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Abstract: Three approaches for determining the thermodynamic stability of irreversible processes
are described in generalized formulations. The simplest is the Gibbs–Duhem theory, specialized to
irreversible trajectories, which uses the concept of virtual displacement in the reverse direction. Its
only drawback is that even a trajectory leading to an explosion is identified as a thermodynamically
stable motion. In the second approach, we use a thermodynamic Lyapunov function and its time rate
from the Lyapunov thermodynamic stability theory (LTS, previously known as CTTSIP). In doing so,
we demonstrate that the second differential of entropy, a frequently used Lyapunov function, is useful
only for investigating the stability of equilibrium states. Nonequilibrium steady states do not qualify.
Without using explicit perturbation coordinates, we further identify asymptotic thermodynamic
stability and thermodynamic stability under constantly acting disturbances of unperturbed trajecto-
ries as well as of nonequilibrium steady states. The third approach is also based on the Lyapunov
function from LTS, but here we additionally use the rates of perturbation coordinates, based on
the Gibbs relations and without using their explicit expressions, to identify not only asymptotic
thermodynamic stability but also thermodynamic stability under constantly acting disturbances.
Only those trajectories leading to an infinite rate of entropy production (unstable states) are excluded
from this conclusion. Finally, we use these findings to formulate the Fourth Law of thermodynamics
based on the thermodynamic stability. It is a comprehensive statement covering all nonequilibrium
trajectories, close to as well as far from equilibrium. Unlike previous suggested “fourth laws”, this one
meets the same level of generality that is associated with the original zeroth to third laws. The above
is illustrated using the Schlögl reaction with its multiple steady states in certain regions of operation.

Keywords: thermodynamic stability; nonequilibrium thermodynamics; Lyapunov stability theory;
Gibbs–Duhem theories; the Fourth Law of thermodynamics; irreversible processes; rate of entropy
production; multiple steady states

1. Introduction

A sound thermodynamic theory of the stability of equilibrium states exists in the
literature, based on Clausius inequalities and known as the Gibbs–Duhem thermodynamic
theory of the stability of equilibrium states (see Glansdorff and Prigogine [1] and the
recent analysis of the boundaries of thermodynamic stability [2–4]). Moreover, there
is an equivalent De Donderian approach, also due to Prigogine (see Section XV of [5]
or [6]) describing the stability of equilibrium states based on the direct use of the rate of
entropy production as a positive sign-definite function that incorporates the effect of virtual
displacement or perturbation in an unnatural direction.

This theory is indeed correct for equilibrium states but not when extrapolated to
irreversible processes, e.g., steady states, as detailed by several examples further on. By
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contrast, a solid foundation for a general theory of stability is the famous Lyapunov’s
second (direct) method of stability of motion [7–17] from 1892. This theory focuses on the
trajectory (path) representing the ‘motion’ in question. Most frequently, it has been applied
to physical trajectories, such as those from mechanics, hydrodynamics, aerodynamics, space
science, etc., whose spatial coordinates are time dependent. For those, the environment
as well as inaccurate internal controls of the motion of a ship, airplane, satellite, etc., may
cause disturbances to the planned (unperturbed) trajectory. However, the theory is equally
applicable to any other time-varying set of coordinates, e.g., thermodynamic coordinates,
also without spatial dependence. In Lyapunov theory, one investigates the stability of not
the individual transient nonequilibrium states making up the trajectory but the trajectory
as a whole. Thus, in the domain of nonequilibrium thermodynamics, we need to identify
trajectories in terms of time-dependent thermodynamic coordinates and then construct a
sign-definite thermodynamic Lyapunov function. The only requirement for this function is
that it vanishes only on the steady-state (i.e., unperturbed) trajectory.

Consequently, even though in nonequilibrium thermodynamics, one uses the term
local thermodynamic equilibrium and correspondingly local equilibrium states, our focus
cannot be on such individual states but on the trajectory composed of them. Importantly,
the Lyapunov theory does not consist only of identifying a sign-definite function and
evaluating the sign of its time variation. It investigates the stability of a given real trajectory,
called an unperturbed trajectory. This stability analysis consists of the following four steps:

1. Generate perturbed trajectories by introducing sufficiently small perturbations (not
necessarily along the original trajectory);

2. Define suitable thermodynamic perturbation coordinates, construct the corresponding
thermodynamic perturbation space, and calculate the rate of change of the perturba-
tion coordinates;

3. Identify a sign-definite thermodynamic Lyapunov function, dependent on the pertur-
bation coordinates, that vanishes only on the unperturbed trajectory;

4. Determine the sign as well as the mathematical behavior of the variation with time of
the chosen thermodynamic Lyapunov function.

Efforts by one of us (AAB) to follow all the steps of the Lyapunov theory resulted in
the formulation of the Lyapunov thermodynamic stability (LTS) theory (previously named
CTTSIP) [18–20]. Preliminary ideas were published recently [21]. There, we developed
three generalized approaches. The first one is the Gibbs–Duhem-type thermodynamic
stability theory for irreversible processes, which does not require the identification of a
thermodynamic Lyapunov function but allows one to draw conclusions about the thermo-
dynamic stability of irreversible trajectories. The other two generalized approaches are
based on the LTS framework. In the first of them, no direct use of the equations of motion in
terms of the perturbation coordinates is involved but still the most generalized deductions
are arrived at. In the second approach, the rates of thermodynamic perturbation coordinates
are defined via an appropriate Gibbs relation describing irreversible processes. Also, here,
no detailed expression of the time variation of the thermodynamic perturbation coordinates
is required. Hence, these three approaches to describing the thermodynamic stability of
irreversible processes retain the generality element associated with thermodynamics and
are complementary to one another.

Our thermodynamic Lyapunov function defined in Section 5, based on the rate of
entropy production covering even far from equilibrium states, is a universal quantity
that works very well in its generalized form as well as for individual cases. In essence,
the LTS investigates to what extent a given irreversible trajectory is followed in spite of
effected perturbations. This theory so far has been applied to several types of irreversible
processes, including industrial (Haber–Bosch and contact processes), ecological, biological,
and enzyme-catalyzed, and systems with multiple steady states, as well as some far from
equilibrium (see e.g., [20,22–28] and other references on LTS cited therein). Our previous
work did not attempt to develop a generalized description based on LTS. This aspect is of
fundamental importance and will be worked out here. However, before we dig into the
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details of the LTS theory, we will set the scene by commenting on some previous attempts
at achieving the desired generality but which fell short of full success.

Other papers have considered Lyapunov stability but only in approximate, special-
ized, or restricted situations, and never as a fully general formulation, e.g., the Lyapunov
function of LTS resembles the one proposed earlier by Tarbell [29] for the study of the
stability of nonequilibrium steady states of minimum entropy production. However, our
Lyapunov function is capable of investigating all types of irreversible trajectories as well as
time-invariant states. Our initial perturbation is a transient nonequilibrium state, which
generates a perturbed trajectory whose fate with respect to the unperturbed trajectory is
investigated. We also notice that since then, Hoang et al. [30,31], based on the LTS ideas but
without referring to them, have suggested an alternate thermodynamic Lyapunov function,
called a thermodynamic storage function, which is based on thermodynamic availability.
They used Lyapunov’s second method to analyze the stability of continuously stirred tank
reactors (CSTRs) [32]. Yet another proposal [33] used the perturbation coordinate itself
as the Lyapunov function. Favache et al. [34] used Lyapunov’s first and second methods
with the entropy, the entropy production, and the internal energy as possible Lyapunov
functions on a CSTR system. As mentioned above, the rate of entropy production vanishes
only in equilibrium states and thus is unsuitable for a general stability theory.

