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The methods of finite-time thermodynamics are applied to processes whose relaxation parameters are
chemical rate coefficients within the working fluid. The direct optimization formalism used previously for
heat engines with friction and finite heat transfer rates—termed the tricycle method—is extended to heat
engines driven by exothermic reactions. The model is a flow reactor coupled by a heat exchanger to an
engine. Conditions are established for the achievement of maximum power from such a system. Emphasis
is on how the chemical kinetics control the finite-time thermodynamic extrema; first order, first order
reversible, and second order reaction kinetics are analyzed. For the types of reactions considered here,
there is always a finite positive flow rate in the reactor that yields maximum engine power. Maximum
fuel efficiency is always attained in these systems at the uninteresting limit of zero flow rate.

. INTRODUCTION

The Carnot-Clausius—Kelvin approach toward thermo-
dynamics emphasizes the process variables of work and
heat, in contrast with the Gibbsian view that emphasizes
the state variables.! From the former standpoint, the
importance of the thermodynamic potentials lies largely
in their roles as bounds on process variables, for pro-
cesses limited but not completely determined by con-
straints, Traditional thermodynamics admits constraints
on state variables, such as constancy of temperature,
pressure, or volume, or on process variables, such as
adiabaticity, but has no place for constraints on time
or rate. For a significant class of processes, one can
extend the concept of thermodynamic potential to func-
tions that bound the process variables of work and heat
where the constraints include constraints on time or
rate.? Two ways have been developed to evaluate these
bounds, one by means of Legendre—Cartan transforma-
tions which yield absolute but not unique potentials, % and
the other by direct determination of the extremal values
of the process variables.® Until now, these methods
have been applied only to mechanical processes and
simple heat engines. In these processes, the time con-
straints originate in heat transfer and friction.

Here, we present the first application of finite-time
thermodynamics to a system in which chemical change
is part of the process and the time constraints enter
through the rate coefficients of the chemical reactions.
The system adopted is a continuous flow reactor that
converts reactants to products in an exothermic process
and supplies heat to an engine. The simplifying assump-
tion is made that the rate coefficients of the chemical
reactions are independent of temperature. This pro-
vides a simple model of the boiler section of a power
plant, The reaction supplying heat will not, in general,
go to completion and the temperature of the heat going
to the engine may be lower than that of the reactor. The
formalism used to analyze the problem is the direct
maximization based on the “tricycle” representation of
a thermal process, 3 which is reviewed briefly in the
next section,

One has several reasonable options when one chooses
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the variable whose extremum is to be determined.
Curzon and Ahlborn* compared the efficiencies of two
kinds of idealized electric power generating systems-—
Carnot engines with finite thermal conductances to their
heat reservoirs: engines operating at maximum effi-
ciency and engines yielding maximum power. The time
path of optimal cycles depends markedly on what quantity
is optimized: Optimizing efficiency, effectiveness,

and entropy production all give quite different paths.’
Here we examine the functional dependence of objective
functions, particularly fuel efficiency and power output
from the driven engine, upon the flow rate within the
flow reactor.

While one can draw parallels between our model and
real processes, we make no claim that the specific
system analyzed here has immediate applications, par-
ticularly becuase of the simplifying assumptions regard-
ing the temperature dependence of reactions. However,
it serves very well indeed as an illuminating model
problem for the extension of finite-time thermodynamics
to chemical processes. For the systems studied pre-
viously, %% 7 jt was assumed that any working fluids
attained hydrodynamic and chemical equilibrium rapidly
relative to the rates associated with heat transfer and
frictional heat generation. In the system examined here,
we assume again that the hydrodynamic degrees of free-
dom come to equilibrium quickly but the rate of chemi-
cal equilibration is comparable to or slower than the
rates of heat transfer, No frictional effects are con-
sidered for this system.

In the next section, we review the tricycle representa-
tion and describe how a heat engine driven by an exo-
thermic chemical process may be visualized as two
coupled tricycles. In subsequent sections, the model is
analyzed for commonly encountered systems following
first and second order kinetics.

