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Abstract. 
Finite-time thermodynamics is the extension of traditional reversible 
thermodynamics to include the extra requirement that the process in 
question goes to completion in a specified finite length of time. As such 
it is by definition a branch of irreversible thermodynamics, but unlike 
most other versions of irreversible thermodynamics, finite-time 
thermodynamics does not require or assume any knowledge about the 
microscopics of the processes, since the irreversibilities are described 
by macroscopic constants such as friction coefficients, heat conduc-
tances, reaction rates and the like. Some concepts of reversible 
thermodynamics, such as potentials and availability, generalize nicely 
to finite time, others are completely new, e.g. endoreversibility and 
thermodynamic length. The basic ideas of finite-time thermodynamics 
are reviewed and several of its procedures presented, emphasizing the 
importance of power. 
The global optimization algorithm simulated annealing was designed 
for extremely large and complicated systems and therefore inspired by 
analogy to statistical mechanics. Its basic version is outlined, and 
several notions from finite-time thermodynamics are introduced to 
improve its performance. Among these are an optimal temperature 
path, the use of ensembles, and an analytic two-state model with 
Arrhenius kinetics. 

 

 

1.  INTRODUCTION 

1.1  Motivation 

 From its infancy over 150 years ago thermodynamics has provided limits on 
work or heat exchanged during real processes. The first problem treated in a 
systematic way was how much work a steam engine can produce from the 
burning of one ton of coal. With true scientific generalization Sadi Carnot con-
cluded that any engine taking in heat from a hot reservoir at temperature TH 
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has to deposit some of that heat in a cold reservoir (e.g. the surroundings), whose 
temperature we call TL. The largest fraction of the heat which can be converted 
into work is 

ηC = 1 –  
TL
TH

  , (1.1) 

traditionally known as the Carnot efficiency. This expression contains the two 
basic ingredients of a thermodynamic limit: (i) it applies to any process con-
verting heat into work; and (ii) it is an absolute limit, i.e. no process, however 
ingenious, can do better. 

 As thermodynamic theory developed, emphasis changed from process vari-
ables like work and heat exchanged to state variables like entropy and chemical 
potential. A bridge between the two are the thermodynamic work potentials, 
such as Helmholtz free energy F for isothermal, isochoric processes or the Gibbs 
free energy G for isothermal, isobaric processes. They are defined such that, 
under the given conditions, their changes provide upper bounds on the work a 
process can supply or lower bounds on the work required to drive a process. 
Gibbs introduced the concept of ‘available work’ as the maximum work that can 
be extracted from a system allowed to go from a constrained, internally equili-
brated state to a state in equilibrium with its surroundings. This quantity is 
used more and more frequently in engineering contexts [1, 2] under the names 
‘availability’ in the U.S. and ‘exergy’ in Europe. For a system relaxing to an 
ambient temperature T0, pressure P0, and chemical potentials µ0i it is given by 

A = U + P0V – T0S – ∑
i

 µ0iNi  (1.2) 

and is thus not a state function in the usual sense of depending only on variables 
of the system; the availability depends on the intensive variables of the 
environment as well. 

 Such criteria of merit have long been common currency for thermodynamic 
studies in physics, chemistry, and engineering. They all share one characteristic: 
The ideal to which any real process is compared is a reversible process. Stated in 
a different way, traditional thermodynamics is a theory about equilibrium states 
and about limits on process variables for transformations from one equilibrium 
state to another. Nowhere does time enter the formulation, so these limits must 
be the lossless, reversible processes which proceed infinitely slowly and thus take 
infinite length of time to complete. However, referring back to the original 
question addressed by Carnot, who is interested in an engine which operates in-
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finitely slowly (and thus produces zero power) — or any other process with zero 
rate of operation, for that matter? 

 In order to obtain more realistic limits to the performance of real processes 
finite-time thermodynamics is designed as the extension of traditional thermo-
dynamics to deal with processes which have explicit time or rate dependencies. 
These constraints, of course, imply a certain amount of loss, or entropy produc-
tion, which is at the heart of the question posed above. 