The central requirement of Lyapunov stability theory is that the chosen Lyapunov
function must vanish only on the trajectory whose stability is under investigation (see
Equation (13) of Section 4 and e.g., [15]). It seems that many authors on this subject so far
have not taken this requirement to heart [1,6,33–46]. The result is that all previous attempts
to define thermodynamic stability miss following all the steps of the Lyapunov second
method, and many concentrate only on the stability of local equilibrium states (indeed,
time-variant ones). That is not a correct approach. Admittedly, some of them do aim to
investigate the stability of nonequilibrium steady states, but the chosen Lyapunov functions
do not vanish at these nonequilibrium steady states.

For example, Glansdorff and Prigogine [1,35] proposed the second differential of the
local equilibrium entropy δ2s as a Lyapunov function, which indeed is sign-definite. Their
condition of stability then is

δ2s < 0 and
d
dt

(
δ2s
)
> 0, (1)

where close to equilibrium, − 1
2 δ2s is a measure of the entropy production, a positive

definite quantity (obviously for the local equilibrium state considered). It is also true that
when a nonequilibrium state is very close to equilibrium, one can show the validity of the
second inequality of Equation (1). However, that second differential vanishes only at an
equilibrium state. Therefore, the conditions of Equation (1) determine the stability of the
corresponding equilibrium state only. In view of this oversight, it is understandable that
the conjecture of Landsberg [47] that Equation (1) is the statement of the Fourth Law of
thermodynamics could not stand the test of time.

In the absence of realization of these basic facts, further works appeared in the liter-
ature. An example is the notable attempt by Seyfaie and Shaw [48], which extends the
method to a trajectory generated by a sufficiently small perturbation of an equilibrium state
and leading back to it. Such a trajectory passes through a succession of nonequilibrium
states very close to equilibrium. Hence, it is clear that for such a trajectory, the inequalities
of Equation (1) are satisfied. It seemingly constitutes a kind of stable motion. However,
in the Lyapunov sense, it only establishes the asymptotic thermodynamic stability of the
final equilibrium state because δ2s vanishes only there (see the discussion in Section 4 and in
particular Equation (13) for this implication).

Only a few years after the Glansdorff–Prigogine proposal was advanced, De Sabrino [43]
analyzed to which degree it meets the requirements of Lyapunov’s direct method. This
analysis pointed out its limitations, particularly for time-varying nonequilibrium states.
In spite of that careful early analysis, an undeterred attempt to generalize the Glansdorff–
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Prigogine proposal appeared recently [44]. In the early years, Lavenda [49] developed a
thermodynamic stability criterion based on system energy flows and applied it to linear
and nonlinear phenomena, discussing its merits and limitations. Importantly, it also did
not use Lyapunov’s second method in its entirety.

By contrast, recently, a novel and proper approach was suggested by Sieniutycz and
Kuran [50], wherein they first proposed a sign-definite time rate of a Lyapunov function and
then integrated it to arrive at the corresponding Lyapunov function (functional). Indeed, a
Lyapunov function obtained this way vanishes only at the singular point (equilibrium or
nonequilibrium) steady states, in conformity with the requirement of the second Lyapunov
method of stability of motion. It involves the concept of the flux of perturbation coordinates
in perturbation space and their driving forces defined via the gradients of corresponding
Planck chemical potentials using Maxwell–Cattaneo-type constitutive equations. Indeed,
this formulation is correct, but the form of the Lyapunov function obtained this way varies
from system to system and with the approximations involved.

In the following, we first present a detailed development of our Lyapunov-type sta-
bility analysis of irreversible processes, specifically in terms of thermodynamic quantities.
Then, in Section 10, we illustrate how LTS works in individual cases through a representa-
tive example of reactions in a continuously stirred tank reactor (CSTR), the Schlögl reaction.
Finally in Section 11, we offer a new formulation of the Fourth Law of thermodynamics
based on the present conclusions about the thermodynamic stability of irreversible trajecto-
ries. It encompasses the thermodynamic stability of all irreversible processes, including
those far from equilibrium. All previous proposals for a fourth law of thermodynamics
(see for example [1,51–63]) were centered around some specific physical aspect but lacked
the generality associated with the previous established laws of thermodynamics (zeroth to
third laws).

2. The Concept of Virtual Displacement

The concept of virtual displacement is used in the Gibbs–Duhem theory of the sta-
bility of equilibrium states [35,64–66]. Here, we extend it for determining the stability
of irreversible processes. The thermodynamic description of a natural direction of irre-
versible evolution towards an equilibrium state of a system is described by the following
inequalities [35,64–66]:

(∆S)U, V > 0, (∆A)T, V < 0, (∆G)T, p < 0 (2)

and
(dS)U, V > 0, (dA)T, V < 0, (dG)T, p < 0, (3)

where S is the entropy, A is the Helmholtz free energy, G is the Gibbs free energy, U is the
internal energy, V is the volume, T is the temperature, and p is the pressure of the system.

Correspondingly, the unnatural direction of processes away from an equilibrium state
is obviously described by the opposite inequalities, viz.,

(∆S)U, V < 0, (∆A)T, V > 0, (∆G)T, p > 0 (4)

and
(dS)U, V < 0, (dA)T, V > 0, (dG)T, p > 0. (5)

The unnatural direction described by Equations (4) and (5) may be translated into the
impossibility of the stipulated changes described therein. Such stipulated changes are called
virtual displacements in an unnatural direction. Hence, Equations (4) and (5) have been used
as a formulation of the thermodynamic stability of equilibrium states. In other words, it
means that in the neighborhood of an equilibrium state, there exist equilibrium and nonequilibrium
states that remain inaccessible under the respective conditions (4) and (5). Equivalently, these two
sets of inequalities describe the impossibility of the envisaged virtual displacement.
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3. Gibbs–Duhem Theory of Stability of Irreversible Processes

A part of this subject matter has been presented in the conference SIPS 2017 [21]. Recall
that on an irreversible trajectory, the rate of entropy change is [1,5,21,67–95] (also refer to
the review of various thermodynamic frameworks in [96]):

dS
dt

=
deS
dt

+
diS
dt

with
diS
dt

≥ 0 (6)

and at the local level
ρ

ds
dt

+∇ · Js = σs ≥ 0, (7)

where deS ≷ 0 is the exchange-of-entropy differential, diS > 0 is the entropy production
differential, ρ is the mass density, s is the per unit mass entropy, Js is the entropy flux
density, and σs is the entropy source strength. A simpler version of Equation (7) is

ds
dt

=
des
dt

+
dis
dt

with
dis
dt

≥ 0. (8)

Recall that Equations (6) and (8) are the descriptions of the forward motion on a given
irreversible trajectory. That is, these equations can be taken as the prescription of the natural
direction of an irreversible process.

The thermodynamic stability of an irreversible trajectory is determined by considering
a virtual displacement in the reverse direction on the same trajectory. This we can ascertain
by replacing t with −t. That is, it amounts to effecting the envisaged virtual displacement
in the reverse direction. We see that by this time reversal, the time derivatives change
as follows:

dS
dt

7−→ dS
d(−t)

= −dS
dt

,
deS
dt

7−→ deS
d(−t)

= −deS
dt

, but
diS
dt

7−→ diS
d(−t)

̸= −diS
dt

, (9)

and at the local level, we have

ds
dt

7−→ ds
d(−t)

= −ds
dt

,
des
dt

7−→ des
d(−t)

= −des
dt

, but
dis
dt

7−→ dis
d(−t)

̸= −dis
dt

. (10)

Let us understand what Equations (9) and (10) convey:

1. The impossibility described by the envisaged third transformation in each one of them
stems from the fact that the rate of entropy production cannot change its sign as per
the second law of thermodynamics.

