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Summary - Finite-time thermodynamics is the extension of traditional thermodynamics to deal with processes which 
have explicit time or rate dependencies. In doing so the macroscopic measurable description of thermodynamic systems 
is preserved while irreversibilities, and hence entropy production, are introduced via empirical rate equations or imposed 
constraints such as friction coefficients, heat conductances, reaction rates and the like. However, the models remain 
simple in order to yield physically transparent reference points rather than detailed simulations. Some concepts of 
reversible thermodynamics, such as potentials and availability, generalize nicely to finite time, others are completely new, 
eg, endoreversibility and thermodynamic length. 

1 INTRODUCTION 

Finite-time thermodynamics was invented in 1975 
by RS Berry, P Salamon, and myself as a conse- 
quence of the first world oil crisis. It simply dawned 
on us that all the existing criteria of merit were 
based on reversible processes and therefore were to- 
tally unrealistic for most real processes. That made 
an evaluation of the potential for improvement of a 
given process quite difficult [l]. 

Finite-time thermodynamics is developed from a 
macroscopic point of view with heat conductances, 
friction coefficients, overall reaction rates, etc, 
rather than based on a microscopic knowledge 
of the processes involved. Consequently most of 
the ideas of traditional thermodynamics have been 
assimilated, eg, the notions of thermodynamic 
potential (3 2.1) and availability (5 2.2). At the 
same time we have seen new concepts emerge, 
eg, the non-equivalence of well-honored criteria of 
merit, the importance of power as the objective, 
the generality of the endoreversible engine, and 
in particular thermodynamic length (5 2.3). Several 
of these abstract concepts have been successfully 
applied to practical optimizations [2,81. 

The model of Curzon and Ahlborn 191 has 
evolved into almost a classic paradigm of systems 
operating in finite time. This is a Carnot engine 
with the simple constraint that it be linked to 
its surroundings through finite heat conductances. 

Figure 1 illustrates the slightly more general 
endoreversible system with the triangle signifying 
any reversible engine (the term endoreversible 
means internally reversible, ie, all irreversibilities 
reside in the coupling of flows to the surroundings; 
in this case, that means resistance to heat transfer 
and possibly friction). It turns out that the results 
derived by Curzon and Ahlborn explicitly for 
an interior Carnot engine are equally valid for 
a general endoreversible system. The maximum 
efficiency of their engine is of course T]C = 1 - TL /TH , 
obtained at zero rate so that losses across the 
resistors vanish, but these authors showed that, 
when the system operates to produce maximum 
power, the efficiency of the engine is only: 

Besides the simplicity of the expression, it is 
remarkable that it does not contain the value of the 
heat conductances. 

2 I PERFORMANCE 
PATH 

BOUND WITHOUT 

The smallest amount of information one can ask for 
concerning the performance of a system is a single 
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Fig 1. An endoreversible engine has all its losses associated 
with its coupling to the environment, there are no internal 
irreversibilities. This is illustrated here as resistances in 
the POWS of heat to and from the working device indicated 
by a triangle. These unavoidable resistances cause the 
engine proper to work across a smaller temperature 
interval, [Th; TI] than that between the reservoirs [TN; 
TL], one which depends on the rate of operation. 

number, eg, the work or heat exchanged during 
the process, its efficiency, or any other figure of 
merit. In most cases, this can be calculated without 
knowledge of the detailed path followed and is then 
computationally much simpler to obtain. 

2.1. GENERALIZED POTE~IAL~ 

In traditional thermodynamics, potentials are used 
to describe the ability of a system to perform some 
kind of work under given constraints. These con- 
straints are usually the constancy of some state 
variables like pressure, volume, temperature, en- 
tropy, chemical potential, particle number, etc. Un- 
der such conditions, the decrease in thermodynamic 
potential @ from state i to state f is equal to the 
amount of work that is produced when a reversible 
process carries out the transition, and hence is the 
upper bound to the amount of work produced by 
any other process: 

W < WV,, = Qi - Cpf (2) 

In this section we will show that the constraints 
need not simply be the constancy of some state 
variable, and that the potentials may be generalized 
to contain constraints involving time [lo]. The 
procedure will be a straightforward extension of the 
Legendre transformations [ 111 used in traditional 
thermodynamics 112,131, and we will start with 
such an example. In a reversible process, heat and 
work can be expressed as inexact. differentials, 

dQ = TdS, dW = PdV (3) 

ie, they cannot by themselves be integrated, further 
constraints defining the integration path are re- 
quired. Such a constraint could be that the process 
is isobaric, dP = 0. One can then add a suitable 
integrating zero-term, xdP to make dW an exact 
differential. The obvious choice is II: = V: 

dW = PdV = PdV + VdP = d(PV) (4) 

such that the isobaric work potential becomes 
@=PV. 

Now, the constraints need not be the constancy of 
one of the state variables. Consider a balloon with 
constant surface tension cy. In equilibrium with an 
external pressure P,, such a sphere of radius T has 
an internal pressure 

P = P,, + $ (5) 

which can be rearranged into: 

(p - P,,)1/1/3 = 2cy (6) 

Since the right hand side of this equation 
is a constant, this means that (P - Pe,)V1/3 is 
an integral of motion for the fluid inside the 
balloon. We can then add a suitable amount of 
d[(P - Pez)V1’3](= 0) to dW to make it exact: 

dW = PdV = PdV + ;V2j3 d [(P - P,,)V1’3] 

= d [;V(3V - PJ] (7) 

Thus the work done by the coupled system, 
surface + fluid, is given by the decrease in 

the potential @ = iV(3V - Pes), regardless of path 

followed. 

