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The thermodynamics of two chemical systems obeying Arrhenius law kinetics are studied from the viewpoint
of finite time thermodynamics. The first is the determination of the maximum thermodynamic or chemical
efficiency of a synthetic process whose heat input appears as preheating to overcome an activation barrier.
The second is the determination of maximum power that can be obtained from an exothermic reaction carried
out in a continuous flowsystem. The maximum power, achieved with a finite, nonzero flow rate, is a sensitive

function of the activation energy of the reaction.

I. INTRODUCTION

Traditional thermodynamics provides bounds on the
amounts of work and heat that can be exchanged between
a system and its surroundings. In some situations,
such as the generation of electric power from steam,
the performances of real processes come close enough
to their thermodynamic limits that we can use these
limits as bases of useful criteria of merit. Many other
processes operate at efficiencies or effectivenesses so
far from the limits set by idealized reversible thermo-
dynamic processes that traditional thermodynamic cri-
teria are too weak to be of any significance for them.
The disparity between actual performance and the cor-
responding reversible limit of a process is, in many
instances, due to the nonzero rate of that process. For-
tunately, for a large class of processes operating in
finite time, one can construct functions that act like
traditional thermodynamic potentials: The changes in
these functions give the natural bounds on the work or
heat that a system may exchange with its surroundings,
for processes operating within certain constraints, t
The difference between these extended potentials and
traditional potentials is simply that the constraints used
to obtain the new functions include constraints on time
or rate, in addition to any of the traditional constraints
that may apply on such variables as temperature, vol-
ume, or entropy. The “finite-time potentials” may be
used to provide criteria of merit that are much more
realistic than those derived for reversible processes,

-and even to exhibit how the optimal performance of a
system depends on its rate. We refer to the construc-
tion of potentials for processes operating at finite rates,
and to the determination of the process paths that would
yield extremal values of heat or work, as the study of
“finite time thermodynamics.”

The first applications of finite time thermodynamics
were to mechanical systems and heat engines.'™® More
recently, the approach has been applied to systems un-
dergoing changes of chemical potential, either through
separation by distillation® or by chemical reaction. !°
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The last example is the precursor of the work presented
here: There we optimized the power of an engine driven
by an exothermic chemical reaction with finite rate for
the simplistic case in which the rate coefficients are
temperature independent. That exercise was useful as
the first example of finite time thermodynamic analysis
in which the time constrainis are rate coefficients of the
working fluid, rather than parameters of the coupling
between the system and its surroundings. However, it
was clear when that work was being done that any rea-
sonably realistic model would have to include the tem-
perature dependence of the rate coefficients.

In the present work, we examine the optimization of
two systems undergoing chemical reactions whose rate
coefficients obey an Arrhenjus law % =A exp(- E_/T).
(We absorb the gas constant into the activation energy.)
The two examples are (1) the determination of the maxi-
mum fuel efficiency (thermodynamic efficiency in the
usual meaning of work out per unit heat in from fuel) or
chemical efficiency (amount of chemical product per
unit heat in) from a chemical synthesis, and (2) the de-
termination of maximum power obtainable from a heat
engine driven by an exothermic chemical reaction. The
first is treated in Sec. II, and the second in Sec. III.

Let us go through a qualitative argument as a pre-
liminary illustration of how the finite rate of operation
governs the performance of a process. We take the
second example above, a heat engine driven by an exo~
thermic reaction in a flow tube. If the rate coefficient
is effectively independent of temperature, we know that
maximum power is achieved with some positive flow
rate.'® If the flow of reacting mixture is very slow, the
reaction goes to completion in the flow tube, and the
maximum heat per mole of starting material is pro-
duced, so that heat is transferred to the engine at a high
temperature. However, if the flow is slow, the heat
transferred per unit time is also small. On the other
hand, if the flow is very fast, the reaction has insuffi-
cient time to go to completion, and heat transferred to
the engine goes at a temperature below its maximum.
Hence, the efficiency and power fall off at high flow
rates. Between these two extremes is an intermediate
flow rate for which the power produced is a maximum.
This happens even if the rate coefficient of the heat-
generating reaction is independent of temperature. For
the more realistic case in which the rate of the reaction
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obeys an Arrhenius law, one would expect the power pro-
duction to be even more sensitive to the flow rate. Ob-
viously, in an exothermic, Arrhenius-law reaction, a
kind of cooperative effect is created; the heat of reac-
tion increases the rate of reaction, which in turn pro-
duces heat at a faster rate.