 

1.2  Early developments 

 In the course of developing finite-time thermodynamics we discovered that a 
few isolated papers already had considered different aspects of processes 
operating at nonzero rates. The first of these was the important work of Tolman 
and Fine [3] who put the Second Law of thermodynamics into equality form, 

W = ∆A – T0 ∫
f

i

t

t
totSD dt (1.3) 

by subtracting the work equivalent of the entropy produced during the process 
from the reversible work, i.e. the decrease of system availability, as defined in 
eq. (1.2). The superscript dot indicates rate, and the integral limits are the initial 
and final times of the process. This is a quantification of the ‘price of haste’. 

 Another model has evolved into almost a classic paradigm of systems oper-
ating in finite time. This is the model of Curzon and Ahlborn [4], a Carnot engine 
with the simple constraint that it be linked to its surroundings through finite 
heat conductances. Figure 1 illustrates the slightly more general endoreversible 
system with the triangle signifying any reversible engine. (The term 
endoreversible means ‘internally reversible’, i.e. all irreversibilities reside in the 
coupling of flows to the surroundings. In this case the irreversibilities are the 
resistance to heat transfer and possibly friction.) It turns out that the results 
derived by Curzon and Ahlborn explicitly for an interior Carnot engine are 
equally valid for a general endoreversible system. The maximum efficiency of 
their engine is of course ηC = 1 – TL/TH, obtained at zero rate so that losses 
across the resistors vanish, but these authors showed that, when the system 
operates to produce maximum power, the efficiency of the engine is only 

ηw = 1 – 
TL
TH

  . (1.4) 
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Besides the simplicity of the expression it is remarkable that it does not contain 
the value of the heat conductances. 

 

TH

Th

Tl

TL

W

K h

K l

 

Figure 1.  An endorevers-
ible engine has all its 
losses associated with its 
coupling to the environ-
ment, there are no internal 
irreversibilities. This is 
illustrated here as resis-
tances in the flows of heat 
to and from the working 
device indicated by a 
triangle. These unavoid-
able resistances cause the 
engine proper to work 
across a smaller tempera-
ture interval, [Th;Tl] than 
that between the reser-
voirs, [TH;TL], one which 
depends on the rate of 
operation. 

 

 

2.  PERFORMANCE BOUND WITHOUT PATH 

 The smallest amount of information one can ask for concerning the per-
formance of a system is a single number, e.g. the work or heat exchanged during 
the process, its efficiency, or any other figure of merit. In most cases this can be 
calculated without knowledge of the detailed path followed and is then compu-
tationally much simpler to obtain. 

 

2.1  Generalized potentials 

 In traditional thermodynamics potentials are used to describe the ability of a 
system to perform some kind of work under given constraints. These constraints 
are usually the constancy of some state variables like pressure, volume, tempe-
rature, entropy, chemical potential, particle number, etc. Under such conditions 
the decrease in thermodynamic potential P from state i to state f is equal to the 
amount of work that is produced when a reversible process carries out the 
transition, and hence is the upper bound to the amount of work produced by any 
other process, 
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W ≤ Wrev = Pi – Pf. (2.1) 

In this section we will show that the constraints need not simply be the con-
stancy of some state variable, and that the potentials may be generalized to con-
tain constraints involving time [5]. The procedure will be a straight forward 
extension of the Legendre transformations [6] used in traditional thermo-
dynamics [7, 8], and we will start with such an example. 

 In a reversible process heat and work can be expressed as inexact differen-
tials, 

dQ = TdS,        dW = PdV, (2.2) 

i.e. they cannot by themselves be integrated, further constraints defining the 
integration path are required. Such a constraint could be that the process is 
isobaric, dP = 0. One can then add a suitable integrating zero-term, xdP to make 
dW an exact differential. The obvious choice is x = V, 

dW = PdV = PdV + VdP = d(PV), (2.3) 

such that the isobaric work potential becomes P = PV. Similarly the isobaric heat 
potential U + PV is obtained from 

dQ = TdS = dU + PdV = dU + PdV + VdP = d(U + PV), (2.4) 

where the combined First and Second Laws of thermodynamics 

dU = TdS – PdV (2.5) 

have been used. 