2. In view of the preceding fact, the first transformation in each one of them is also not
possible, which demonstrates the nonconservative nature of the entropy function.

3. Thus, it is also demonstrated that the envisaged virtual displacement in the reverse
direction on a given irreversible trajectory is impossible. This impossibility remains
true from any position on the irreversible trajectory.

Therefore, in the Gibbs–Duhem sense, the trajectories described by Equations (6)–(8) are
thermodynamically stable. This demonstration is on a generalized footing. The conclusion
is valid for both types of segments of irreversible trajectories: (i) the one in which the rate
of entropy production goes on decreasing, and (ii) the one in which the rate of entropy
production goes on increasing.

As examples, we list below the cases of certain conditional evolutions. They are the
ones whose final states are the corresponding equilibrium states. The following inequalities
follow from Clausius’ inequality (refer to any standard textbook on physical chemistry or
on thermodynamics):
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(
dS
dt

)
adiabatic

=

(
diS
dt

)
adiabatic

≥ 0,
(

diS
dt

)
U, V

≥ 0,

(
diS
dt

)
H, p

≥ 0,
(

diS
dt

)
T, V

≥ 0,
(

diS
dt

)
T, p

≥ 0.

(11)

On effecting the virtual displacement in the reverse direction on the trajectories described
by Equation (11), the inequalities should also become reversed, which is mathematically
expressed as (

dS
dt

)
adiabatic

=

(
diS
dt

)
adiabatic

≤ 0,
(

diS
dt

)
U, V

≤ 0,

(
diS
dt

)
H, p

≤ 0,
(

diS
dt

)
T, V

≤ 0,
(

diS
dt

)
T, p

≤ 0.

(12)

However, the second law of thermodynamics forbids this to happen. For chemically
reacting spatially uniform systems, it can be shown that the inequalities of Equation (11),
that is, under the condition of adiabaticity and constant U, V; H, p; T, V; and T, p, remain
valid not only in the vicinity of equilibrium but also during the course of evolution from
the initiation of reaction until the attainment of equilibrium. Therefore, the trajectories
described by Equation (11) must be thermodynamically stable.

Now, consider the case of nonequilibrium steady states. The trajectories leading to
a nonequilibrium steady state (for example, α and γ types in the Schlögl reaction, refer
Figure 3 of Section 10) are obtained as stable ones because a virtual displacement from
them is in the unnatural direction and hence impossible. Oppositely, the β type of steady
states (of the Schlögl reaction, refer to Figure 3 in Section 10) are not attainable ones because
the natural direction of an irreversible trajectory leads away from them. Therefore, in this
case, the virtual displacement is directed towards the said nonequilibrium steady state, the
unnatural direction; hence, they are thermodynamically unstable ones.

4. Stability of Motion in Terms of Lyapunov Functions

Herein, only the final results of the stability of motion in terms of the identified
Lyapunov functions are described. For details, the reader may consult the original sources
cited in this paper [7–12,14–17]. In Lyapunov theory, a trajectory and a steady state whose
stability is being investigated are called an unperturbed trajectory and an unperturbed
state, respectively.

Let L > 0 be an identified Lyapunov function that depends on time and on the
perturbation coordinates of motion {xi(t)}. It vanishes only for {xi(t) = 0}:

L({0}, t) = 0 and L({xi(t)}, t) > 0, ∀{xi(t)} ∈ D \ {0}, (13)

where D stands for the domain of {xi(t)} including 0, the origin or unperturbed trajectory.
That is, only on the unperturbed trajectory does L vanish. (The notations in the preceding
equation are the standard ones used in set theory and will also be used in the following
when required.) Then, the differential equations of motion are given by

dxi
dt

= Fi(x1(t), x2(t), x3(t), · · ·, xn(t); t), (i = 1, 2, 3, · · ·, n)

= Fi
(
{xj(t)}; t

)
, with {xj(t)} ≡ (x1(t), x2(t), x3(t), · · ·, xn(t)),

(14)

where Fi
(
{xj(t)}; t

)
may be linear or nonlinear differential equations of motion in terms of

the variables {xj(t)}.
The stability and instability of motion in terms of the Lyapunov function

L = L({xi(t)}; t) > 0 are as follows:



Entropy 2024, 26, 442 7 of 23

1. Stable motion is described by

L({xi(t)}; t) ≥ W({xi(t)}) ≥ 0

with
dL
dt

=
∂L
∂t

+ ∑
i

∂L
∂xi

dxi
dt

≤ 0 ∀{xi(t)} ∈ D \ {0},
(15)

where the continuous function W has strict minima at the coordinate origin,
L({0}; t) = W({0}) = 0. This implies that after a small lapse of time, beyond t0,
nonetheless, we have L ̸= 0 but L̇ = 0. That can happen in the vicinity of the origin
because initially, L is assumed to be a decreasing function of time (cf. Equation (15)).

2. Asymptotically stable motion is described by

L({xi(t)}; t) ≥ W({xi(t)}) ≥ 0

with
dL
dt

=
∂L
∂t

+ ∑
i

∂L
∂xi

dxi
dt

< 0 ∀{xi(t)} ∈ D \ {0}.
(16)

That is, asymptotic stability requires the vanishing of L̇ only at the origin, whereas in
the case of stability, it can vanish very close to the origin.

3. When a motion is asymptotically stable and if all ∂L/∂xi are bounded in absolute
value, then according to Malkin’s theorem [7,9], the motion is stable under constantly
operating small disturbances. A physical example of motion under constantly acting
disturbances is that of an air flight experiencing rough weather.

4. Asymptotic exponential stability is described by

L > 0,
dL
dt

= −κ × L =⇒ L ≤ L(t0)× e−κ(t−t0), (17)

where t0 is the time of the initial perturbation. Thus, we see that for positive decay
constant κ,

L(t) −→ 0 as t −→ ∞. (18)

Negative κ would result in divergence, i.e., instability of the trajectory. How rapidly
the perturbed trajectory returns to the unperturbed one depends on the value of κ,
which needs to be determined experimentally.

5. Chetayev’s theorem of instability of motion requires that (see, for example, page
39 of [12] and page 226 of [15])

L({xi(t)}; t) ≥ W({xi(t)}) ≥ 0

with
dL
dt

=
∂L
∂t

+ ∑
i

∂L
∂xi

dxi
dt

> 0 ∀{xi(t)} ∈ D \ {0}.
(19)

The above description of Lyapunov’s theory uses a positive definite Lyapunov function.
However, generally, it only has to be a sign-definite function. Hence, one is free to identify
an L < 0 and, for the stability of motion, the condition is dL/dt ≥ 0. That is, in the above
description, we just need to replace < with > and ≤ with ≥ and vice versa.