{i. TWO COUPLED TRICYCLE MODELS FOR A HEAT
ENGINE DRIVEN BY CHEMICAL WORK

A tricycle is a point in three-space representing the
interactions between three heat reservoirs at tempera-
tures T,, T,, and T3.% The three dimensions of the
space correspond to the three rates of heat flow into
each of the respective reservoirs. They are designated
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q1, 92, and g3. One may be a work reservoir, such as
a weight that may be lifted; the corresponding tempera-
ture is infinite. We use g, =w conventionally to repre-
sent power or average power produced,

There are two constraints upon the tricycle: Energy
must be conserved over time

q1+q2+q3=0; 1)
and the rate of entropy production cannot be negative
4o %  dixg, (2)

T, T, T,

Using the conventions established in Ref. 3, we shall
designate reservoir 1 of our heat engine as the work
reservoir, reservoir 2 as the high-temperature reser-
voir from which heat flows into the engine, and re-
servoir 3 as the low-temperature reservoir into which
the unconverted heat flows, Reference 3 discusses the
role of irreversibilities such as friction, heat leak, and
thermal resistance in determining the maximum power
output or maximum efficiency of such an engine. We
shall now focus upon the rate at which the heat which
drives the engine (g,) is produced of ¢, is generated by
an exothermic chemical process.

Consider the exothermic process

R-P (3)

which releases an amount of heat per unit time ¢, .
Suppose that this process, represented in Fig. 1, oc-
curs in Tricycle A (with initial reactant concentration
Ry), and supplies ¢ units of heat per unit time to Tri-
cycle B, a heat engine. In Tricycle 4, w, is the chemi-
cal work which is not released as heat. In Tricycle B,
w is the power produced and ¢; is the unconverted heat
released per unit time.

Tricycle A differs from a heat engine tricycle in that
some of the energy flow is in the form of chemical
work. A common feature of Tricycles A and B is the
incomplete conversion of energy; unreacted starting
material R is lost in A and waste heat g3 is lost in B, In
both cases, some of the loss results from second-law
restrictions. Additional losses occur because of the
finite-time nature of the problem; this constraint may
appear as a finite rate of reaction in Tricycle A or as
friction in a heat engine.

T(f) is the “flame” temperature at which g, is re-
leased from the chemical reaction and T, is the tempera-
ture of the hot reservoir of the engine. Suppose further
that the chemical reaction R — P occurs in a flow tube,

Thermodynamics in finite time 5119

sc that the time 7 during which the reaction is allowed to
proceed is inversely proportional to the flow rate f.
(Obviously, in this model the flow rate, the reactor
length, or the dwell time in the reactor could be treated
as the independent variable.) If we define the extent of
the reaction €(7) as

€(1)=P(1)/R, , )
then we may express g, as
4, =Qu (1S, (5)

where @,, is the molar exothermicity of the reaction and
f is the flow rate in moles per unit time. Since Tand
f may be expressed in terms of each other by simple
relations such as
<1l
JRCSUTR ©)
with (4 - I) the volume of the flow tube and p,, the density

of reaction mixture {(moles/unit volume), g, may be
written as a function of the flow rate

2.(f) =Qnf €(f) .

Of course, the functional dependence of €(f} on f will
be determined by the reaction kinetics.

)

The temperature at which the heat ¢, is released will
depend upon the extent of the reaction, and therefore
on the flow rate. Since one generally solves for flame
temperatures self-consistently, ® one cannot write a
general analytic expression for T(f}). We shall see
that simplifying assumptions are necessary for some
of the cases treated here. For all our cases, we as-
sume that the mixture of product gases is homogeneous
and that any relaxation within the translations, vibra-
tions, and rotations of the gas itself occurs very rapidly
with respect to the time scale of the chemical reaction.
In the first case we assume that the heat capacity C of
the reacting mixture remains constant through the tem-
perature range T, (the inlet temperature) to T(f) (the
flame temperature). The temperature at which the heat
of reaction is released is then given by

r(r)= W), . ®

The constant heat capacity restriction will be lifted in
the second case,

In order to produce work, ¢, may be utilized over 2
temperature range beginning with T(f), or, alternatively,
the heat from the product mixture may be transferred to
maintain a reservoir at a lower temperature T,,

Case I: Consider first Case I, where the heat of
reaction g, is extracted from the products emerging at
the flame temperature T(f), so that T(f) is the highest
temperature at which heat is supplied to do work. Note
that the hot products, in this case, constitute a hot
reservoir with finite heat capacity. The maximum
amount of work recoverable from a substance with
finite, constant heat capacity C at T'(f) in contact with a
reservoir at a constant lower temperature 7 is given
by a reversible process
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T
Wau=C [ (1) ©