11. OPTIMIZING THE EFFICIENCY OF A PREHEATED
ISOTHERMAL CHEMICAL REACTION

Consider the reaction

R-P (1)
of arbitrary order in any of the species {Rl, R ..., R}
i.e., R or any reaction intermediate:

apP

- =k[R1]“1 [Ra]“a - Ry, (2)

in which the rate coefficient 2 is given by an Arrhenius
law

k=Aexp(-E,/T) . (3)

For convenience, we express the activation energy in
units of the gas constant, i.e., we write E, to mean the
activation energy divided by R, so E, is expressed in K.
Suppose further that the reaction mixture is preheated
in order to start the reaction at a suitable rate, and that
the reactants rapidly absorb and equilibrate all of the
heat put in relative to the time scale of the chemical re-
action.

Suppose the reaction mixture requires heat to raise
its temperature from T to T and to maintain its tem-
perature at T thereafter. The first contribution to the
total heat flow into the reaction mixture is

T
9=1Q =ffT c(r)dr | @)
1]

where f is the flow rate of the reaction mixture (mol/
time), and @ is the heat added to the reactants from out-
side sources to bring their temperature to T, in the
same molar units used to define f; C(7T) is the heat
capacity of the mixture. Additional heat to maintain

the température of the system must be supplied at a
rate equal to the molar heat of reaction AH,(T') times
the rate of reaction:

~ ap
4= dtnermodyaamic = SH(T) el (5)

The term q is irrelevant to the remainder of the analysis
and will be neglected hereafter.

The amount of product made per unit of heat provided
from outside sources, which we call the chemical effi-
ciency, is

_{@p/ap
= T T

The chemical efficiency is directly proportional to the
thermodynamic efficiency 7, the amount of useful chemi-
cal work performed per unit of heat supplied to drive

the process. If Au is the change in chemical potential
when 1 mol of P is made from reactants, then the two
efficiencies are directly proportional, with Ay the pro-
portionality factor:

§-ap=n. (7

(6)
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In order to find the temperature at which § is maxi-
mized, @ of Eq. {4) must first be calculated. For a
reaction mixture with completely general heat capacity
C(T), the optimal temperature is a solution of d§/dT =0,
which amounts to the integral equation

e

T
o= [ emar==F (®

a

Equation (8) becomes a high-order polynomial equation
if C(7) is a polynomial in T, and one cannot expect to
find a tractable analytic solution.

The problem would look simpler if one were to assume
that the heat capacity of the mixture is constant over the
entire temperature range from T, to T. However, the
model implicitly presumes that T > T,, so such an ap-
proximation would be foolhardy. Rather, it is better to
assume that the reactants can be heated without reacting
from T, to a higher temperature 7' by the addition of a
knowable quantity of heat @’:

e
Q = c(T)drt . (9)
To
Then we imagine that the mixture is heated (or cooled)
over a short range of temperature, T’ to T, short
enough that the heat capacity of the mixture is constant.
The total amount of heat added is thus

Q=Q'+L'TCdT

=Q'+C(T-T) . (10)
We define an effective temperature
6=T'-Q'/C (11)
S0
Q=C(T -¥) . (12)

Presumably, one can find a suitable value for T’ if one
knows the approximate rate at which one wants to oper-
ate the process. Of course, once the optimal T is found,
it is obligatory to check that it is indeed near enough to
T’ so that Eq. (10) is approximately valid. If it is not,
one must choose a better T’ and repeat the calculation.

We now wish to find the temperature T at which § is
maximized. In other words, we shall determine the
amount of preheating that maximizes the chemical or
thermodynamic efficiency of the synthesis. We con-
struct d§/dT and set it equal to zero:

% =[CF(T - 6) A R(E,/T?) exp(- E,/T)
-ARCfexp(~E/TY)/[CAT -8) ]
-0, (13)
where
m-—'H [I‘.‘]ai . (14)

i=1
The roots of Eq. (13) are the two temperatures T, and

T. for which extremal values of the efficiency & are
achieved:

T,=3E,+%JE%-40E, .