 Now, the constraints need not be the constancy of one of the state variables. 
Consider a balloon with constant surface tension α. In equilibrium with an 
external pressure Pex such a sphere of radius r has an internal pressure 

P = Pex + 
2α
r  , (2.6) 

which can be rearranged into 

(P – Pex)V1/3 = 2α 






 π
3

4 1/3
. (2.7) 
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Since the right hand side of this equation is a constant, this means that (P –
 Pex)V1/3 is an integral of motion for the fluid inside the balloon. We can then add 
a suitable amount of d[(P – Pex)V1/3] (=0) to dW to make it exact [see eq. (2.11) 
below for how to do it], 

dW = PdV = PdV + 
3
2  V2/3 d[(P – Pex)V1/3] 

 = d[
1
2  V(3V – Pex)]. (2.8) 

Thus the work done by the coupled system, surface + fluid, is given by the 
decrease in the potential P = 

1
2  V(3V – Pex), regardless of path followed. 

 In its most general form the Legendre transformation can be used to calculate 
a potential P for the arbitrary process variable B, expressible as a path integral 
in terms of generalized forces fi and displacements xi, 

B = ∑
i

 ⌡⌠ fi dxi  = ∫ ⋅ xf d ; (2.9) 

B will usually be work, and vector notation is used for compactness. To find P, 
one adds to f⋅⋅⋅⋅dx an integrating term g⋅⋅⋅⋅dy, where dy is necessarily zero as a 
result of the constraints defining the process. Note that dy = 0 may involve time 
and could come from a condition in the form of a differential equation as well as 
from the more familiar thermodynamic condition of a constant variable, as used 
in the example above. Hence the differential form dy = 0 is used rather than the 
integrated form y = constant, since y itself may not exist. The mathematical 
problem of finding P has two steps, finding a function g which makes 
dω = f⋅⋅⋅⋅dx + g⋅⋅⋅⋅dy an exact differential dP, and then integrating to get P itself. The 
first step involves the Cauchy-Riemann condition that dω has equal cross 
derivatives with respect to the free state variables, e.g. a and b: 
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With f, dx, and dy known, this is the equation from which g may be obtained. In 
the usual case of f = P, dx = dV, a = V, and b = P, the right hand side of eq. (2.11) 
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simplifies to 1. The second step in finding P, the integration of dP, is, of course, 
only unique within a constant of the motion; i.e. two methods of integration may 
yield two different potentials P and P’, but their variations will always be the 
same, ∆P = ∆P’. 

 

2.2  Thermodynamic length 

 In an effort to develop a more direct and transparent way of calculating all 
the usual partial derivatives in traditional thermodynamics Weinhold [9–13] 
proposed using scalar products between vectors in the abstract space of equilib-
rium states of a system, represented by all its extensive variables Xi. The prod-
ucts were defined relative to 

MU = 












∂ ∂

∂

ji

2

XX
U

 (2.12) 

as the metric, where U is the internal energy. However, second derivatives are 
usually identified as curvatures and, as such, should be interpreted as avail-
abilities in Gibbs space (U as a function of all the other extensive variables). This 
lead us to seek another interpretation of pathlengths calculated with Weinhold’s 
metric, now called thermodynamic lengths, and we [14] found that they are 
always changes in some molecular velocities, depending, of course, on the 
constraints of the process (isobaric, isochoric, etc.). 

 Subsequently Salamon and Berry [15] found a connection between the 
thermodynamic length along a process path and the (reversible) availability lost 
in the process. Specifically, if the system moves via states of local thermo-
dynamic equilibrium from an initial equilibrium state i to a final equilibrium 
state f in time τ, then the dissipated availability –�A is bounded from below by 
the square of the distance (i.e. length of the shortest path) from i to f times ε/τ, 
where ε is a mean relaxation time of the system. If the process is endoreversible, 
the bound can be strengthened to 