Tp

=C{[T(f) - To] - T01n<zr_§‘vﬂ>} ’

0

with corresponding maximal efficiency

- Ty
=1+ gy Wl /T()) . (10)
Combining Eqs. (7) and (10), we obtain an expression for
the power production for Case I:

”’(f”Q"f‘(f’[“T(f?iToI“(Tq(‘[’ﬂ)] W

so long as the engine converts the heat of reaction into
work with the maximal efficiency. For convenience,

we have taken the low temperature of the engine T to be
the same as the inlet temperature of the reaction mix-
ture., When C is independent of 7, Eq. (11) becomes

€
w(f)=@nf <) =CTorimn[ S ] - qa)
0
To find the values for the flow rate f where the power
production (12) is maximized, the first derivative is

set equal to zero:

d_t_" =me M.;.Qm ((f)_CTo]_n[gm_(LQ +1]

I 4 CT,
~1
—CTyf [chi(foL) +1] C—QTMO— d—iéff—)m. 13)

Case II: Another way in which a chemical process
might drive a tricycle would have the product mixture
transfer heat to the high-temperature reservoir of Tri-
cycle B, maintaining its temperature at 7T, as in a
steam generator. The product mixture escapes at Ty,
carrying with it some of the energy produced by the
combustion process. In this case, termed Case II, T,
is independent of the flow rate and is presumably fixed
by external factors. I the rate of heat transfer to the
engine is —¢,, then the rate at which heat is thrown
away with the product mixture is given by (g, +¢2). Such
a system may be represented by the diagram of Fig. 2.
The only restriction on the engine in Case II is that the
efficiency be independent of the reaction mixture flow
rate f; the engine need not be a Carnot engine.

9,

T{1)

To—(a,7¢qp)
-4, Exhaust

3

T
FIG. 2. A schematic diagram of a product mixture, initially
at T(f), transferring heat to the hot (T;) reservoir of a tricycle.
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The rate at which heat is transferred to Tricycle B
(a heat engine) is given by

w=-f [T cmar, (14)
Ty

where C(T) is the general, temperature-dependent heat
capacity of the product mixture. We shall assume that
the heat capacity of the mixture is independent of the

extent of the reaction €(f). This assumption is valid if
€(f) is near to unity, or if C(T) is roughly the same for
reactants and products, In See, VI we show how to re-

move this restriction for reactions of any order, Since
me(r)= ["cmar, (15)
0
¢z may be rewritten as
Ga=~f@uelf)+f L:a cryar, (16)

Ill. FIRST ORDER KINETICS

For the case where the reaction R— P is first order
in R with first order rate constant k&, :

‘Tgﬁ =k R, (17)
the extent of the reaction is given by

«n=1-e™", (18)
Combining Egqs. (18) and (6), we obtain

(f)=1-e*"f, (19)

with B’ =Alp, k. Therefore, the rate at which heat is
produced is given by

@ (f)=Quf-e™*""") .

As one might expect for a simple first order process,
there is no ideal flow rate at which the rate of heat
production is maximized. Infact, g, is a strictly in-
creasing function of f, and has the upper bound
Qnk':limswq,(f) =@,k . One further notes that heat
is produced at a zero rate if f=0: ¢,(f=0)=0. Like-
wise, there is no optimum value for f (in the domain
f >0) at which the heat released per unit amount of fuel
spent ¢,(f)/f is maximized. The fuel efficiency is im-
proved as f decreases, approaching an upper bound @,
as f-0, In practice, however, it is often the power
produced (or the power produced per unit amount of
fuel) and not the heat of reaction which one might wish
to maximize.