5. Thermodynamic Stability Based on the Thermodynamic Lyapunov Function of LTS

In view of the requirements on a chosen Lyapunov function described in the pre-
ceding Section 4, we have identified in our “Lyapunov thermodynamic stability” (LTS)
the thermodynamic Lyapunov functions, LS (at the global level) and Ls (at the local level).
The identification of our thermodynamic Lyapunov function for irreversible processes is a
generalization of using the rate of entropy production as the thermodynamic Lyapunov
function for equilibrium states. Hence, our identified Lyapunov function will reduce to the
rate of entropy production for equilibrium states.
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The following definitions result [18–20]:

LS(t) =
(

ΣS(t)− Σ0
S(t)

)
≥ 0 for t ≥ t0, (20)

where we have from the second law of thermodynamics (cf. Equation (6)) the
following inequalities:

ΣS =
diS
dt

≥ 0, Σ0
S =

(
diS
dt

)0
≥ 0; (21)

t0 is the time of effecting the perturbation, and the superscript 0 denotes the quantity
pertaining to the unperturbed trajectory whose thermodynamic stability is being investi-
gated. Notice that the Lyapunov function LS of LTS Equation (20) may be termed an excess
entropy production function in the perturbation space because it is a difference between
two rates of entropy production and it depends only on the perturbation coordinates. The
positive definite sign in Equation (20) stems from the fact that, for thermodynamic reasons,
we are considering only perturbations whose effect increases the rate of entropy production.
As stated at the end of the preceding Section 4, one could equally well define LS ≤ 0. As
far as we are dealing with irreversible trajectories, that would also work very well (in this
case LS −→ −∞ at instability). However, by specializing this expression for determining
the stability of equilibrium states, the result would be ΣS ≤ 0, which is against the second
law of thermodynamics. All perturbations of an equilibrium state must increase the rate
of entropy production, hence our choice of direction of the inequality in Equation (20).
Further, the definition of Equation (20) is not restricted to close to equilibrium states. It also
covers far from equilibrium situations, and this Lyapunov function vanishes only on the
unperturbed trajectory.

At the local level, we have

ρ(t)Ls(t) =
(

σs(t)− σ0
s (t)

)
≥ 0 for t ≥ t0, (22)

where σ0
s (t) and σs(t) are the entropy source strengths (cf. Equation (7)), respectively, on

unperturbed and perturbed trajectories. Herein too, Ls can be termed the excess entropy
production defined in terms of its respective entropy source strength. This inequality in
Equation (22) allows certain interior cells to have Ls = 0 but Ls ≮ 0 because, by assumption,
we have LS ≥ 0 and the same property needs to be inherited by Ls. Another reason is
that the perturbation coordinates are defined (cf. Equation (26)) at the local level for a
spatially nonuniform system. A crucial property of LS and Ls is that both vanish on the
real trajectory. That is, L0

S = 0 and L0
s = 0 because ΣS becomes Σ0

S and Ls becomes L0
s on

the unperturbed trajectory. The definition of Equation (22) is also very general, applicable
to far from equilibrium situations.

We have the following relation between LS and Ls:

LS(t) =
∫

V
ρ(t)Ls(t) dV ≥ 0, (23)

whereas the global rate of entropy production functions ΣS and Σ0
S is

ΣS(t) =
∫

V
σs(t) dV ≥ 0, Σ0

S(t) =
∫

V
σ0

s (t) dV ≥ 0. (24)

In LTS, the thermodynamic coordinates of motion can be identified either in terms of
thermodynamic fluxes appearing in the expression of entropy source strength, or the choice
can be based on the suitable Gibbs relation, keeping in mind that irreversible thermodynam-
ics constitutes an autonomous system of description, that is, all thermodynamic quantities
are time dependent only through their thermodynamic variables. Let us represent these
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coordinates by {yi(t)} and correspondingly the thermodynamic differential equations of
motion as

dyi
dt

= Fi({yi(t)}), (i = 1, 2, 3, . . . , n)

with {yi(t)} ≡ (y1(t), y2(t), y3(t), . . . , yn(t)).
(25)

The sufficiently small perturbation coordinates {αi(t)} are defined as

αi(t) = ∥yi(t)− y0
i (t)∥ ≤ ε > 0, (i = 1, 2, 3, . . . , n). (26)

The superscript 0 refers to the unperturbed trajectory here and elsewhere. Obviously,
the values of the initial perturbation coordinates are given by

αi(t0) = ∥yi(t0)− y0
i (t0)∥ ≤ δ(ε) > 0, (i = 1, 2, 3, . . . , n), (27)

where δ and ε are the sufficiently small neighborhoods about the unperturbed trajectory as
shown in Figure 1 such that δ < ε. The neighborhood δ about the unperturbed state 0 limits
the magnitude of the initial sufficiently small perturbation. The neighborhood ε about the
unperturbed state too is small but contains the δ region within it. Even if the perturbed
trajectory does not enter into the δ region but does not cross out of the region ε, then
the unperturbed motion still lies in close proximity to the unperturbed trajectory. Hence,
the latter is a stable motion. In the case of asymptotic stability, the perturbed trajectory
eventually tends back toward the unperturbed trajectory as depicted in Figure 1.

δ

ε

α(t0)
0

Asymptotic
Stability

Stabilit
y

Instability

Figure 1. Schematic representation of an autonomous system of motion: stable, asymptotically stable,
and unstable motions. A perturbation of magnitude α(t0) away from the unperturbed trajectory
indicated as the origin 0 is effected at time t = t0 within a sufficiently small region δ. If the perturbed
trajectory remains within the region of magnitude ε, the real trajectory is said to be stable. If the
perturbed motion within a short time tends back toward the unperturbed trajectory (the origin), the
unperturbed motion is said to be asymptotically stable. And if the perturbed trajectory diverges from
the region determined by ε, the motion is said to be unstable.
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In this formulation, the αi determine the perturbation space. Hence, the equations of
unperturbed motion are

α0
i (t) = 0, (i = 1, 2, 3, . . . , n), for t ≥ t0. (28)

On the Taylor expansion of Equation (25) in terms of the perturbation coordinates
{αi(t)}, restricting the expressions to the linear terms only and using Equation (26), it is
straightforward to obtain the following equations of motion in the perturbation space:

dαi(t)
dt

= fi
(
{αj(t)}

)
, (i, j = 1, 2, 3, . . . , n)

with {αj(t)} ≡ (α1(t), α2(t), α3(t), . . . , αn(t)).
(29)

where the fi
(
{αj(t)}; t

)
may be linear or nonlinear expressions in terms of the perturbation

coordinates {αj(t)}.
For the sake of clarity, let us express the local level source strengths explicitly in terms

of their thermodynamic coordinates,

σs(t) = σs({yi(t)}), σ0
s (t) = σs

(
{y0

i (t)}
)

. (30)

Both are positive according to Equation (7). Then, the local thermodynamic Lyapunov
function Ls of Equation (22) is

Ls(t) = Ls({αi(t)}) > 0 ∀{αi(t)} ∈ D \ {0}, (31)

where D stands for the domain of {αi}, that is, on the unperturbed trajectory

L0
s = Ls(0, 0, 0, . . . , 0) = 0 for t ≥ t0. (32)

Therefore, the total time derivative of Ls using Equations (29) and (31) is

dLs

dt
= ∑

i

∂Ls

∂αi

dαi
dt

= ∑
i

∂Ls

∂αi
fi({αi}(t)) (33)

and that of LS is

dLS
dt

=
∫

V
ρ

dLs

dt
dV =

∫
V

∑
i

ρ
∂Ls

∂αi
fi({αi}(t)) dV. (34)

Similarly, the perturbations leading to LS ≤ 0 (Ls ≤ 0) can also be handled along the
same lines. The details of the LTS tools have been described recently in [20].

