

ðfxigÞ; . . . ;AR2
ðfxigÞ4 or

3ðAR1
ðfx2

i gÞÞ
1=2; ðAR1

ðfx2
i gÞÞ

1=2; . . . ; ðAR1
ðfx2

i gÞÞ
1=24, which does not yield

the mean. It yields the root mean square. One cannot normally have the
mean and an Euclidean geometry for data.

Let us suppose, without loss of generality, that some data set, fxig, has posi-
tive elements. Just as this data does not necessarily have a context, vectors
like 3x1; x2; . . . ; xN4 need not possess a mathematical geometry (an inner
product) and hence any particular length. In choosing a length, one induces
a geometry and an average. The vector lengths or norms, discussed above,
both belong to a class of norms known as l-norms, lr, which depend on a pa-
rameter, r,
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ðlrÞrC
X
i

xr
i ¼ NAR1

ðfxr
i gÞ: ð17Þ

This class of norms is not exhaustive, but it is su‰cient for our discussion. For
a data set fxig the equicomponent vector arising from any such l-norm is

lr

N 1=r
;

lr

N 1=r
; . . . ;

lr

N 1=r

� �
: ð18Þ

A component of Eq. (18) is the Hölder mean. Note that for the city streets ex-
ample the length is l1, which is known, appropriately, as the ‘‘taxicab’’ or
‘‘city streets’’ norm. The Euclidean case was l2. All other positive values of r
induce di¤erent geometries.

From this we conclude

ðAR1
ðfyigÞÞ1=r ¼ lr

N 1=r
AAR1

ðfxigÞ; ð19Þ

where yi ¼ xr
i was substituted so that we could observe that Eq. (19) is the

same equation as Eq. (16). However, in this section we have not presumed
a distinction between raw and derived data. The issue is the underlying geom-
etry, which brings exactly the same transformation group into play even if
transformations are not introduced at the outset. Considering the geometric
context generates the same infinite family of distinct averages as emerged in
the previous section.

3.3.2. Averages in general This infinite family of averages agrees with the
basic definition from Section 3.1.1. If we take the limit as r ! l then
ll ¼ maxfxigCxmax, which is known as the ll-norm or max-norm. Ac-
cording to Eq. (18), the average becomes xmax, too. Thus it is not only the
largest element of the set, but it follows that it is the largest of the family of
averages, as r is varied over positive values:

lr

N 1=r
¼

P
i x

r
i

N

� �1=r

a
Nxr

max

N

� �1=r

¼ xmax: ð20Þ

For r ¼ 0 we find lr=N
1=r becomes the geometric mean in the limit:

exp½ð
P

i ln xiÞ=N �a exp½ðN ln xmaxÞ=N � ¼ xmax.

Negative r is easily treated by forming the set fwig where wiCx�1
i . Then wmax

will be the largest average over fwig for positive r. As minfxig ¼ 1=wmax,
then xminCminfxig is the smallest average for negative r. As it is also smaller
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than the geometric mean, because exp½ð
P

i ln xiÞ=N �b exp½ðN ln xminÞ=N � ¼
xmin, it is the smallest average for all r.

Thus any value from the entire interval, IðfxigÞ, is admissible as ‘‘the’’ aver-
age, even values not in the original set but within the interval. This agrees
with the basic notion of the average from Section 3.1.1. Any member of the
original set can be representative of the whole set – very democratic.

Even though we have resurrected the entire data domain of the data set to be
the range of possible averages, we have not encompassed all averaging rules.
Potential averaging rules do not end with simple powers. With the harmonic
mean as a clue, any non-singular monotone function, zð�Þ, will do as long as
it has an inverse, z�1ð�Þ,

z�1ðAR1
ðfzðxiÞgÞÞCAzðfxigÞ: ð21Þ

Even this cannot be said to be comprehensive in itself as it does not yet in-
clude weighted averages, nor have we extended the notion to a continuum,
which we must face for the atmosphere, at least at a formal level. A little bit
of imagination will widen the possibilities substantially.

Nonetheless, this class is already more than broad enough for our purposes.
In fact, we will reduce it slightly to use families of averages that include the
l-norm averages, which are sometimes called the ‘‘mean of order r’’ family,
hereinafter ‘‘r-means’’ for convenience. We can also introduce the ‘‘mean of
order s’’ family, hereinafter ‘‘s-means’’ [18], where these families of symmetric
means are important in the theory underlying index numbers in economics.
The s-means are given by zð�Þ ¼ expðsð�ÞÞ, or the resulting average is

1

s
lnðAR1

ðfesxigÞÞ ð22Þ

or

r-mean: ARr
C

1

N
ðxr

1 þ � � � þ xr
NÞ

� �1=r

ð23Þ
s-mean: ARs

C
1

s
ln

1

N
ðesx1Þ þ � � � þ ðesxN Þ

� �
:

These means will be used in the next section.

