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ABSTRACT 

A noiseless-channel coding system in which the source probabilities change continuously in 
time is introduced. Using a geometry defined by the second derivative matrix of the 
information-theoretic entropy function, a bound on the number of excess channel symbols (the 
redundancy) sent by a retrospective encoder during a fixed time interval is derived. Results on 
minimal-cost coding and their implications for a real-time coding algorithm are then explored. 
Underlying most of the discussion here is the assumption made on the separability of the time 
scales corresponding to the (high) character rate as compared with the rate of change of the 
source probabilities. 

I. INTRODUCTION 

A noiseless-channel coding system in which the source symbol probabi~ties 
vary continuously with time is examined. The source-to-channel encoder is 
designed to adapt to the current source probabilities with the objective of 
minimizing the redundancy, i.e. the expected extra number of chamtel symbols 
sent across the channel (relative to the minimum possible), in a given interval of 

time. By analogy with physics, we will refer to these extra bits transmitted as 
“dissipation.” This adaptation must take place in order for dissipation to be 
minimized, since the optimal code at a given time is dependent on the current 
source probabilities. 
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We first assume that the encoder has complete foreknowledge of the distri- 
bution of source characters at each instant of the time interval [0, T]. The 
problem of optimal coding in the absence of information about the future and 
an associated algorithm follow in Section V. We assume throughout that the 
rate of “drift” in the source probabilities is slow, i.e., the time scale for 
determining the instantaneous probabilities used to generate the source symbols 
is much smaller than the time scale on which the source symbol probabilities 

change. This assumption is valid in the limit as the rate of transmission r goes 

to infinity. 
We determine the optimal codes and code changes subject to the above 

assumptions in three stages. Initially, we assume that K code changes occur at 
given times t,, . . , t, and optimize the choice of codes for each of the K time 
intervals. Next we optimize the choice of times t,, . . , t, at which to change 

codes. Finally we optimize the choice of the number K of code changes. Unless 
we assume there is a nonzero cost of changing codes, the optimal choice of K is 
simply the number of symbols sent, i.e. change codes to be optimal at each 
instant. We therefore assume a nonzero cost per code change. 

A central concept in the development of the bounds on dissipation presented 
here is the geometry we use on the set of states of the source, i.e., on the set of 

probability distributions over the source symbols. The geometry is Riemannian 
and uses the second-derivative matrix of the information-theoretic entropy as 
metric matrix. This metric was originally introduced by R. A. Fisher [2, 4, 71, 
and the associated distances can be interpreted as the number of distinguish- 

able intermediate distributions [7]. This distance is therefore natural to the 
problem at hand, which concerns the time evolution of the source and the 
minimal extra redundancy required to code in the presence of such evolution. 

The problem and the methodologies considered here were motivated by 
recent results on the minimum dissipation in thermodynamic processes in finite 
time [5]. In these physical processes the dissipation is measured by loss of 
available work or by production of entropy, rather than extra bits transmitted 
as in the present example. In fact a similar geometrical structure can be defined 
on the state space of any model in which a system shows optimizing behavior. 
The problem of minimizing deviations from optimality inevitably relates such 
deviations to the distance traversed in a geometry defined by the second 
derivative of the objective function, Besides the thermodynamic example cited 
above and the example of adaptive coding discussed in the present paper, an 
economic example has also been analyzed [6]. 

Section II will introduce notation and concepts associated with our 
adaptive-coding model. Section III will examine the geometry on the states of 
the source defined by the second derivative of the entropy function. Section IV 
derives a lower bound on the dissipation for the adaptive-coding model 
equipped with a retrospectiv I encoder, i.e. with perfect information on how the 
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Fig. 1. The communication system 

source is to evolve probabilistically. Implications of the results of Section IV for 
implementing an algorithm to run in “real time” are presented in Section V. A 
summary is given in Section VI. 