–∆A ≥ 
L2ε

τ  , (2.13) 

where L is the length of the traversed path from i to f. Equality is achieved at 
constant thermodynamic speed v = dL/dt corresponding to a temperature evolu-
tion given by [16, 17] 

dT
dt   = – 

vT
ε C

  , (2.14) 
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where C is the heat capacity of the system. For comparison, the bound from 
traditional thermodynamics is only 

–∆A ≥ 0. (2.15) 

 An analogous expression exists for the total entropy production during the 
process: 

∆Su ≥ 
L2ε

τ  . (2.16) 

The length L is then calculated relative to the entropy metric 

MS = – 












∂ ∂

∂

ji

2

XX
S

 (2.17) 

which (when expressed in identical coordinates!) is related to MU by [18] 

MU = –T0MS, (2.18) 

where T0 as usual is the environment temperature. In statistical mechanics, 
where entropy takes the form 

S({pi}) = – ∑
i

 pi ln pi , (2.19) 

the metric MS is particularly simple, being the diagonal matrix [19] 

MS = – 






1

pi
 . (2.20) 

 The same procedure of calculating metric bounds for dynamic systems has 
been applied to coding of messages [20] and to economics [21]. 

 More recently [22] we have relaxed a number of the assumptions in the 
original work, primarily those restricting the system to be close to equilibrium at 
all times and the average form of the relaxation time ε. The more general bound 
replacing eq. (2.16) then becomes 
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∆Su ≥ 
1
Ξ 











⌡

⌠

   ξi

ξf

   
1

T C
  |dU

dξ |  1 + 
θ

CT 
dU
dξ  + …   dξ  

2

(2.21)  

with  Ξ = ξf – ξi  being the total duration of the process in natural dimensionless 
time units, 

dξ = dt/ε(T), (2.22) 

and where we have defined 

θ(T) = 1 + 
T
C

C2
T

∂
∂

. (2.23) 

 The equality (lower bound) in eq. (2.21) is achieved when the integrand is a 
constant, i.e. when 

dSu

dξ   = constant . (2.24) 

Consequently, constant rate of entropy production, when expressed in terms of 
natural time, is the path or operating strategy which produces the least overall 
entropy. 

 One can express the optimal path, eq. (2.24), in a form similar to eq. (2.14): 

dT
dt   1  +  

θ(T) ε (dT/dt)
T   +  ...   =  constant × 

T
ε C

   . (2.25) 

The constant thermodynamic speed algorithm, eq. (2.14), is thus the leading 
term of the general solution in an expansion about equilibrium behavior. 

 

 

3.  OPTIMAL PATH 

3.1  Optimal path calculations 

 A knowledge of the maximum work that can be extracted during a given 
process, e.g. calculated by one of the procedures described in the previous section, 
may not by itself be sufficient. One may also want to know how this maximum 
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work can be achieved, i.e. the time path of the thermodynamic variables of the 
system. The primary tool for obtaining this path is optimal control theory. 

 This is not the place to repeat the mechanics of optimal control calculations 
(see e.g. [23–25]). Let it suffice to point out that in order to set up the optimal 
control problem one must specify 

• the controls, i.e. the variables that can be manipulated by the operator (they 
may be a volume, rate, voltage, heat conductance, etc.); 

• limits on the controls and on the state variables, if any (in order to avoid 
unphysical situations such as negative temperatures and infinite speeds); 

• the equations that govern the time evolution of the system (they will usually 
be differential equations describing heat transfer rates, chemical reaction 
rates, friction, and other loss mechanisms); 

• the constraints that are imposed on the system (e.g. conserved quantities, the 
quantities held constant, or any requirements on reversibility. The con-
straints may either be differential, instantaneous i.e. algebraic, or integral 
i.e. not obeyed at each point but over the entire interval); 

• the desired quantity to be maximized, called the objective function (usually 
expressed as an integral); and finally 

• whether the duration of the process is fixed or part of the optimization. 

 Typical manipulation usually leads to a set of coupled, non-linear differential 
equations for which a qualitative analysis and a numerical solution are the only 
hope. Thus answering the more demanding question about the optimal time path 
rather than the standard question about maximum performance requires a 
considerably larger computational effort. On the other hand, once the time path 
is calculated, all other thermodynamic quantities may be calculated from it, 
much like the wave function is the basis of all information in quantum 
mechanics. 