4. Averages and actual atmospheric data

As discussed previously, the temperatures of the Earth form a continuous
field, Tðr; tÞ, which varies in time. However, observations can only be made
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at specific locations, frig, and times ftjg. While the desideratum of the global
averaging operation would seem to be a component of an equicomponent vec-
tor that has the same length as the temperature vector extracted from the field
itself as per Section 3.3.1, it is still an intensive field that provides no definite
length. One might naively expect something like AR1

ðTðri; tjÞÞ to be the aver-
age used. However, what is actually done is much more arcane than any exam-
ple of averaging operation discussed in the preceding sections [1, 2, 4, 7, 19].

The averaging rule varies in time. For example, there has been a substantial
drop in the number of available weather stations since the 1970s, and espe-
cially since 1990, when the number of sampling points around the world fell
roughly in half over four years ([7], Figure 2). The resulting land-based aver-
age is then combined (in some cases) with a series constructed using samples
of seawater temperature collected during the twentieth century by ships, using
a combination of bucket-and-thermometer observations and automated en-
gine cooling-water observations.

Observations are not made at a common instant, tj, for the whole field, as one
might naively expect in the first instance. Instead they have a common day, d,
and measurements are made in terms of local time of day time producing a set,

fT t;d
ri

g ¼ OtðTðr; tÞÞ; ð24Þ

where ri is place and t is time on day, d. The operation Ot is the time-
dependent operator that takes the full field to the set.

Land-based meteorological stations around the world provide records of
daily maximum and daily minimum temperatures, denoted maxðT t;d

ri
Þ and

minðT t;d
ri

Þ. The daily average is defined as ðmaxðT t;d
ri

Þ þ minðT t;d
ri

ÞÞ=2. Most
land-based stations only report this type of average, although some provide
the min/max.

From Section 3.3.1, this average is the mean of the ll and l�l Hölder means
over daily temperatures. This combination is a new type of average in terms
of this paper, which naturally can be expected to have distinctive behaviors.
We introduce a new averaging operator Ax

R, which only averages over x
holding other variables fixed, thus producing a set and not just a real number
as output. In this case, At

l indicates the average is over t and we denote the
mean of the Hölder means by l.

Clearly, based on Section 3 and particularly 3.1.2, it may be problematic to de-
termine whether one location is warmer or colder than another on any partic-
ular day with this statistic. Thus the observational network actually provides

At
lðOtðTðr; tÞÞÞ: ð25Þ
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At every ri the mean of the daily values is taken over a month. The resulting
series of monthly values is translated by subtracting the mean of the monthly
means themselves further averaged over a thirty-year interval (nowadays
1961–1990 is used). These reduced values, known as anomalies, are then sub-
jected to ad hoc adjustments which speculatively reduce the e¤ects attribut-
able to any land-use changes since before human settlement in the area, ef-
fects due to changes in equipment or measurement site, missing stretches of
data, etc.

The adjusted anomalies are then subjected to a mapping to yield estimates of
what the anomalies might be if the actual observation sites were distributed
with a uniform density over the surface of Earth. The average series are
grouped into latitude–longitude boxes and averaged up to a ‘‘gridcell’’ level,
with weights applied so that the variance is not a function of the number of
individual stations in the gridcell. In this way, records from isolated stations
count more heavily than records in more densely sampled locations.

These translations to ‘‘anomaly’’ coordinates and the other mappings that
speculate on what the values of observations might be at di¤erent locations
not measured, or under di¤erent conditions not known, are denoted by M,

MðAt
lðOtðTðr; tÞÞÞÞ: ð26Þ

Finally, after taking the simple mean, we arrive at the global temperature sta-
tistic X that is actually in use,

X ¼ AR1
ðMðAt

lðOtðTðr; tÞÞÞÞÞ: ð27Þ

This statistic is clearly more complex than the X introduced in Eq. (2). It is
far removed from AR1

ðTðr; tÞÞ, which X is widely confused with. There is no
evidence that trends in AR1

ðTðr; tÞÞ need agree with that of X, nor is there a
physical reason to prefer one over the other.

Debates about the di¤erence between trends in X and 1, where 1 is the out-
put of an entirely di¤erent averaging map of microwave fluxes, F, received
from satellites, are also problematic. There is no physical reason why X must
equal 1 or even have the same trends. X and 1 are entirely di¤erent statistics
in a mathematical sense, even if they each are mapped from the same Tðr; tÞ
for the Earth.