(20)

Case I, represented by Eq. {12), with first order
kineties, gives the power

w=Qu fil -/ —w'm[1+u(l —e¥/7)]}, 21)
where

u=8,/CT, (22)
is the molar heat of reaction in reduced units, Equa-

tion (21) has no analytic solution, but can be solved
numerically. Figure 3 shows the power produced, in
units of CT, f, as a function of ¢’ /f, essentially the
traversal time through the reaction chamber, for u=1.
The fuel efficiency w/f is highest for £ =0 (infinite reac-
tion time) and we shall assume that the heat capacity of
the mixture
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lim (w/f)=Qp [1 - ”‘—(l—i’i’] (23)
0 u
Turning to Case II with first order kinetics, we find
the heat input [Eq. (16)]
. Tz
~ g =fQuA = /T) f JT C(T)drT . (24)
0

Setting the first derivative dg,/df equal to zero, one
obtains

’ T
- %) - K et~ [ *omar=o.
a6 " f T,
(25)

Equation (24) always has a maximum at some positive
fs corresponding to a positive, real solution to Eq. (25)
(provided [72 1, C(T)dT<Q,,, which is always true), While
graphically exact solutions to Eq. (25) may be obtained,
an approximate solution is given by

-1/2

Te
famkQi2[2 [ * omar] ™,
To

which is valid when @, > 2 [72 C(T)dT. Under any con-
ditions, the maximum power for Case II is

(26)

s =1 e Qald =7 o) o f cmar| , @

where 7 is the engine efficiency. Thus, for simple first
order systems with the product mixture cooled to T,
(Case II), there is a finite, positive f at which the power
is maximized. Such an optimum does not exist for the
fuel efficiency; w/f is always improved as f decreases.

IV. REVERSIBLE FIRST ORDER PROCESSES

The results for a first order process may be easily
generalized to take into account the reverse reaction.
Consider the same reaction as above, with forward and
backward first order rate constants 2, and %, :

R=P (28)
L)
The rate of buildup of products is then given by
dP(t
O )Ry - oy 1) P . (29)

Solving Eq. (29) in the usual way, we obtain an expres-
sion for the extent of the reaction €(f):

5121

€)= P‘” =ly /g +Ry)](1 = e OPH00) 30)

or
e(f) =lk; /Gp+R)] 1 =¥ 7)Y, (31)

with £ =Al . p, (ks +k,). Equation (31) will then lead to
the same optima as for the simple first order reactions
for both cases, if the prefactor k,/(k,; +k,) is subsumed
in Q,,, and if £’ is used instead of %',

V. SECOND ORDER PROCESSES
A. Reactions second order in a single component

If the process R— P is second order in R, the solution
to the differential equation

—dR 2
= =kyR (32)
" yields an expression for the extent of the reaction
P(t)  _kyRot
W= R, = BRot+1 33)

Note that this system is equivalent to a process with
two reactants R, and R,, which is first order in Ry,
first order in R;, and second overall, provided that R,
and R; are in stoichiometric amounts.

As in the first order case, € may be expressed as a
function of the flow rate

e(f)= _kg._l_zi_

kaRoc' +f ’ (34)

where ¢’ =4 pm. The flame temperature is given by

) Ge (eBed).r,

kz Ro c +f (35)

(assuming constant heat capacity); the rate of heat re-
leased from the reaction is

a()=us (T ) (36)

kz Ro C ’ +f
Again we look at two possible methods for converting
q, into work. Firstly, ¢, may be used by reversible
cooling from the flame temperature 7(f) to the ambient
temperature T, (Case I). Recalling Eq. (12), the ex-
pression for the power produced by such an engine, we
obtain for this second order case

e [R) o (2885
37

kyRoc +f
Case I with second order kinetics is illustrated in Fig.
4 for u=1, Time is in units of k;Ryc’ /f and power is
again in units of CT f.

Also of interest is the type of engine where the product
mixture is cooled to a fixed T,, as described for first
order processes, The heat transferred to Tricycle B
in Case II is given by Eq. (16), which upon substitution
for €(f) becomes

—ga= f[QmCe—zk;{ig{:_f)_ L:zC(T)dT] . (38)
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FIG. 4. The power produced (in units of CTyf} as a function of
kR’ /f (proportional to the traversal time through the reactor)
for Case I with second order kinetics, foru=1.