The next step is to ascertain the signs (positive or negative) of Equations (33) and (34)
using the signs of the involved partial derivatives and the time rates of perturbation
coordinates {αi(t)} defined using thermodynamic variables.

Notice a basic difference between the method of virtual displacement in the reverse
direction and the one based on Lyapunov’s second method adopted in LTS. In the former,
the impossibility of changing the positive sign of entropy production on the unperturbed
trajectory is the central theme, while in LTS we analyze how the rate of entropy production
on the perturbed trajectory varies with respect to that on the unperturbed trajectory.

In the following sections, we will discuss the possible consequences derived from the
LTS approach.

6. Theorems of Thermodynamic Stability Using the Thermodynamic Lyapunov Function

Let us begin with the global-level thermodynamic Lyapunov function LS with the con-
ditions and definition given in Equations (20) and (21). Now, as per the three perturbation
curves of Figure 1, the time rate of LS has the following properties:
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1. The thermodynamic stability of an unperturbed trajectory is guaranteed when we have

L̇S =
dLS
dt

=

(
dΣS
dt

−
dΣ0

S
dt

)
≤ 0. (35)

That is, the unperturbed motion described by Equation (28), i.e., αi = 0, is stable.
However, we see that in this way, the thermodynamic trajectories are obtained as
merely stable. This is the case because mere stability means the perturbed trajectory
finally settles in the close vicinity of the unperturbed one. This condition implies that

LS = ΣS − Σ0
S = const. with αi ̸= 0 and αi = const. (i = 1, 2, 3, · · · , n) (36)

is a possibility.
2. The asymptotic thermodynamic stability of an unperturbed trajectory follows whenever

L̇S =
dLS
dt

=

(
dΣS
dt

−
dΣ0

S
dt

)
< 0 except when ΣS → Σ0

S. (37)

That is, L̇S vanishes only when the perturbed trajectory reaches the unperturbed tra-
jectory, making LS = L0

S = 0, which happens only when all perturbation coordinates
vanish.

3. Trajectories that are asymptotically stable as described by Equation (37) are, in view of
Malkin’s theorem [7,9], also thermodynamically stable under constantly acting perturba-
tions if, in addition, the derivatives

∂Ls

∂αi
(i = 1, 2, 3, · · · , n) (38)

at the local level are bounded in absolute value. Such constantly acting perturbations
are, as said in the name, constantly being applied as opposed to the perturbations,
leading to stability or to asymptotic stability, which are of a brief duration and then
disappear, leaving the system to recover. This aspect of stability analysis using LTS is
of practical use. For example, an industrial process runs continuously, and there is
a possibility of repeated disturbances originating, say, due to the malfunctioning of
heat exchangers to a reasonably small extent.

4. When a trajectory is asymptotically stable in the Lyapunov sense and additionally the
following condition is obeyed,

dLS
dt

≤ −κLS implying LS(t) ≤ LS(t0)e−κ(t−t0), (39)

then the unperturbed trajectory is said to be exponentially stable.
Of course, in this case too, the result is LS = L0

S, which happens only when all
perturbation coordinates vanish. How fast the perturbed trajectory would approach
the unperturbed one is determined by the magnitude of κ, the rate constant of the
exponential convergence.

5. Oppositely, according to Chetayev’s theorem [12,15], when

L̇S =
dLS
dt

=

(
dΣS
dt

−
dΣ0

S
dt

)
> 0, (40)

the unperturbed trajectory is thermodynamically unstable.

It is pertinent to note at this juncture of our discussion that there is a difference between
the stability in the Gibbs–Duhem sense and the Lyapunov sense. Gibbs–Duhem stability
considers motion on a particular trajectory, forward and backward. Lyapunov stability



Entropy 2024, 26, 442 12 of 23

considers any change in the trajectory on perturbation. Thus, the latter is a completely
unrestricted and therefore more realistic approach.

7. Thermodynamic Stability of Irreversible Processes Using the Thermodynamic
Lyapunov Function: A Generalized Description

The description of the present section does not use the explicit rates of perturbation
coordinates αi. Notice that there may be three types of segments for irreversible trajectories.
In one case, the rate of entropy production continuously increases with time but with
decreasing steepness, thus approaching a new finite value. In the second type, the rate
of entropy production continuously decreases with time and with decreasing steepness,
again approaching a new finite value. A third type is where the rate of entropy production
continuously increases, and the final result is a divergence. This latter case corresponds to
a thermodynamic instability described in point 5 of the preceding Section 6 by Equation (40).

There are also cases where the rate of entropy production varies along a trajectory,
for example, chemical oscillations and repetitive pattern formation (like Rayleigh–Bénard
patterns). Those may be formed only when the transfer processes are nonlinear, e.g., due
to nonlinear heat transfer, inertial effects, or chemical reactions involving several atoms
of a particular kind. For asymptotically stable oscillating reactions, each segment of such
reactions will be asymptotically stable, each one in its own direction, and the amplitude
of the oscillations will decay as the original unperturbed trajectory is approached. The
full mathematical formulation of such nonmonotonic trajectories turns out to be rather
involved and will be presented separately in order not to dominate the presentation of the
general Lyapunov thermodynamic stability theory (LTS) in the present paper.

An example of the chemical reaction type, the Schlögl reaction, is considered in
Section 10. It offers two stable and one unstable steady-state branch (see Figure 3) as
per Lyapunov’s first method. The second method of Lyapunov, i.e., LTS analysis of this
system, reconfirms the above stability conclusions in a generalized way (see discussion of
Section 10).

The first two types of stability/instability mentioned above fall in the category of ther-
modynamic stability because the decreasing steepness implies dΣ0

S/dt ≥ 0 and d2Σ0
S/dt2 ≤ 0

for the first case and similarly with the inequalities flipped for the second case. Thus, the
perturbed trajectory will eventually continue in very close proximity to the unperturbed
trajectory. This implication is stated by Equation (36) of point number 1 of the preceding
Section 6. In the present context, this means that eventually dΣS/dt = dΣ0

S/dt whether the
perturbation coordinates αi all vanish or not.

Since the conclusion includes asymptotic thermodynamic stability, it will also hold
true for exponential thermodynamic stability. The corresponding value of κ of Equation (39)
needs to be determined experimentally in individual cases.

For ascertaining the thermodynamic stability under constantly acting disturbances, we need
to work out the sign and magnitude of each gradient of Ls appearing in Equation (38) case
by case. No generalized corresponding statement can be advanced.

In the case of instability in the Lyapunov sense, according to the Chetayev theorem [12,15]
in Equation (40) we have dΣS/dt > dΣ0

S/dt. That is, the rate of entropy production
increases forever.

8. Thermodynamic Lyapunov Function-Based Generalized Thermodynamic Stability of
Equilibrium and Nonequilibrium Steady States

The description of thermodynamic stability of equilibrium (eq) and of physically
attainable nonequilibrium steady states (NSS), including NSS far from equilibrium, is
generated simply by substituting Σ0

S = Σeq
S = 0 and Σ0

S = ΣNSS
S = constant, respectively,

and keeping in mind that Σeq
S and ΣNSS

S are time-independent quantities. Hence, in essence,
we have asymptotic thermodynamic stability for equilibrium as well as physically attain-
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able nonequilibrium steady states. Mathematically, it follows from Equation (37), which
transforms to

dΣS
dt

< 0. (41)

This is accompanied by ΣS −→ 0 in the case of the asymptotic thermodynamic stability
of an equilibrium state and by ΣS −→ ΣNSS

S = constant ̸= 0 in the case of the asymptotic
thermodynamic stability of a nonequilibrium steady state. It is easy to demonstrate that
equilibrium as well as nonequilibrium steady states are thermodynamically stable under
constantly acting disturbances. These results are all as expected.