So far we have shown that di¤erent averages exist, they are used, and that
contradictory trends can emerge between them. We have shown that the con-
ditions exist in the atmosphere where such paradoxical behavior can be ex-
pected to be found. In the following we show that it does in fact appear in
real atmospheric data.
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4.1. Contradictory trends in global temperature averages

Ranking a particular type of field average computed over a sequence of times
amounts to determining a trend in that average. Here we show that the sign
and size of such a trend computed statistically is dependent on the choice of
averaging rules, which will su‰ce to demonstrate both that the ‘‘global tem-
perature trend’’ is not a unique physical variable, and that ranking this or
that year as the ‘‘warmest of the millennium’’ is not possible, since other aver-
ages will give other results with no grounds for choosing among them.

To illustrate with actual temperature data, we computed averages of temper-
atures over twelve sites (see Table 1) and computed a linear trend in each
case. The trends through the 1979–2000 period were computed with r-means
and s-means. The raw data are themselves averaged (simple monthly means:
r ¼ 1) smoothing out some variability, but this could not be avoided, and does
not a¤ect the main results below. Stations were selected to give reasonable
geographic variation, but whether it is a ‘‘global’’ sample or not is secondary
for the purpose of the example. Stations had to be in continuous use during
the 1979–2000 interval. Missing months were interpolated linearly as long as
there was no more than one missing month in sequence, and it was not at the
start or finish of the sample.

For each value of r, s (cf. Eq. (23)), the monthly r; s-means across the stations
were computed, then a linear trend was fitted using ordinary least squares
after deleting rows with missing data. The trend values are plotted in Figures
2 and 3. For the simple mean (r ¼ 1; s ¼ 0) the decadal ‘‘warming’’ trend was
0.06�C/decade. This turns out to be the peak value of the trend: for most
values of r and s the trends are negative, indicating ‘‘cooling’’ across the 1979
to 2000 interval.

It might seem contradictory that the same data show ‘‘global warming’’ of
about 0.02�C/decade for s ¼ 0:04, but ‘‘global cooling’’ of �0:04�C/decade
for s ¼ �0:04. But there is no contradiction in the data: They do not show
‘‘global’’ anything. The data are local. The interpretation of ‘‘global’’ warm-
ing or cooling is an artificial imposition on the data achieved by attaching a
label to, respectively, a positive or negative trend in one particular average.

Table 1 Twelve weather station records used for Figures 2 and 3. The data are monthly aver-
ages from the Goddard Institute of Space Studies (GISS) [3].

Phoenix, Arizona Sioux Falls, South Dakota
Cartagena, Colombia Egedesminde, Greenland
Dublin, Ireland Salehard, Russia
Chiang Mai, Thailand Ceduna, Australia
Jan Smuts, South Africa Halley, Antarctica
Honolulu, Hawaii Souda, India
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5. Conclusion

There is no global temperature. The reasons lie in the properties of the equa-
tion of state governing local thermodynamic equilibrium, and the implica-
tions cannot be avoided by substituting statistics for physics.

Figure 2 Trends (in K/decade) through r-means from 12-station sample.

Figure 3 Trends (in K/decade) through s-means from 12-station sample.
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Since temperature is an intensive variable, the total temperature is meaning-
less in terms of the system being measured, and hence any one simple average
has no necessary meaning. Neither does temperature have a constant propor-
tional relationship with energy or other extensive thermodynamic properties.

Averages of the Earth’s temperature field are thus devoid of a physical con-
text that would indicate how they are to be interpreted, or what meaning can
be attached to changes in their levels, up or down. Statistics cannot stand in
as a replacement for the missing physics because data alone are context-free.
Assuming a context only leads to paradoxes such as simultaneous warming
and cooling in the same system based on arbitrary choice in some free param-
eter. Considering even a restrictive class of admissible coordinate transforma-
tions yields families of averaging rules that likewise generate opposite trends
in the same data, and by implication indicating contradictory rankings of
years in terms of warmth.

The physics provides no guidance as to which interpretation of the data is
warranted. Since arbitrary indexes are being used to measure a physically
non-existent quantity, it is not surprising that di¤erent formulae yield di¤er-
ent results with no apparent way to select among them.

The purpose of this paper was to explain the fundamental meaninglessness of
so-called global temperature data. The problem can be (and has been) hap-
pily ignored in the name of the empirical study of climate. But nature is not
obliged to respect our statistical conventions and conceptual shortcuts. De-
bates over the levels and trends in so-called global temperatures will continue
interminably, as will disputes over the significance of these things for the
human experience of climate, until some physical basis is established for the
meaningful measurement of climate variables, if indeed that is even possible.

It may happen that one particular average will one day prove to stand out
with some special physical significance. However, that is not so today. The
burden rests with those who calculate these statistics to prove their logic and
value in terms of the governing dynamical equations, let alone the wider, less
technical, contexts in which they are commonly encountered.
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