(15)
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Note that, in general, E, will be large relative to 46 and
that this is also a necessary condition for E, to be inde-
pendent of temperature. In the limit

E, > 46 (16)
the extremal value of § occur at

T,=E,-6 , (17)

T.=6 , (18)

Note that T_=6=T' —Q'/C corresponds to the uninterest-
ing limit of no preheating [see Eq. (12)]. We now must
find out if 7, corresponds to a minimum or maximum §.
The second derivative of § evaluated at d§/dT =0 is
given by

a8 AR (29
== - -3 = -
o Ales-p/nr-0d(F-1) . 0o
so that
8'">0, for T<26, (20)
8" <0, for T>26 . (21)

Hence, preheating is advantageous when
T,~E,-6>26, (22)

or, inother words, when E,>36. Thus, throughout the
range of applicability of inequality (16), preheating to
T, results in a local maximum in §, corresponding to
maximally efficient use of the input heat. Obviously,

& has a singularity at T =8 corresponding to no pre-
heating, but the rate of reaction is presumably too low
to permit operation at such a low temperature, at least
for cases relevant to this analysis. Upon preheating to
T, the concomittant enhancement in rate is

@P/dt)rer, _ E, -
@P/dgy, P T, eXp(l Z G/Ea)

= exp(E,/To-1) . (23)

Hence, preheating becomes increasingly advantageous
for reactions with higher energy barriers.

At sufficiently high temperatures one must of course
also consider the reverse reaction in Eq. (1) with its
own Arrhenius rate equation. As shown in Ref. 10, this
can be done by redefining some of the constants, so that
our conclusions remain the same. However, the tem-

“peratures at which this is necessary are considerably
above T,, since the activation energy for the reverse
reaction is larger than E, by - AH,, the molar heat of
reaction.

I1l. AN ENGINE DRIVEN BY AN EXOTHERMIC
ARRHENIUS-LAW REACTION

In the model termed case I of Ref. 10, the heat of re-
action carried by the products of that chemical reaction
is converted into work by a reversible engine. Because,
in that model, the reaction product mixture has a finite
heat capacity!! independent of T, the efficiency of the
reversible engine is

T
n=1- 5:(7‘)—;'—1:0‘ In[T(f)/T,] . (24)
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Here, T, is the temperature of the cold reservoir of the
engine and T(f), a function of the flow rate f, is.the
temperature at which the hot product mixture enters
the engine. We now analyze the power production of
such an engine as a function of the flow rate f as we did
in Ref. 10, except that we now include the temperature
dependence of the rate coefficient of the reaction.

If no heat is lost from the reactor, all the heat re-
leased by the exothermic reaction, @, per mole of
product, is used to heat the mixture whose heat capac-
ity is C:

aT dR
RC at =Qm (— dt) . (25)
We consider a first order Arrhenius-law reaction R~ P

and let R and P indicate concentrations of these species
as well as the species themselves with R, being the

original (total) concentration of reactant. The rate of
reaction is given by
-dR/dt=RA exp(~E,/T)
=kR . (26)

We define the extent of reaction

€=(Ry~R)/R,, (27)
from which we transform Eq. (26) in the conventional
way into

de/dt=(1-€)A exp(~-E,/T)

=(1-¢ek, (28)
or

€=1—exp (- fk(t)dt) ) (29)

This will be useful to us now to compare with the form
with which we calculate the temperature of the products
[Eq. (37D)].