Recall that evolution to reach a given NSS requires specific and appropriate conditions
to drive the system; hence, such an evolution occurs under given conditions. Likewise,
evolution to a final equilibrium state occurs under appropriate conditions on the system. For
example, we may rewrite the conditional evolutions described in Section 3 by Equation (11)
by including the time derivative of the corresponding rates of entropy production,

(
diS
dt

)
adiabatic

≥ 0,
d
dt

(
diS
dt

)
adiabatic

≤ 0

(
diS
dt

)
U, V

≥ 0,
d
dt

(
diS
dt

)
U, V

≤ 0

(42)

and (
diS
dt

)
H, p

≥ 0,
d
dt

(
diS
dt

)
H, p

≤ 0,

(
diS
dt

)
T, V

≥ 0,
d
dt

(
diS
dt

)
T, V

≤ 0,

(
diS
dt

)
T, p

≥ 0,
d
dt

(
diS
dt

)
T, p

≤ 0.

(43)

The involved conditions are adiabatic: constant U, V; H, p; T, V; T, p; etc.
In the case of nonequilibrium steady states, the resulting perturbation may also be

such that the Lyapunov function is described as

LS =
(

ΣS − ΣNSS
S

)
≤ 0 for t ≥ t0, (44)

which, for the reasons described in the preceding Section 6, leads to asymptotic thermody-
namic stability, or mathematically

dΣS
dt

> 0. (45)

As an explicit example of the application of LTS, we have selected the Schlögl reac-
tion [97], which is described in Section 10. The Schlögl reaction was designed as a simple
model for bistable processes (see for example Chapter 8 of [88]). It also demonstrates that
the physically unattainable nonequilibrium steady states are thermodynamically unstable
(β-type of Figure 3).

It is interesting to recall that Lyapunov’s first method determines the stability of
motion by solving the differential equations of motion. This approach does not require a
Lyapunov function. However, the results obtained add substantially to our understanding
of the system. For example, mathematically speaking, stationary state solutions are of two
types, the stable and the unstable ones. Stable stationary points are attractive or neutral,
i.e., small disturbances away from the stationary point will stay in the vicinity of that point.
Unstable stationary points are repulsive, i.e., any small disturbance will move the system
further away from stationarity. It is a constitutive theory approach. By comparison, LTS is a
thermodynamic tool that does not use the ‘attractive’ and ‘repulsive’ terminology. Instead,
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it classifies stable, asymptotically stable, and unstable trajectories and likewise for the
time-invariant states.

9. Using Thermodynamic Variables Based on Gibbs Relations and the Thermodynamic
Lyapunov Function of LTS. A Generalized Account

For the sake of demonstration, we used the Gibbs relation of phenomenological
irreversible thermodynamics, PIT (previously named GPITT) (see, for example, the recent
publication [68]). The local-level Gibbs relation of PIT for a spatially nonuniform system is

T
ds
dt

=
du
dt

+ p
dv
dt

− ∑
k, j

µ̃k, j
dx̃k, j

dt
. (46)

In this equation, instead of the traditional composition variables {xk} (mass fractions),
we use the microscopic composition variables {x̃k, j} (mass fractions) and the corresponding
chemical potentials {µ̃k, j}, where j denotes the quantum state of a molecule. The ˜ over
a symbol indicates that the quantity corresponds to the nonequilibrium population of
quantum states. The rest of the symbols have their respective traditional meanings.

The functional dependence of entropy s from Equation (46) is

s(t) = s
(

u(t), v(t), {x̃k, j(t)}
)

. (47)

However, for the present purpose, we will use its equivalent representation:

s(t) = s
(

T(t), p(t), {x̃k, j(t)}
)

. (48)

Herein, we use the functional dependence of Ls shown in Equation (31). Next, based
on the functional dependence of Equation (48), we define the perturbation coordinates at
the local level as

δT(t) ≡ ∥T(t)− T0(t)∥, δp(t) ≡ ∥p(t)− p0(t)∥,

δ{x̃k, j(t)} ≡ {∥x̃k, j(t)− x̃ 0
k, j(t)∥}.

(49)

Now, the expression of Equation (33) is extended by using the expressions of Equation (49)
to become

dLs

dt
=

∂Ls

∂δT
dδT
dt

+
∂Ls

∂δp
dδp
dt

+ ∑
k, j

ρ
∂Ls

∂(δx̃k, j)

d(δx̃k, j)

dt
≤ 0 ∀{αi(t)} ∈ D \ {0}. (50)

The negative time rate of Ls in Equation (50) stems from the fact that, for a given
condition of evolution, there is only one value of entropy source strength at a given point
on the unperturbed trajectory under consideration. Hence, when its value on the perturbed
trajectory by definition is instantly made higher than that on the unperturbed trajectory
by way of the perturbation, the time rate of the former has to be such that the following
inequality is followed:

dσs

dt
≤ dσ0

s
dt

(51)

irrespective of whether the entropy source strength on the unperturbed trajectory has been
increasing or decreasing with time. Thus, the mathematical statement of Equation (50)
asserts the negative sign of the time rate of the Lyapunov function.

Now, the time rate of Ls cannot vanish before reaching the unperturbed trajectory,
because only then will we have equality in Equation (51), that is, when σs = σ0

s . This is a
consequence of the second law of thermodynamics. Thus, we see that the real trajectory
must be asymptotically stable. Although the perturbation coordinates δT, δp, and {δx̃k, j}
are positive by definition (cf. Equation (49)), the sign and magnitude of the gradients of
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Ls of Equation (50) need to be worked out for each specific problem at hand. Hence, no
generalized deduction about the thermodynamic stability under constantly acting perturbations
can be stated herein.

Since the position of perturbation has not been restricted to be close to an end state
(e.g., equilibrium and NSS), the above deduction is true in general. Notice that these
deductions are the same as those presented in Section 7, demonstrating the consistency of
the present discussion.

For determining how fast the perturbation would die out, one needs to work out
individual cases for exponential thermodynamic stability. This type of thermodynamic stability
is also guaranteed in view of the above deductions.

Moreover, from the local Equation (50), the expression of the time rate of the global
Lyapunov function LS is obtained by spatial integration (cf. Equation (34)), yielding

dLS
dt

=
∫

V
ρ

∂Ls

∂δT
dδT
dt

dV +
∫

V
ρ

∂Ls

∂δp
dδp
dt

dV

+
∫

V
∑
k, j

ρ
∂Ls

∂(δx̃k, j)

d(δx̃k, j)

dt
≤ 0 ∀{αi(t)} ∈ D \ {0}.

(52)

Herein, the domain D stands for
(

δT, δp, {δx̃k, j}
)

. Thus, at the global level too, the
real trajectories are found to fall in the stable category.