II. ADAPTIVE-CODING MODEL 

Let XT = (xi,. , xm) be the set of characters of the source in a communica- 
tion system (Figure 1). A character is generated at discrete times t,, (corre- 
sponding to some fixed rate r) according to the probability vector p(t,)r= 

(Pl(f,),...,Prn(f”)), which we will refer to as the state of the source. It is 

assumed that distinct trials (characters) from the source are independent. The 
goal of the adaptive encoder is to transmit the information represented by these 
characters across a noiseless channel with the channel alphabet denoted by 

AT= (a,,..., a,). It is well known [l] that for a fixed set of probabilities 

P’= (pi,...,~,) for th e source symbols, the expected codeword length for a 

uniquely decipherable code is bounded below by 

HD(P) =- f PilOg,Pi’ 
i=l 

(1) 

(Henceforth, log functions with an unspecified base will be understood to be to 
the base D, and we will drop the subscript D on Ho.) Furthermore, by using 
extensions of the source, i.e. by coding blocks of source symbols, this lower 
bound may be approached arbitrarily closely by increasing the length of the 
blocks. Thus if we assume the alphabet A actually represents blocks of some 

base set of characters which are long enough to make the lower bound a good 
approximation of the expected codeword length, then 

E( number of channel symbols sent in [0, r 1) 

where E denotes the expected value relative to the probability space of strings 
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of source symbols on [0, T]. Note that the integral approximation above is 
accurate provided the rate of source symbols, r, is large relative to the 

magnitude of the rate of change of p, i.e., r x=- Ij~(t) 1 for all t. If p(t) is 

changing significantly with time, Equation (2) would hold only if the code were 
changed to the new optimal [l] code consistent with the current probabilities at 

each step. If there are codewords sent where the code is not constructed for the 
actual p(t) at that time, then there will be an expected number of channel 
symbols sent in excess of the expression in (2). We define this quantity to be the 
dissipation in the coding process. If these extra channel symbols are used for 
error detection, this excess is known as redundancy. We shall explore the 
minimum value of this dissipation after introducing the requisite geometrical 

constructs. 

III. GEOMETRY ON THE SET OF SOURCE STATES 

It is easily verified that the second-derivative matrix of the state function 
H(p) of the state p of the source is given by 

~‘W(P)l =-&j i’:“l 1’p2 . . . I;p]. (3) 

The negative of this matrix is both positive definite and symmetric and can be 
used to define a Riemannian metric on the set of states of the source. The 
length of a path p(t), t E [0, T], describing the time evolution of a source is 
calculated relative to the metric - D’[H(p)] as 

L=/di-WI TD2H(p( t))p( t) dt. (4 

Note that from its very form the length of a path defined in this way is 
independent of parametrization. If the parameter is taken to represent time (as 
we have done), independence of parametrization means in effect that the length 
of a path is independent of how fast the path is traversed, i.e. length is a purely 
geometric notion. 

The geometry that this length defines on the set of source states will be 
exploited in deriving a lower bound on the dissipation in the proposed coding 
system. It is rather remarkable that a metric defined on the set of source states 
can provide information concerning coding losses for a time-varying source. It 
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is no less remarkable that defining lengths of paths for thermodynamic or 
economic time evolutions in a similar fashion yields information about inherent 

“losses” in these models [5, 61. In short, geometries of this type appear to 

provide a general tool useful in bounding losses in any process in which an 
environment leads a system which is attempting to “keep close,” i.e. remain as 
near to equilibrium with its environment as possible. 

IV. MINIMUM DISSIPATION FOR A RETROSPECTIVE ENCODER 

We are now in a position to consider the central problems of this paper, 
namely minimal-dissipation and minimal-cost coding for an encoder blessed 
with complete foreknowledge of how p(t) is to evolve over a fixed interval of 

time [0, r]. As mentioned previously, we shall proceed to optimize in sequential 
fashion: 

(i) the code for an arbitrary fixed subinterval ( f, , r,+ i), 
(ii) the times f, (j=2,..., K) at which code changes occur, 

(iii) the number K of code changes in [0, r] = [t,, fK+ 1]. 

A. OPTIMUM CODE 

By n;l we shall mean the length of the codeword corresponding to source 
symbol xi (i=l,..., m) in the code used throughout the j th subinterval, 
( rj, t, + 1). The total dissipation for the time interval [0, r] may then be expressed 

as 

R=rlTf [Pi(t)ni(f)+p,(t)lOgpl(‘)I df 
O i-l 

where 

ni( t) = ni’ for tj<t<tj+l, 

i.e. the expected minus the optimal expected codeword length at each instant 
integrated over the coding interval. Note that the term above representing the 
optimal expected codeword length is independent of the choice of @ and thus 
has no effect on the choice of n{ which will minimize total dissipation R. 