To calculate the temperature of the emerging product
mixture the reactor is divided into a large number of
cells of equal length. Temperature is assumed to be
constant within each cell, and is given by

r,=$nfiad 7, (30)

1

for the ith cell, where €;_, is the extent of the reaction
at the end of the (i — 1)th cell. The extent of reaction
in the ith cell is

€;=1-(1-¢;.) exp(-kAt) . (31)

The molar heat capacity in the ith cell C, is the average
of the heat capacities of the reactants and products C,
and C,:

C;=€¢C,+(1-€,)C, . (32)
The dwell time in a single cell Af is just the total tra-

versal (or dwell) time in the reactor divided by the num-
ber of cells N:

At=t/N . (33)

The traversal time ¢ is inversely related to the flow
rate f:

£=(S- Dpn/f (34)
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where (S - 1) is the reactor volume, and p,, is the density
of the feed mixture. We assume the rate coefficient is
constant within each cell:

k;=Aexp(—E/T,) . (35)

Note that Eq. (30) implies that there are no heat leaks—
all heat produced in cells 1 through (i - 1) is used to
heat the mixture to T;—and that T'; is the temperature
that fixes the rate coefficient throughout cell i.

The rate at which heat is released from the reaction
at the end of the flow tube is therefore

Qeot =@m f€x (36)
where the extent of reaction at the end of the Nth cell is
¥
€y=1- exp[- (Z k; At)] , (37)
i=1

which follows from the recursion relation (31). Equation
(37) is the discrete form of Eq. (29), the ordinary inte-
grated form of the first-order rate expression.

The power corresponding to Eq. (36) is
w(f) =qo(In(f) . (38)
The efficiency 1 is a function of the final temperature
T(f), which, in turn, is given by
T(f) =4S 1, (39)
Cy

Since flow rate and traversal time are related by Eq.
(34), the power (38) also may be expressed as a function
of t:

w(t) ‘—‘qtot(t) n(t)

N
=Qp { 1- exp[— Z; k(8 At] } (Sip,/t)

T T(t)
__ Ty (T
X{l T - T ln[ To]} . (40)
40 [ T T
B 4.8 7
32[~ -
= r 5.0//\ T
o 24 / —
z ] J52,\ ]
f
S 16~ '
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FIG. 1. Engine power (in units of @, per unit time) as a func-
tion of traversal time (equal tof™, i.e., ASlp,=1) for a re-
versible engine driven by a first-order Arrhenius-law exother-
mic reaction with @,/C,Ty=1, C,=C,, T;=300 K, and for E,
=4, 8 kcal/mol (—); 5,0 keal/mol (~ - - -); and 5.2 keal/mol
(-+-.). The reactor was divided into 500 cells.
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FIG. 2. Temperature (in K) as a function of distance traversed
in the reactor (in cells) for a first-order Arrhenius-law reac-
tion with @,./C, T;=1, C,=C,, T;=300 K, and E,=5.0 kcal/mol
for traversal times (equal to f™1) of 2000 (—); 1000 (- — - -);

and 500 (----). £=1000 corresponds to maximum engine power.

This is a form for the power from which one can readily
carry out computations.

Figure 1 shows the power, as a function of traversal
time, in units of @, per unit time. The time unit is
taken as that of the traversal time f™}, i.e., with ASlp,,
=1. For this figure, we have taken @,/CT¢=1, C,oictants
=Coroaqucts =C, and T;=300 K. The calculations were
performed with 500 cells. Power functions w are shown
for three values of the activation energy E, (4.8, 5.0,
and 5.2 kecal/mol). (For convenience, we use conven-
tional chemical units for E, to designate the curves.)
The power changes so rapidly as a function of this abso-
lute parameter that these three rather closely spaced
values seemed sufficient to illustrate the results and still
allow us to display the curves on linear scales.

In some respects the curve of power versus traversal
time of an engine driven by an Arrhenius-law reaction
resembles that of the constant rate coefficient case, !
Maximum power is achieved for a finite, positive dwell
time. The power function again depends upon Q,,/CT,.
As in Ref. 10, a larger value for @,/CT, results in a
higher maximum power achieved at an earlier time
(i.e., at a higher flow rate). However, we now find a
strong dependence of the power function upon the activa-
tion energy. From Fig. 1 one observes that small
changes in the activation energy significantly shift both
the value of the maximum power and the flow rate re-
quired to achieve that maximum.