 

3.2  Criteria of performance 

 Efficiency, the earliest criterion of performance for engines, measured how 
much water could be pumped out of a mine by burning a ton of coal. Other 
familiar criteria include effectiveness (efficiency relative to the Carnot effi-
ciency), change of thermodynamic potential, and loss of availability, all of which 
are measures of work. Potentials for heat can also be defined (see Sect. 2.1) but 
are less common, and we have used the minimization of entropy production in a 
separate study [26]. 

 The Curzon-Ahlborn analysis and most of our own analyses use a quite 
different criterion, that of power. This quantity is of course zero for any revers-
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ible system, and maximizing power forces us to deal with systems operating at 
finite rates. Other criteria of performance are the rate of entropy production and 
the rate of loss of availability. Entropy production was a function introduced in 
the earliest thinking about irreversible thermodynamics [27–30], but more from 
the differential, local, instantaneous viewpoint than from the global, integral 
view of entire optimized processes. Under some circumstances, optimizing one of 
these quantities is equivalent to optimizing another. For example, minimizing 
the entropy production is equivalent to minimizing the loss of availability, at 
least in those cases in which the irreversibilities can be represented as 
spontaneous heat flows [26]. 

 

 

 
Figure 2.  If an endoreversible engine (Fig. 1) spends time τ1 in contact 
with the hot reservoir and τ2 in contact with the cold reservoir, the 
optimal proportioning between τ1 and τ2 depends on what one chooses 
to optimize, as indicated. The locus of maximum revenue for a power 
producing system falls in the shaded area for any choice of prices, as 
described in the text. Only contact times above the hyperbola marked 
‘zero power’ actually correspond to positive power production. 

 

 Salamon and Nitzan [31] have optimized the Curzon-Ahlborn engine for a 
number of these objective functions. Assuming the working fluid to be in contact 
with the hot reservoir for the period τ1 and the cold reservoir for the period τ2, 
the optimal time distributions are shown in Fig. 2. The diagonal τ = τ1 + τ2 
indicates fixed total cycle time, and only processes above the curve labeled ‘zero 
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power’ produce positive power. It is quite obvious that different criteria of merit 
dictate different operating conditions for the process. Even when not knowing the 
precise objective function but only that it belongs to a specified class, one can 
sometimes say a good deal about the possible optimal behavior of the system. If 
one considers the Curzon-Ahlborn engine to be a model of a power plant which 
buys heat q (coal) at the unit price α and sells work w (electricity) at the unit 
price β, its net revenue is Π = βw – αq. All solutions to the problem of 
maximizing this revenue are bounded on one side by the solutions to the 
maximum power problem (when α is significant compared to β) and on the other 
side by the solutions corresponding to minimum loss of availability (when coal 
and electricity are priced according to their availability contents). While this is a 
very simple example, this approach has far reaching possibilities for describing 
biological, ecological, and economic systems. 

 

 

4.  SIMULATED ANNEALING 

 Simulated annealing is a global optimization procedure [32] which exploits an 
analogy between combinatorial optimization problems and the statistical 
mechanics of physical systems. The analogy gives rise to an algorithm for finding 
near-optimal solutions to the given problem by simulating the cooling of the 
corresponding physical system. Just as nature, under most conditions, manages 
to cool a macroscopic system into or very close to its ground state in a short 
period of time even though its number of degrees of freedom is of the order of 
Avogadro’s number, so does simulated annealing rapidly find a good guess of the 
solution of the posed problem. 

 Even though the original class of problems under consideration [32] was 
combinatorial optimization, excellent results have been obtained with seismic 
inversion [33], pattern recognition [34], and neural networks [35] as well, just to 
name a few. Since layout and scheduling problems in computer and telecom-
munications systems frequently contain elements of combinatorial optimization, 
and their complexity often rivals and even surpasses that of a mole of chemical 
substance, simulated annealing is excellently suited to attack those problems. 
The virtue of simulated annealing is its efficiency as a general-purpose method 
for handling extremely complicated problems for which no direct solution method 
is known without the need for developing an ad hoc algorithm. 