Again, setting dg; /df equal to zero, an expression for
the optimum flow rate is obtained:

foa=tsRoc): [0/ [F cmyar)™ 1] o
]

We note that the expression in Eq. (39) is always posi-
tive, and corresponds to a maximum -g¢, (and hence a
maximum power) with no restrictions on the size of u€,

B. Reactions first order in two different components

Another kinetic system of practical interest is that
which is second order overall, but first order in each
of two components, where one component is in excess
and the other is limiting. Let X be the limiting reagent,
and let Y be the reagent in excess. Using the conserva-
tion equations for X +Y—~P:

Xg-X=Yy-Y=P, (40)
the differential equation
:;TX =kX? 4R (Yo - Xo) X (41)

is obtained, The corresponding expression for €(f) is
then

eXp[(Yo —Xo)kt] -1
exp[(¥y ~ Xp) kt] ~ %{—Z

€(t) = 42)

For this situation, where the rate of reaction depends
upon the concentrations of both X and Y, the heat re-
leased from the reaction is now given in terms of €,
the exothermicity per moleof limiting reagent, and f,
the flow rate in total moles of starting material (X and
Y) per unit time:

0=t (goyr) <) 4s)
q, may be recast as a function of y= (¥, - Xo) kt:
) =Gre' %, [ AZE=L] c(o)yt. @)
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As an illustration of the dependence of the power upon
f for systems obeying Eq. (41), we have calculated the
power as a function of time for Case I, When the rate
of reaction is bilinear in X and Y, the power production
will depend both upon #'=CT, /@', and upon the ratio
X0 /Y.

Figure 5 shows an example of the power as a function
of traversal time through the reaction chamber for u’
=1 and X, /Y,=1/2, with power in units of @/, ¢'kX,y"!
and time in units of y.

Vi. DEPENDENCE OF HEAT CAPACITY ON EXTENT
OF REACTION

In the preceding discussion, we have assumed that the
heat capacity is independent of the extent of reaction
€(f). Of course, since the product mixture contains
both products and unreacted starting material, the heat
capacity of this mixture will, in general, depend on the
extent of the reaction. However, the functional form of
the power is not changed when the above restriction is
lifted,

For Case II, this dependence of C on €(f) may be in-
corporated into the above treatment very simply, At
each point, the heat capacity of the reacting mixture is
the average of the heat capacities of reactants and prod-
ucts C, and C,, respectively, as

C(T, £)=€(£)C,(T) +[1 - €(f)] C,(T) . (45)
Substituting C(T, f) for C(T) in Eq. (15), one obtains
TUf)

{f)
Qme(f)=e(f) fT €, -C,)ar+ [ c,ar.
0

Ty

(46)

Thus, for Case II, where the product mixture transfers
heat to the reservoir at T,, the rate of heat transfer to
the reservoir is given by

-2 =f€(f)[Q,,.— ]T:a (cp—C,MT] | :: C,dT .
(47

0.08

007
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0.05

0.04

POWER

0.03
0.02 ]

0.0! 1

0. 00 1 1 1
Q.0 10 20 30 40

TIME

FIG. 5. The power produced (in units of @, c kX y YV asa
function.of reaction time (in units of ) for a Case I system
driven by a process which is first order ineach of two reac-
tants (X and Y) and second order overall, with ‘=1 and X /Y,
=1/2.
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Equation (47) is virtually identical to Eq. (16), except
that C, replaces C in the last term and there is one new
term, the integral of (C, - C,). Hence, relaxation of the
assumption that C is independent of €(f) does not alter
the functional form of the power w(f). The expressions
for w(f) and wy,, may be corrected in Case II, by sub-
stituting [Q,, ~ [%(C, - C,) dT] for Q,, and [72C,(T)dT
for [72 C(T)dT.

In case I, the expression for the high temperature of
the engine is

@ e(f)
«(f}C, ~-C,)+C,

Substitution of Eq. (48) into the equations for the power
production results in additional terms. While this does
not correspond to a simple substitution of parameters
as it does in Case II, w(f) remains qualitatively the
same,

(48)

T(f)=

+Ty

Vil. DISCUSSION AND CONCLUSIONS

For all of the kinetic systems {first and second order)
considered, there is an optimum value for the flow rate
at which the power produced by an engine which has
maximal efficiency and is driven by an exothermic
chemical reaction is maximized. This is true for Case
I, where the heat of reaction is transferred reversibly
to the engine starting at the reaction temperature 7(f),
and also for Case II, where the reaction products trans-
fer heat to a reservoir at 7, and then escape at T,. For
all these situations, T{f) is a strictly decreasing func-
tion of the flow rate f. Therefore, the fuel efficiency
w/f is also a strictly decreasing function of f within the
framework of our present model.