Suppose that code changes are to occur at times rj and fj+i and at no time 
in between. Then the length n;’ (i=l,..., m) of each codeword must be chosen 
to minimize the expression 

t-j’+’ 5 [pi(t) n{] dt = r i r~j/‘~+lp~( t) dt 
‘J i=l i=l ‘J 

(6) 
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under the restriction that the n;’ satisfy the condition for the existence of a 
uniquely decipherable code [l], namely 

m 

c D-“;‘<l. (7) 

We shall ignore the fact that the n; represent integers and that equality in (7) is 
generally not possible. In so doing we establish a minimum dissipation for any 

real values of n_l which is actually a lower bound on that obtainable using 
integer n/. This lower bound is assured to be quite tight, as already mentioned, 
if we interpret the “source” symbols to be blocks of symbols of an actual 
single-charactersource. Furthermore, the plausibility of this interpretation rests 

solely on the assumption of separation of time scales already stated, i.e. on the 
assumption that r is large compared to 1 i,j, 

With equality in (7) assumed, we form the Lagrangian 

(8) 

where we have introduced the notation 

&=jfi’lpi(t)dt=p;‘At 
J 

1, 
(9) 

with AtJ = tj,l - tJ. Equation (8) leads to the optimality conditions on n{, 

g; = -1ogp;’ (i=l ,-.., 171). (10) 

The optimality conditions in (10) should hold for each subinterval j (j = 
1 , . . . , K). In words, the length of the ith codeword for the optimal code on the 
j th subinterval is minus the logarithm of the average value of pi(t) on the 
subinterval. 

Substituting the optimal n/ into (5) yields 

R=r f fp,J(-logp!)--j:H(p(t))dt 
j=1 ;=I 

I 

(11) 
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B. OPTIMAL SWITCH TIMES 

Equation (11) is now the expression we wish to minimize by choosing the 
K -1 times tZ,..., t, at which to change the code. We begin by taking the 
derivatives with respect to one of these times, t, I = 2,. . . , K. Note that 
the integral in (11) is independent of the switch times: 

-r f f /tJ+lp,(t)logjijdt j=l i-1 t, 1 
=- 

r f pi(f, (I= 2,..., K). (12) 
i=l 

Derivatives of the log& factors cancel, since C, j,’ = 1. Setting the terms of 
Equation (12) equal to zero, we find the optimality conditions on the t, to be 

m 
c p,( t,)log p,(f,) 

i i 
m I 1 = c P,(4)1% 

P (4) 

i 1 
+ 

i=l P, i=l P, 
(13) 

Equation (13) has the following interpretation in the language of information 
theory: The time t, at which to change codes must be such that the mean 

surprisals of distribution p(r,) relative to the average distributions over (r,_ 1, r,) 
and (r,,r,+,) are equal. [It is easy to see that the pf (i=l,...,m) form a 
probability distribution.] 

Examining (13) further, we expand the logarithms as power series and 
neglect terms higher than second order in Apf = p,’ - p, (r,), i.e., we assume that 
p(t) evolves only slightly in relative terms during each interval: 

Here the first-order terms sum to zero and we are left with 

(14 
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Fig. 2. Optimal switch times should be at points equidistant from the midpoints of previous 
and upcoming intervals. 

Recalling the discussion of Section III, this assumes the form 

where the dot product is taken relative to the - D2H metric [Equation (3)] 
evaluated at p(t,). This simply means that for each 1, the optimal p(t,) will be 
equidistant, relative to the D2H metric, from the average P (t) over the (I - 1)th 

and Ith subintervals (Figure 2). 
Our treatment of the optimal-adaptive-coding problem relies heavily on the 

separability of the time scales. This assumption guarantees that each of the K 
segments of the path p(t) is small and justifies our ignoring terms higher than 

second order in the expansion of (13). To continue with the third step of our 
sequential optimization, we will need an expression for the minimum dissipa- 
tion in the Ith time interval. Relying once again on the separability of time 
scales, we approximate the piece of the path p(t), t E (t,, t,+l), by a line 
segment, 