 

4.1  The algorithm 

 The simulated annealing algorithm is based on the Monte Carlo simulation of 
physical systems. It requires the definition of a state space Ω = {ω} with an 



Finite-time thermodynamics and simulated annealing 
 

 
13 

associated cost function (physical analog: energy) E: Ω ∅  R which is to be 
minimized in the optimization. At each point of the Monte Carlo random walk in 
the state space the system may make a jump to a neighboring state; this set of 
neighbors, known as the move class N(ω), must of course also be specified. 
Alternatively one may specify the complete transition probability matrix P 
between all states of the system. The only control parameter of the algorithm is 
the temperature T of the heat bath in which the corresponding physical system is 
immersed, measured in energy units, i.e. we take Boltzmann’s constant k = 1. 

 The random walk inherent in the Monte Carlo simulation is accomplished by 
the Metropolis algorithm [36] which states that: 

(i)  At each step t of the algorithm a neighbor ω’ of the current state ωt is 
selected at random from the move class N(ωt) to become the candidate for the 
next state. 

(ii)  It actually becomes the next state only with probability 

Paccept = 




>∆
≤∆

∆− 0E ife
0E if1

tT/E , (4.1) 

where ∆E = E(ω’) – E(ωt) is the increase in cost for the move. If this candidate 
is accepted, then ωt+1 = ωt. 

 The only thing left to specify is the sequence of temperatures Tt appearing in 
the Boltzmann factor in Paccept, the so-called annealing schedule. Like in met-
allurgy, this cooling rate has a major influence on the final result. A quench is 
quick and dirty, often leaving the system stranded in metastable states high 
above the ground state/optimal solution. Slow annealing produces the best result 
but is computationally expensive. 

 This completes the formal definition of the simulated annealing algorithm, 
which in principle simply is repeated numerous times until a satisfactory result 
is obtained. 

 

4.2  The optimal annealing schedule 

 So far all suggested simulated annealing temperature paths (annealing 
schedules) have been of the a priori type and thus have not adjusted to the actual 
behavior of the system as the annealing progresses. Examples of such schedules 
are 

T(t) = a e–t/b (4.2) 
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T(t) = 
a

b+t  (4.3) 

T(t) = 
a

ln(b+t) . (4.4) 

The real annealing of physical systems often has rough parts where the sur-
rounding temperature must be decreased slowly due to phase transitions or 
regions of large heat capacity or slow internal relaxation. The same behavior is 
seen in the abstract systems, so annealing schedules which take such variations 
into account are preferable in order to keep computation time at a minimum for 
a given accuracy of the final result [37]. 

 At this point I would like to make the analogy between the abstract simulated 
annealing process and a real thermodynamic process even stronger. Specifically, 
if the correspondence with statistical mechanics implied in the simulated 
annealing procedure involving phase space and state energies is valid, then 
further results from thermodynamics will probably also carry over to simulated 
annealing. 

 Since asking a question (= one evaluation of the energy function) in informa-
tion theoretic terms is equivalent to producing one bit of entropy, the computa-
tionally most efficient procedure will be the temperature schedule T(t) which 
overall produces minimum entropy. Above we have derived various bounds and 
optimal paths for real thermodynamic systems using finite-time thermodynamics 
[15, 19, 26, 38]. The minimum-entropy production path which most readily 
generalizes to become the optimal simulated annealing schedule, is the one 
calculated with thermodynamic length [cf. eq. (6.4) below]: 

dT
dt   = – 

vT
ε C

  (2.14) 

or equivalently 

σ
−〉〈 )T(EE eq = v. (4.5) 