In the present case the temperature profile within the
reactor tube is also quite sensitive to the flow rate or
traversal time. Figure 2 shows the temperature, in K,
of the reaction mixture as a function of the distance
traversed in the reactor, measured in cells, for the
case where E,=5.0 kcal/mol and for £=500, 1000, and
2000 (in units of f™'). All other parameters are the
same as in Fig. 1. The time { =1000 is very close to
the one which produces maximum power for E,=5.0
kcal/mol. The highest temperature obtainable, in this
case 600 K, is limited by the value chosen for @,/CT,.
At the flow rate giving peak power, in this case corre-
sponding to a dwell time of 1000, the temperature at the
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end of the flow tube is only slightly less than the maxi-
mum temperature. At slower flow rates, the maximum
temperature is attained before the mixture reaches the
end of the tube, whereas at faster flow rates, the final
temperature is not even close to the maximum. Curves
of the general sort of Fig. 2 are well known in chemical
kinetics, e.g., in the temperature profile of a premixed
flame. 12

As in Sec. II the reverse reaction P—~R has been dis-
regarded, partly because it can be included with limited
effort!? if necessary, and partly because combustion
processes have large heats of reaction and thus require
very large temperatures to proceed in reverse at ap-
preciable rates.

IV. DISCUSSION

The two examples examined above illustrate the trade-
off between rapid rate of operation and thermodynamic
efficiency in energy conversion processes. In the first
example, an Arrhenius-law chemical synthesis, we )
showed that for typical values for the activation energy,
there is a temperature to which the reactants may be
preheated so as to maximize (dP/dt)/q. Equation (17)
gives this temperature. There is second formal solu-
tion; (dP/dt)/q has a singularity at ¢ =0 (no preheating),
but this will often correspond to an undesirably slow
rate of synthesis.

From the second example it was found that the power

produced by an engine driven by an exothermic Arrhenius-

law reaction behaves in some ways like the case of a
temperature independent rate, which corresponds to E,
=(0. The maximum power is obtained at some finite,
positive dwell time (or finite, positive flow rate). The
more exothermic the reaction, i.e., the higher the value
for @,/CT,, the higher the maximum power and the less
time required to achieve the maximum power. The
present system also shows a strong dependence of the
power versus dwell time curve upon E,. The higher the
energy barrier, the longer it takes to attain the maxi-
mum power; the peak power also drops dramatically as
E, increases. The initial slope of the power versus time
function is also decreased as the energy barrier in-
creases. However, in the limit of long dwell time the
power does not depend upon activation energy (cf. Fig-
ure 1); the three curves join at ¢ large. This is the
limit in which the reaction reaches completion before
the mixture emerges from the reactor.

Along the reactor tube there is a sudden “burst” of
heat, with a corresponding rapid rise in temperature,
if the flow rate is sufficiently slow {see Fig. 2). This
is caused by a cooperative effect characteristic of exo-
thermic activated reactions. Maximum power is
achieved at that flow rate which allows the burst in tem-
perature to occur just before the end of the flow tube.

We can find the point of maximum extent where de/
dt =0; this is always ¢t == where the reaction has come
to equilibrium, and

T(*)=T,=Ty+Q,/C . (41)
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The second derivative d%¢/dt®=0 provides the point of
steepest rise of the temperature, the “reaction front.”
The general solution contains two exponential integrals
but for large activation energy E, (as in combustion) this
time f; behaves as

ty~EjteFelTo (42)
The width of the reaction front, taken as the inverse of
the slope of the extent at this point,

_fde] !
At,—(dt :,) (43)
behaves for large E, as
At,~E,efa/ T (44)

Thus, both #; and Af; become infinite in the limit of
large activation barriers, but the relative width becomes
sharper with increasing E, in this limit:

%t-“ Elexp [Ea (-TIT, - T_lo)] ,
since the inverse temperature difference is negative.
This means that, for a fixed length flow tube, the reac-
tion front becomes increasingly localized, and one
should be careful not to operate the combustor too close
to the maximum power condition (i.e., with the wave
front at the end of the flow tube), since small fluctuations
easily could displace the sharp reaction front outside the
tube.

(45)

The temperature dependence of the rate coefficient is
well recognized by engineers to be a most important con-
sideration in determining how to carry out an exothermic
reaction in a flow system.'®>!® Indeed, the power of an
engine driven by such a reaction is limited by the activa-
tion energy of the reaction except in the limit of slow
flow rates.
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