The above analysis can be easily specialized to the thermodynamic stability of equi-
librium states and of nonequilibrium steady states. In the former case, we have σ0

s = 0,
and in the latter it is σ0

s = const. That is, the time rate of change of Ls is determined by the
time rate of change of σs pertaining to the respective perturbed trajectory. Moreover, the
perturbation coordinates are defined for an equilibrium state as

δT(t) ≡ ∥T(t)− Teq∥, δp(t) ≡ ∥p(t)− peq∥,

δ{x̃k, j(t)} ≡ {∥x̃k, j(t)− x̃ eq
k, j(t)∥}

(53)

and for a nonequilibrium steady state as

δT(t) ≡ ∥T(t)− TNSS∥, δp(t) ≡ ∥p(t)− pNSS∥,

δ{x̃k, j(t)} ≡ {∥x̃k, j(t)− x̃NSS
k, j ∥}.

(54)

We need to keep in mind that the perturbed trajectory corresponding to a nonequilib-
rium steady state evolves under the same overall conditions as the unperturbed nonequilib-
rium steady state. By contrast, in the case of an equilibrium state, we have several options.
For example, if the perturbation does not create a spatial nonuniformity, then the conditions
can be constancy of T, p or T, V or H, p or U, V, etc. And when the perturbation does
generate spatial nonuniformity, the condition may be adiabaticity, isolation, or anything
else that may be imposed on a spatially nonuniform system. It can be easily verified that
the results would be identically the same as described in the preceding paragraphs.

10. Thermodynamic Stability Analysis of the Schlögl Reaction

In this section, we are applying LTS to a chemically reacting system in the steady state.
As an illustrative example, we have chosen the standard Schlögl reaction in a continuously
stirred tank reactor (CSTR) (Figure 2) [97,98]:

Reaction I: A + 2X
k1−⇀↽−
k2

3X

Reaction II: X
k3−⇀↽−
k4

B
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A

B

A + 2X ⇌ 3X

X ⇌ B

Figure 2. A schematic representation of the Schlögl reaction in a continuously stirred tank reactor
(CSTR). The input of A and output of B are adjusted so that within the CSTR, they maintain con-
stant concentrations A0 and B0, respectively. The intermediate component X is neither added nor
withdrawn during the process. It adjusts itself as part of the reaction scheme.

The reason for choosing this reaction is that at low and high driving forces (primarily
the concentration A0), this pair of reactions has one stable steady state, while at intermediate
driving force, it has three (two stable ones and one unstable); see Figure 3. The superscript
0 on concentrations in the following indicates the fixed value of that component in the
CSTR. The inflow of A and the outflow of B are adjusted to maintain these values.

F1 F2 F3
Driving force

In
te

rm
ed

ia
te

  c
on

ce
nt

ra
tio

n 
X

0

Figure 3. Steady states of the intermediate X of the Schlögl reaction are shown as the driving force
(pump parameter) is increased. The solid parts of the curve are stable steady states, the dashed part
is unstable.

The rate of change of the concentration of X on an unperturbed trajectory denoted by
the superscript 0 is

dX0

dt
= k1A0(X0)2 − k2(X0)3 − k3X0 + k4B0. (55)

Thus, at a steady state, we have for the concentration of X

k1A0(X0)2 − k2(X0)3 − k3X0 + k4B0 = 0. (56)

Solving this equation for X0 yields either 3 real roots or 1 real root plus 2 complex
conjugate complex roots. Taking the rate constants k1 = k2 = k4 = 1, k3 = 4, and B0 = 5
in arbitrary units, we find that all concentrations A0 result in only one steady state (a
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stable one), while B0 = 0.5 shows three steady states in the region 3.9 < A0 < 8.3 (two
stable ones plus one unstable) as pictured in Figure 3 between the limiting points F1 and
F3 (the particular concentrations A0 driving the reaction between which the solution of
Equation (56) is multivalued).

Notice that since we are considering nonequilibrium steady states (NSS) for the
concentration of X, we have X = XNSS. That is, the unperturbed trajectory is merely a
time-independent point in the state space. On a perturbed trajectory, Equation (55) becomes

dX
dt

= k1A0X2 − k2X3 − k3X + k4B0, (57)

where we have retained superscript 0 on A and B because the perturbation is effected only
on X. In the present case, the expression of the rate of entropy production on a perturbed
trajectory ΣS and at nonequilibrium steady state Σ0

S are

ΣS =
AI

T
dξI

dt
+

AII

T
dξII

dt
≥ 0, Σ0

S =
A0

I
T

dξ0
I

dt
+

A0
II

T
dξ0

II
dt

≥ 0, (58)

where the chemical affinities AI, AII, A0
I and A0

II, in terms of chemical potentials are
given by

AI = µ0
A − µX, AII = µX − µ0

B, A0
I = µ0

A − µ0
X, A0

II = µ0
X − µ0

B (59)

and the ξi and ξ0
i are the respective extents of advancement of each reaction.

Based on the general Equations (20), (21) and (35), which identify the excess rate of
entropy productions as a Lyapunov function, the governing expressions of LTS for this set
of reactions, in terms of a sufficiently small perturbation coordinate δX = X − X0 are

d(δX)
dt

= (2k1A0X0 − 3k2(X0)2 − k3)δX (60)

LS = ΣS − Σ0
S =

AI

TX0

[
2

dξ0
I

dt
− k2(X0)3

]
δX +

AII

T
k3δX (61)

L̇S =
dLS
dt

=
AI

TX0

[
2

dξ0
I

dt
− k2(X0)3

]
d(δX)

dt

+
AII

T
k3

d(δX)
dt

− 1
T

∂µX

∂(δX)

(
d(δX)

dt

)2

(62)

and the gradient of LS in the perturbation space

∂LS
∂(δX)

=
AI

TX0

[
2

dξ0
I

dt
− k2(X0)3

]
+

AII

T
k3 −

1
T

(
∂µX

∂(δX)

)
d(δX)

dt
. (63)

Here R is the universal gas constant and T is the temperature. The first term on
the right-hand side of the second equality of Equations (61) and (62) as well as that of
Equation (63) vanishes when the unperturbed state is a steady state for the concentration
of X.

On using the values of rate constants described below Equation (56), the chemical
affinities of reactions I and II become

AI = A

I − RT ln

X
A0 ,

Xeq

A0 =
k1

k2
= 1 ∴ A


I = 0 (64)

AII = A

II − RT ln

B0

X
,

B0

Xeq =
k3

k4
= 4 ∴ A


II = RT ln 4, (65)
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where A

i is the standard state affinity of the relevant reaction. In computing them, we

have used that at equilibrium the chemical affinities AI = AII = 0 and used the second
expressions of Equations (64) and (65) given by the laws of chemical kinetics. The above
equations determine the net signs of LS and L̇S and thus the stability of the steady-state
solutions of (56) as derived by LTS.

We illustrate this procedure by plotting the above equations with rate constants
k1 = k2 = k4 = 1, k3 = 4, A0 = 4, and B0 = 0.5, i.e., for a case with three steady states.
Solving Equation (56), we find that they are located at X0 = 0.14536 (stable), X0 = 1.4030
(unstable), and X0 = 2.4516 (stable), corresponding to branches α, β, and γ of Figure 3,

respectively. The left part of Figure 4 shows LS, L̇S, and
∂LS

∂(δX)
versus time resulting from

the application of a 10% perturbation on X around the first steady state (α branch). We
see that the excess entropy production LS and its rate of change L̇S have opposite signs
and both approach zero at long times. At the same time, the gradient of excess entropy

production in perturbation space
∂LS

∂(δX)
remains finite. Thus, this is an asymptotically stable

state as well as being thermodynamically stable under constantly acting disturbances according
to Malkin’s theorem.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

-0.5

0.5

1.0

1.5

0

LS dLS/dt dLS/d(δX)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

5

10

15

20

0

LS dLS/dt dLS/d(δX)

Figure 4. Evolution of the rate of excess entropy production LS (green), its time derivative L̇S (red),
and its gradient ∂LS

∂(δX)
(black) using rate constants k1 = k2 = k4 = 1, k3 = 4, and fixed concentrations

A0 = 4 and B0 = 0.5 in the Schlögl reaction. The left graph is calculated around the first steady state
point, a stable one. Here, the rate of excess entropy production LS is positive and its time rate is of
the opposite sign throughout, both converging to zero. Thus, it is a case of asymptotic thermodynamic
stability. Further, the gradient of LS remains finite throughout, making it also thermodynamically stable
under constantly acting disturbance. The right graph is calculated around the second steady-state point,
displaying divergent behavior and hence instability.