 As long as the system in question is accurately described by statistical 
mechanics, these bounds and the paths that achieve them will provide the most 
efficient solution within the allotted time. Since the layout of major networks 
and the allocation of access to common scarce resources are closely related to 
graph partitioning, simulated annealing with a constant thermodynamic speed 
schedule should yield good results. In these expressions v is the (constant) 
thermodynamic speed, C and ε are the heat capacity and internal relaxation time 
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of the system, respectively, 〈E〉 and σ the corresponding mean energy and 
standard deviation of its natural fluctuations, and finally Eeq(T) is the internal 
energy the system would have if it were in equilibrium with its surroundings at 
temperature T. The physical interpretation of eq. (4.5) is that the environment 
should at all times be kept v standard deviations ahead of the system. Similarly 
eq. (2.14) indicates that the annealing should slow down where internal 
relaxation is slow and where large amounts of ‘heat’ has to be transferred out of 
the system [17]. In case C and ε do not vary with temperature, eq. (2.14) inte-
grates to the standard schedule eq. (4.2). The more realistic assumption of an 
Arrhenius-type relaxation time, ε ~ exp(a/T), and a heat capacity C ~ T–2 implies 
the vastly slower schedule eq. (4.4). Reality is usually in between these extremes. 
Figure 3 shows the successive decrease in energy for annealings on a graph 
partitioning problem following different annealing schedules. 
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Figure 3.  Energy for a graph partitioning problem as the annealing 
progresses, using different annealing schedules: quench (T=0), random 
search (T=∞), exponential (eq. (4.2)), constant speed (eq. (2.14) or (4.5)). 

 

4.3  Parallel implementation 

 The extra temperature dependent variables of the constant thermodynamic 
speed schedule of course require additional computational effort. Since systems 
often change considerably in a few steps, ergodicity is not fulfilled, so the use of 
time averages to obtain 〈E〉, σ, C, and ε is usually not satisfactory. Instead we 
suggest [39] running an ensemble of systems in parallel, i.e. with the same 
annealing schedule, in the true spirit of the analogy to statistical mechanics. 
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Then these variables can be obtained anytime as ensemble averages based on the 
system degeneracies pi = p(Ei): 

Z(T) = ∑
i

  pi  exp(–Ei/T)  (4.6) 

E(T) = T2 
d lnZ

dt   (4.7) 

C(T) = 
dE
dT  = 

2

2

T

)E( 〉∆〈
 (4.8) 

ε(T)  = 
–1

lnλ2
  ≈ 

T2 C(T)

∑
i

 pi ∑
j>i

 (Ej–Ei)2  Pji  exp(–Ei/T)
  , (4.9) 

where λ2 is the second largest eigenvalue of the thermalized version of the 
transition probability matrix P among all the energy levels (λ1 = 1 corresponds 
to equilibrium). 

 But from where does one get the degeneracies pi? Actually [39], information to 
calculate the temperature-independent (or infinite-temperature, if you prefer) 
transition probability matrix P can be accumulated during the annealing run by 
simply adding up in a matrix Q the number of attempted moves (not just the 
accepted ones) from level i to j as the calculation progresses. Normalization of Q 
yields a good estimate of P, 

Pji = Qji / ∑
k

 Qki . (4.10) 

The degeneracies p are then the eigenvector of P corresponding to the eigenvalue 
1. 

 This use of ensemble annealing is particularly well suited for implementation 
on present day parallel computers. A further analysis of its performance has 
been carried out by Ruppeiner, Pedersen, and Salamon [40], and the trade-off 
between ensemble size and duration of annealing for fixed total computation cost 
has been addressed by Pedersen et al. [41]. 

 

4.4  An analytic model 

 The procedure outlined above with a continuous compilation of statistical 
data about the system under investigation can be quite computation intensive. 
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To alleviate that we have found [42] that the assumption of a simple two-state 
model, equivalent to the one-dimensional Ising model [43], is a good approxi-
mation to the microscopic picture of a number of complex optimization problems. 
(This approximation is used only for determining the optimal temperature 
schedule T(t); the annealing itself is carried out with the full energy function.) 
The combinatorial necklace or integrated circuit problem [17, 39, 40], 
partitioning of random graphs [44], and certain spin glass systems [45] are 
obvious candidates for the model, since they involve individual vertices which 
can be placed in either of two sets. In general the two-state model should be 
useful for any system consisting of a set of weakly interacting two-level systems. 