=a,+&(+f,) (17) 

where i, = (t, + r,+1)/2 is the midpoint of the Ith interval. It is then easy to 
verify that if p(r) is linear on a subinterval (r,, r,, 1) then 

p’=p(i,) =a,, (18) 

so that from (lo), optimally the encoder should base the code for a linear 
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subinterval on the value of p(t) at the midpoint p(i) of the subinterval. With 
this approximation, the dissipation for the Ith subinterval is [cf. equation (ll)] 

=r[;+’ F [.z+j3(t-i)llog[ ai+8b(t-i)] dt, (19) 
i-l 

where all quantities (a, fi, and i) refer to the Zth interval. A second-order 
expansion of the log terms yields 

m j?,! At; 
R~=&i?ln,zr. (20) 

C. GEOMETRIC BOUND 

We now compare (18) with the length of the subinterval measured in the 
D2H metric: 

(21) 

Thus from (20), (21) 

R, = &( AL,)’ At,. (22) 

The total dissipation for a sequence of linear subintervals is 

R= 5 RI=& 5 (ALj)2At, 
j = 1 j=l 

=$ ; (ALj)2, 
j=l 

(23) 
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t = g%Tq2 At, 
CJK_:1( AL,)’ 

(24) 

is the average length of time of the subintervals, each subinterval weighted by 
its length in the D2H metric. Using the Cauchy-Schwarz inequality in the form 

C,a,h, < ~,a~)1’2(E,b~)1’2 with b, = 1 for all j and a, = AL, , we have in (23) 

R& f AL, ‘=gL2, 

-( i j=l 

(25) 

where L is the total length of p(t) on [0, r]. 
The inequality in (25) represents a very important intermediate step, and we 

take a moment here to explore its significance. We have arrived at a general 

lower bound on the dissipation over an interval of time for the proposed 
encoder. The terms in this lower bound include the geometric quantity L, the 
average length of time of the subintervals At, and the number K of code 
changes. 

D. OPTIMUM NUMBER OF CODE CHANGES 

The last task before us is to optimize the number K of code changes for an 
optimal encoder. An optimal encoder for us will mean that expression (25) 
holds with equality. If, for a given optimal encoder, C, is the (constant) cost 
per code change and similarly C, is the cost per dissipated channel symbol, 

then the total cost of operating the encoder over [0, r] is 

- 

C(K) =C,K+C,$~L2+(minimalcost), (26) 

where the minimal cost is independent of K. Note that if the AL, are all 
comparable, i.e. if the drift rate of the source is nearly constant, then to a good 
approximation 

At=+, 

and (26) takes the simpler form 

C(K)=C,K+C, $$ + (minimal cost), 

(27) 

(28) 
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which by setting its first derivative to zero can be shown to have a minimum at 

(29) 

This then is the expression for the number of times the optimal encoder should 
switch codes (including establishing the code for the first interval). 

Using this value of K, we now go back to the expression (22) for the 

minimum dissipation in a linear step. We make the approximation 

AL,=;, j=l >.--1 K, (30) 

which has been justified in (13) and (15). Then (22) becomes 

r L2r 
4=x K K ( 1 

rL2r =- 
24K3 

(31) 

which states that the optimal encoder should change codes whenever the 
accumulated cost of transmitting extra bits since the previous code change 
equals one-half the cost of changing codes. 

Finally, the expression for the minimum total cost of encoding p(t) on the 
interval [0, r] is found using (28), (29), and (31): 

K 

C = C, K + C, c R, + (minimum cost) 
I=1 

= C, K + C, -$$ + (minimum cost) 

=%C,K+ r J IH(p(t)) dt 
0 

(32) 

for optimal K as in (29). 
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E. EXAMPLE 
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The following simple example serves to illustrate the ideas presented here. 
Let p(t)’ 
metric is 

L= ’ 

J 0 

= (sin* t,cos* t), t E [0, r]. Then the length of the path in the D*H 

’ 1 
0 \ 

i/2 

(2sintcost,-2sintcost) sin2f 1 
( 

2sintcost dt 

0 - 
-2sintcost cos* t ) )I 

= 
/ 

‘d2cos2 t +2sin* t dt =&T. 
0 

(33) 

Suppose that r = 30,000 characters per second to be sent through the channel 
and that C, = 5 cents per code change and C, = 1 cent per dissipated bit. Then 
the minimum dissipation for the encoder is, from (25), 

rrL* 
R=-.-.--= 

60,CQOr3 

24K2 24K2 . 