A similar set of curves results around the third steady state (γ branch) as well as for any
set of parameters with only one steady state, e.g., the combination k1 = k2 = k4 = 1, k3 = 4,
and B0 = 5 mentioned earlier. By contrast, the results for the second steady state (β branch),
also with a 10% perturbation on X, depicted in the right part of Figure 4 show the opposite
behavior. There, the excess entropy production LS and its rate of change L̇S have the same
sign throughout and thus diverge away from the unperturbed state. In other words, they
do not approach a steady state at long times. Also, the gradient of the excess entropy

production in perturbation space,
∂LS

∂(δX)
eventually diverges. This is an unstable steady

state and thus physically unattainable.
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11. Formulating the “Fourth Law of Thermodynamics”

Historically, several candid proposals for the Fourth Law of thermodynamics have
appeared. For example,

- The Onsager reciprocity relations (valid in the local thermodynamic equilibrium
domain and resembling a constitutive theory) [51–53].

- Glansdorff–Prigogine’s proposal of Equation (1) (again, its domain of operation is
close to equilibrium) [1,35].

- Maximum production of entropy [54–58] (note that Ross et al. [45] showed that this
proposal does not stand the test of the second law of thermodynamics).

- Maximum rate of entropy production [59] or steepest entropy ascent [60] (however, it
is not always true that all irreversible trajectories correspond to increasing entropy).

- An ecosystem selects the pathway that maximizes the free energy storage accompany-
ing the organization of the state [61].

- A fourth law describing the nature of dark energy [62].
- The impossibility to design a Carnot engine or other physical heat engine whose

source has a positive (absolute) temperature and its sink has a negative (absolute)
temperature [63].

In view of the above claims, a question arises: What should be the precise object of the
Fourth Law of thermodynamics? We believe that, considering the generality of the already
established thermodynamic laws, the natural object of the missing Fourth Law must be
the similar generality of the thermodynamic stability of irreversible processes, formulated
such that it can even be applied to time-invariant states, viz., nonequilibrium steady states
as well as equilibrium states.

Earlier, Landsberg rightly thought that the subject matter of the Fourth Law of ther-
modynamics should be thermodynamic stability, and then he conjectured the proposal
of Glansdorff–Prigogine as its potential quantification [47]. But he erred by not realizing
that taking the second differential of local entropy as a Lyapunov function amounts to
describing the stability of only equilibrium states, as this second derivative vanishes only
at equilibrium. That is why his suggestion of formulating the Fourth Law of thermo-
dynamics in terms of the second differential of local equilibrium entropy as a universal
thermodynamic Lyapunov function failed and could not stand the test of time.

In the analysis earlier in this paper, we concluded that as long as the rate of entropy
production does not tend to infinity, neither on unperturbed nor on perturbed trajectories,
the irreversible trajectory is thermodynamically stable in the Lyapunov sense. Therefore,
we hereby propose the following formulation of the ‘Fourth Law of thermodynamics’.

All irreversible processes describable globally by

dS
dt

− deS
dt

=
diS
dt

≥ 0 (but not tending to infinity in Lyapunov analysis)

and at the local level by

ρ
ds
dt

+∇ · Js = σs ≥ 0 (but not tending to infinity in Lyapunov analysis)

constitute stable thermodynamic processes.

In words, it can be stated as follows: Stable and asymptotic thermodynamically stable
processes cannot have unbounded values of their rates of entropy production even after perturbation
in the Lyapunov sense. Such processes, too, cannot be reversed.

Notice that LTS describes the thermodynamic stability of an entire trajectory right
from the start, far from equilibrium, to the final state, whether that is an equilibrium
state or not (cf. the discussion in Section 8). Hence, the uniqueness of LTS lies in its



Entropy 2024, 26, 442 20 of 23

comprehensive approach to the task at hand, without the requirement that the system be
close to equilibrium along the path. With the definition of LS in Equation (20), LTS tells us
that Σ0

S = 0 when the unperturbed states are equilibrium states and Σ0
S is constant when

the unperturbed states are nonequilibrium steady states. Nonequilibrium steady states far
from equilibrium are also covered.

The zeroth law (reflexivity of equilibrium between systems), the first law (energy
conservation), the second law (entropy of the universe increases), and the third law (entropy
of a perfectly ordered structure at 0 K is 0) are all completely universal: they cover all
situations, there are no exceptions, and there are no assumptions. The present version of the
Fourth Law of thermodynamics as stated and explained above, matches the zeroth to third
laws of thermodynamics in terms of its generality. Further, it complements their description
of thermodynamics by providing a solid mathematical description of thermodynamic
stability of irreversible trajectories.

12. Conclusions

In this paper, we have presented two existing theories of the thermodynamic stability
of irreversible processes. The first, more traditional one, we have called a Gibbs–Duhem-
type thermodynamic theory of the stability of irreversible processes. It is based on the
concept of virtual displacement in the reverse direction on the real trajectory whose thermody-
namic stability is under investigation. The characteristic of this theory is that the discussion
remains on a generalized level. The only drawback of this theory is that it also classifies
those trajectories leading to divergence (explosion) as thermodynamically stable.

This problem is solved by using instead the thermodynamic Lyapunov function of
the theory of ‘Lyapunov thermodynamic stability’ (LTS). Our discussion here is on a more
generalized level than what has been presented in our previous writings. The first approach
presented above does not require the explicit use of perturbation coordinates. Still, we arrive
at the asymptotic thermodynamic stability of real trajectories describable by Equations (6) and (7).
In this approach, we further demonstrate the thermodynamic stability under constantly acting
perturbations. It clearly shows that trajectories leading to an infinite value of rate of entropy
production are correctly classified as thermodynamically unstable.

An illustrative demonstration of thermodynamic stability under constantly acting perturba-
tion is one wherein we use the perturbation coordinates but not the explicit expressions of
the differential equations of these perturbation coordinates. In this way, the approach still
maintains its generalized characteristics. We have illustrated this approach using the Gibbs
relation of ‘phenomenological irreversible thermodynamics’ (PIT) [68]. The Gibbs relation
of other thermodynamic frameworks can also be used easily to reach the same conclusions.
We emphasize that in the discussion of LTS, nowhere have we imposed a condition of close
to or moderately away from equilibrium. Hence, the present investigation using LTS is
valid even for far from equilibrium situations.

Finally, we have proposed a statement of the ‘Fourth Law of thermodynamics’ based
on the thermodynamic stability analysis presented herein. It describes the thermodynamic
stability of all irreversible trajectories, close to and far from equilibrium states, and in this
sense it meets the criterion of generality associated with the existing laws of thermody-
namics (the zeroth to third laws of thermodynamics). The same is not true for previous
formulations of the Fourth Law of thermodynamics mentioned above.
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