 The model states that each particle can be in one of two states only: a lower 
state of energy –J and a higher state of energy +J. For ease of notation we define 
the dimensionless temperature variable 

x = 
T
2J  . (4.11) 

From the partition function for a macroscopic system comprised of N such par-
ticles (N >> 1) at temperature x the system energy and heat capacity follow 
directly: 

E(x) = – NJ tanh 
1
2x  (4.12) 

C(x) = 
N 







1

2x
2

cosh2 
1
2x

  . (4.13) 

 In addition we assume that the system relaxation time is well represented by 
the classical Arrhenius expression 

ε(x) = A exp(B/x), (4.14) 

where A is a (constant) collision frequency, and B is the apparent barrier height 
of the transition state. Even though the energy landscape of the system will 
generally contain several different barriers, only the highest will be effective in 
the long-time limit when all the faster relaxations have died out, i.e. close to 
equilibrium. This assumption is consistent with the derivation of eq. (2.14). 

 Introducing these assumptions into the optimal rate annealing schedule 
eq. (2.14) yields 
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dx
dt  = –v’ x2 









exp






1

x  + 1   exp








– 
B+1/2

x   , (4.15) 

where v’ is a constant. This is the differential equation defining the optimal 
temperature path x(t) for a two-state model with an Arrhenius-type relaxation. It 
can, at least in principle, be solved analytically before any annealing begins and 
thus replaces the much more time consuming procedure of collecting statistical 
information along the way presented in the previous section [39]. The ‘price’ for 
this faster procedure clearly is less generality and required knowledge about the 
system in advance. 

 

 

5.  SUMMARY 

 Finite-time thermodynamics was ‘invented’ in 1975 by R. S. Berry, P. Sala-
mon, and myself as a consequence of the first world oil crisis. It simply dawned 
on us that all the existing criteria of merit were based on reversible processes 
and therefore were totally unrealistic for most real processes. That made an 
evaluation of the potential for improvement of a given process quite difficult. 

 Finite-time thermodynamics is developed from a macroscopic point of view 
with heat conductances, friction coefficients, overall reaction rates, etc. rather 
than based on a microscopic knowledge of the processes involved. Consequently 
most of the ideas of traditional thermodynamics have been assimilated, e.g. the 
notions of thermodynamic potential (Sect. 2.1) and availability. At the same time 
we have seen new concepts emerge, e.g. the non-equivalence of well-honored 
criteria of merit (Sect. 3.2), the importance of power as the objective (Sect. 1.2 
and 3.2), the generality of the endoreversible engine, and in particular 
thermodynamic length (Sect. 2.2). Several of these abstract concepts have been 
successfully applied to practical optimizations [46–52]. 

 Lately the notions and results of finite-time thermodynamics, at times in 
connection with statistical mechanics and information theory, have been used to 
perfect the global optimization method simulated annealing (Sect. 4). However, 
the surface has only been scratched, there is still plenty of room for inspiration 
from such well-known concepts as state entropy, free energy, and transition state 
theory. Simulated annealing has proven to be a very useful general purpose opti-
mization algorithm for extremely complicated problems, even with fixed 
temperature schedules, eqs. (4.2) – (4.4). Elaborating the analogy to physical 
statistical mechanical systems with the introduction of optimality results from 
finite-time thermodynamics has improved the efficiency of the algorithm 
noticeably, and the use of ensembles of random walkers has made it self-adapt-
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ing. Finally, a simple analytical model based on the one-dimensional Ising model 
may reduce the computational time considerably. 

 The method as described above mimics nature as it equilibrates systems on 
an atomic or molecular scale (e.g. chemical reactions or crystal structures). 
Inspiration can also be lifted from nature’s way of developing the most favorable 
systems on the macroscopic biological scale: evolution. Several annealing 
procedures based on evolution with its cloning of successful species and dying out 
of unsuccessful ones have been developed as replacements for the Metropolis 
algorithm of Sect. 4.1, notably by Ebeling and coworkers [53–55] and by Schuster 
[56]. In my opinion the two lines of thought are complementary in the sense that 
they are advantageous for many trials and for a more limited set of tests, 
respectively. 
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