The optimal choice of K is, from (29) 

K=ym =~OT, (35) 

(34) 

leading to a minimum dissipation of R = 257 bits and a cost of 0.757 dollars. 
The cost of deviating from this optimum can be severe. If a single code is 

used for the entire duration (K = l), the minimum dissipation is R = 2500~~ 
bits, corresponding to a cost of 25r3 dollars. On the other hand, if the code is 
adjusted continuously (K + co), the dissipation vanishes but the cost of the 
code changes is very large. Even if we make the right number of code changes, 
we can lose significantly by not dividing the interval evenly. Consider for 
example using Kl = lOr/3 from 0 to L/2 and K, = 2Or/3 from L/2 to L. 

Even if the allocation within these subintervals is otherwise optimal, we end up 
with a dissipation of R = 35.16~ bits for a total cost of 0.85~ dollars. 

V. IMPLICATION FOR REAL-TIME ALGORITHMS 

The results of the preceding section for the optimal retrospective encoder 
actually have important implications regarding the implementation of minimal 
cost encoders which are required to work in “real time.” We require a real-time 
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Fig. 3. At a code change, the new code should be a perfect match for an extrapolated state of 
the source. 

encoder to encode characters immediately upon reception from the source, say 
at time t,, with knowledge of how p(t) behaves only for values r < t,. We 
assume that the time-scale separability is as before and that the real-time 
encoder has constant fixed unit costs C, and C, for code changes and 

characters respectively. Then with (22) and (31) in mind, we can approximate 
retrospective behavior with real-time behavior in the following fashion. 

1. Choose the next code at time t, to correspond to the distribution p; 
obtained (Figure 3) by moving from p(ti) in the direction p(fi) a distance 

J3C,/rC, i.e., 

(36) 

Equivalently, the ith codeword is chosen to have length 

2. This code is then retained until such time t, as the R calculated using 
(5) on the interval [ t, , t, ] reaches a value of C, /2 C, . At this time we return to 
step l- with t, = t,. 

This algorithm predicts p(t) linearly, but any other extrapolation scheme, e.g. 
quadratic, can be easily accommodated. Step 1 of the algorithm should be 
changed to move along the extrapolating curve a distance ,/3C,/rC,, while step 
2 remains unchanged. The algorithm achieves the result of Section IV asymptot- 
icallyasr+cc. 
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We note, finally, that it may be necessary to consider problems with 
comparable rather than separable time scales. To treat this situation well, the 

analysis presented here must change drastically. The encoder becomes depen- 
dent on statistical estimates of p(t), so the central concern becomes the tradeoff 
between sample size [i.e. number of characters observed to estimate p(t)] and 
the “currentness” of the estimate. 

The algorithm presented above can however be slightly modified in an 

ad hoc fashion to work reasonably well even if the separability of the time 
scales is far from perfect. In this case we should choose the next p* along the 
extrapolation from p(ti) but not “as far.” This will reduce losses due to p(t) 
following unpredictable paths and not add too much extra dissipation if p(t) 
does follow the expected path. This ad hoc algorithm could replace the 6 in 

(36) by a parameter. The parameter should be chosen smaller as the separability 
gets poorer, and if a historical record of the data is available, it could be 

optimized empirically. 
The criterion for changing codes outlined above is similar to known results 

for related problems of optimal economic time evolution [3], e.g. optimal 
portfolio movement. In this case there exists a (constant) cost C, of changing 
the allocation of a fixed sum of invested capital. There is also a cost C, 
associated with suboptimahty of the current portfolio with respect to the 
current market conditions and the individual’s utility function. 

VI. CONCLUSION 

We have shown that lengths of paths in a natural geometry on the space of 
states of the source appear in an expression bounding from below the extra 
redundancy required of a retrospective encoder due to the fact that the source 
signal probabilities evolve with time. Prices were introduced for each bit 
transmitted and for each code change, and the above expression was used to 
find the minimal-cost coding. Results for the retrospective encoder were then 
shown to correspond to a natural real-time algorithm for encoding, and it was 
noted that this algorithm is similar to known results on optimal economic time 
evolution. The importance of the separability of the time scales (large r) should 
be recognized. 
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