This procedure of adding a suitable amount of a 
zero-quantity can be generalized to any differential 
constraint, even including time explicitly [lo]. 

2.2. FINITE-TIME AVAILABILITY 

One of the more powerful results in finite-time 
thermodynamics is the definition of a finite- time 
availability [143. The traditional availability A of 
a system in contact with given surroundings is a 
state function with the quality that the decrease 
in its value in going from state i to state f is 
the maximum (and hence reversible) work that 
can be extracted during that process. The fmite- 
time availability @ retains this property and simply 
adds that the process is restricted to operate (go to 
completion) during time 7 = tf - ti. Then: 

tf 

!P = W,,,(T) = max A(ti) - A(tf) -TO 
s 1 %tdt 

ti 
(8) 
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where the last equality uses the Tolman-Fine form 
of the Second Law of thermodynamics 1151. 

The maximum search in equation (8) can either 
be constrained to exactly reach a given final state 
at time tf (the initial state is always considered 
known), in which case AA is fixed, and the 
optimization becomes one of minimizing the entropy 
production, or also the final state may be included in 
the optimization, in which case !P must be evaluated 
by optimal control. If the final state is specified, a 
solution may not exist if T is too short, since only 
a certain set of states can be reached from a given 
initial state in time r. In addition, the finite-time 
availability does not necessarily have AA as its 
limit for very long times, because the system may 
contain internal relaxation processes which remain 
irreversible even for very slow operations. If there 
is a direct heat leak from the system reservoir to 
the surroundings, then a long process time may 
even reduce @ to 0. On the other hand, losses 
are not always detrimental to the performance of 
a system if they open up new pathways. Actually 
some processes depend on irreversibilities for their 
very existence (eg, 1161). 

2.3. THERMODYNAMIC LENGTH 

For static purposes, Weinhold 117,181 defined a 
metric on the abstract space of equilibrium states of 
a system represented by all its extensive variables 
Xi as: 

(9) 

where U is the internal energy. 

Based on this metric, Salamon and Berry [19] 
found a connection between the thermodynamic 
length along a process path and the (reversible) 
availability lost in the process. Specifically, if the 
system moves via states of local thermodynamic 
equilibrium from an initial equilibrium state i to 
a final equilibrium state f in time ‘T, then the 
dissipated availability -AA is bounded from below 
by the square of the distance (ie, length of the 
shortest path) from i to f times c/t, where E is a 
mean relaxation time of the system. If the process 
is endoreversible, the bound can be strengthened 
to: 

_AA>kk / 
r 

where L is the length of the traversed path 
from i to f. Equality is achieved at constant 
thermodynamic speed u = dL/dt corresponding to a 
temperature evolution given by 1201: 

dT VT _=_- 
dt Efi 

(11) 

where C is the heat capacity of the system. For 
comparison, the bound from traditional thermody- 
namics is only -AA > 0. 

An analogous expression exists for the total 
entropy production during the process: 

As% > $& (12) 

The length L is then calculated relative to the 
entropy metric: 

(13) 

In statistical mechanics, where entropy takes the 
form: 

S({pi}) = - Cpi ln pi 
z 

(14) 

the metric MS is particularly simple, being the 
diagonal matrix 1211: 

(15) 

The same procedure of calculating metric bounds 
for dynamic systems has been applied to coding of 
messages 1221 and to economics 1231. 

More recently 1241, we have relaxed a number 
of the assumptions in the original work, primarily 
those restricting the system to be close to equi- 
librium at all times and the average form of the 
relaxation time E. The more general bound replac- 
ing equation (12) then becomes: 

with Z = (f - 6% being the total duration of the 
process in natural dimensionless time units: 

dJ = dt/e(T) (17) 

and where we have defined: 

B(T)=l+&g 

The equality (lower bound) in equation (16) is 
achieved when the integrand is a constant, ie, when: 

(19) 

Consequently, constant rate of entropy produc- 
tion, when expressed in terms of natural time, is 
the path or operating strategy which produces the 
least overall entropy. 

One can express the optimal path in a form 
similar to equation (11): 

dT 
dt J 

1 + WT)E(dTldt) 
T 

+ . . = constant x - 

The constant thermodynamic speed algorithm, 
equation (ll), is thus the leading term of the 
general solution in an expansion about equilibrium 
behaviour. 
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3 I OPTIMAL PATH 

A knowledge of the maximum work that can be 
extracted during a given process, eg, calculated by 
one of the procedures described in the previous 
section, may not by itself be sufficient. One may 
also want to know how this maximum work can be 
achieved, ie, the time path of the thermodynamic 
variables of the system. The primary tool for 
obtaining this path is optimal control theory (eg, 
125-271). 

Typical manipulation usually leads to a set of 
coupled, non-linear differential equations for which 
a qualitative analysis and a numerical solution are 
the only hope. Thus answering the more demanding 
question about the optimal time path rather than 
the standard question about maximum performance 
requires a considerably larger computational effort. 
On the other hand, once the time path is calculated, 
all other thermodynamic quantities may be calcu- 
lated from it, much like the wave function is the 
basis of all information in quantum mechanics. 
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