The flow rate at which maximum power production is
attained corresponds to fuel efficiency less than maxi-
mal, i.e., €{f)<1 and therefore small w/f. Hence,
in our hypothetical system, one would want to have
some means of recovery of unreacted starting material,
Such an extension would add another work-consuming
process that would be coupled to our system. Since
the present treatment does not deal with coupled sets of
reactions, including a recovery process would go beyond
the scope of this paper.

Let us explore this example a bit further by comparing
the results just obtained by maximizing power and fuel
efficiency with the behavior of the same system optimized
to give minimum entropy production. Systems generat-
ing minimum entropy have been discussed recently® and
it has been shown that at least one class of systems
optimized to correspond to minimum cost will fall be-
tween systems giving maximum power and systems giving
minimum entropy production,®

If the reaction R~ P were carried out isothermally at
temperature Ty with molar entropy of reaction AS,, the
rate of entropy production would be

s(f)=¢as, . (49)

With the heat of reaction being used reversibly from
T(f) down to T, (Case 1), an extra term enters

s(f)=g88,+fC, [T(f)/T,] . (50)

Thermodynamics in finite time 5123

Possible solutions with minimum entropy production for
first order kinetics are then

f=0:

f=0: s=k’(AS.,+

s=0,

(51)
AN
Ty ) °
When the second equation is rewritten as s =k'AG/T,
where AG is the change in free energy for the combustion
process, it becomes obvious that s =0 is the absolute

minimum. The result is analogous for second order
kinetics:
f=0 s=0 ,
Q (52)
f=2: s=kyRoc’ (AS,+ T"‘—> .
0

In Case II the irreversible cooling of the product mix-
ture from T(f) to T, and (in the exhaust) to Ty adds fur-
ther terms to Eq, {50):

s(f)=¢aS, +(efQ,, — w)/Ty
=fAS, + fFC[(T(f) = To) = (T(F) ~T) 1) /T, .

In this expression 7 is the efficiency with which the en-
gine converts heat at temperature T, to work [cf. Eq.
(14)]. Finding the minima of Eq., (53) is a bit more in-
volved than for Case I, but for both first and second
order kinetics it turns out that there are no interior
extrema in the possible flow range from f =0 to T(f)

(53)

=T, . The boundary solutions are for first order kinetics
f=0: s=0 ,
AS T U
1(1)=1y 5=k (52 ve)(B 1) /m(pr e
(f)=Tz: s=k ( w TN\7, Y/ Mo
(54)
and for second order kinetics
f=0: s=0,
T(f)=Ty : s=kyRyc’ (% +C)(1 U — %) . (55)
0

Both expressions for T(f)=T, are positive, so the mini-
mum rate of entropy is again produced at zero flow rate,

For the chemically driven engine we thus find that
maximum fuel efficiency and minimum entropy produc-
tion are obtained in the uninteresting limit f =0, whereas
any nonvanishing power production, in particular the
maximum power sought in the previous sections, is ac-
companied by a sacrifice of efficiency just as in mechan-
ical systems, 3710

While Case II was treated for a product mixture with
general heat capacity C(T) and for an engine with gen-
eral efficiency 1(T,, T,), constant heat capacity was
assumed in Case I, It is straightforward to extend the
calculations to at least some other systems. For ex-
ample, we have analyzed the case in which T is a linear
function of €(f), the extent of reaction, but in which the
heat capacities and rate coefficients are temperature
independent. More realistic gituations appear to be a
bit more challenging, but demand examination.

Indeed, we recognize that our model should be ex-
tended to include the following:
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(1) a temperature-dependent heat capacity in Case I,

(2) nonequilibrium conditions in the internal degrees
of freedom or density of the working substances, and,
finally,

(3) most important, temperature-dependent reaction
rate coefficients.

Inclusion of a T-dependent rate constant, even with
simplifying assumptions (Arrhenius temperature depen-
dence, constant heat capacity, and zeroth order kinetics),
entails rather cumbersome numerical analysis. The
extension of the analysis to include temperature-depen-
dent rates is currently in progress.

In addition, we have not mentioned how engines operat-
ing with a finite-heat-capacity heat source might be set
up to give the efficiency of Eq. (10). This will be dis-
cussed in a forthcoming paper,

Even with its idealizations, the present work demon-
strates the importance of the finite rate of chemical
processes in setting thermodynamic extrema for energy
conversion processes operating in finite time.
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