
2704 

dence. We also need to examine whether any directional 
principles resembling the second law of thermodynamics 
apply when different states of the same total free energy 
are obtained in open and closed systems. Such problems 
are reserved for future consideration. 
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The concept of availability as an upper bound to the work that can be extracted from a given system in connection 
with specified surroundings is extended to processes constrained to operate at nonzero rates or in finite times. 
Such analyses are facilitated by the introduction of generic models which describe a whole range of systems 
in such a way that the optimal performance of the generic model is an upper bound to the performance of the 
real systems. The effects of the time constraint are explored in general and in more detail for a generic model 
in which extraction of work competes with internal relaxation. Extensions to nonmechanical systems are indicated. 
We hereby wish to establish the finite-time availability as a standard of performance more useful than the 
traditional availability based on reversible processes. 

I. Introduction 
One of the classic problems of thermodynamics has been 

the determination of the maximum work that might be 
extracted when a prepared system is allowed to undergo 
a transformation from its initial state to a designated final 
state. When that final state is defined by the condition 
of equilibrium between the system and some environment, 
the maximum extractable work is generally known now as 
the availability A (other names are exergy and essergy). 
This is a convenient shortening of “available work”, the 
original name for this quantity when it was fist introduced 
by Gibbs.’ Availability, unlike the usual thermodynamic 
potentials, provides a general expression for the maximum 
extractable work, an expression that does not depend on 
the nature of the constraints on the process, so long as the 
limit of the process is reversible. This general expression, 
first given by Gibbs, remains the basis of “second-law 
analyses” of performance, whose criterion is the ratio of 
the actual work performed to the change of availability of 
the system when it undergoes its transformation from 

(1) J. W. Gibh,  “Collected Works”, Vol. 1, Yale University Preas, New 
Haven, CT, 1948, pp 49 ff. 

initial to final state.* This ratio is called the 
“effectiveness” or the “second-law efficiency”. 

The formal solution to the more general problem of 
finding the work for an arbitrary transformation of a 
system was given as an equality; in the form derived by 
Tolman and Fine3 

W = -AA - Tost‘s,,, t i  dt 

Here the availability 
A = U - ToS + PoV - Zp0;Nj (2) 

for a process in which the system approaches equilibrium 
with an environment whose temperature is To, pressure 
is Po, and chemical potential of species j is poj. 

The change of availability AA is taken between the in- 
itial time ti and the final time tf: 

(3) 

j 

CIA = A(t,) - A(tJ 

(2) R. A. Gaggioli, Ed., “Thermodynamics: Second Law Analysis”, 

(3) R. C. Tolman and P. C. Fine, Reu. Mod. Phys., 20, 51 (1948). 
American Chemical Society, Washington, DC, 1980. 
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The time rate of change of entropy, Sbt, is that of system 
and environment together. It is never negative; however, 
if the process is reversible, Sbt = 0, and 

Note also that eq 1 is satisfied in general, and the condition 
W = -AA is satisfied for reversible processes, whether or 
not the system has reached equilibrium with the envi- 
ronment a t  t f .  

Our purpose here is to extend the concept of availability 
to provide a bound to the work that can be obtained when 
a system is allowed to approach equilibrium with an en- 
vironment for a finite interval of time. The traditional 
expression 4 may sometimes be inadequate, or even mis- 
leading, if the process under consideration is only of in- 
terest when it operates at rates for which its entropic losses 
are considerable. On the other hand, the general equation 
1 is likely to be either hollow, as in the event that we do 
not know all the contributions to the entropy production, 
or completely determined. We shall work essentially with 
eq 1 but from a viewpoint quite different from that asso- 
ciated with its deri~ation’,~ or from that of the familiar uses 
of availability.2 

Traditionally, we suppose we know the sources of en- 
tropy production and can treat eq 1 as a fully determined 
expression when computing the work that a system can 
do. Alternatively, when using availability as a tool for 
engineering analysis, we evaluate A from eq 2 at suitable 
points of a process and compare it with W in order to 
determine at  which process stages large amounts of po- 
tential work are lost. These stages then may be redesigned 
to improve their performance, either by reducing their 
losses of availability or by using their availability changes 
to supply useful work or heat. 

The viewpoint that we introduce here begins with the 
supposition that we can find generic models for processes 
with time or rate constraints. Each of these generic models 
is characterized by its own mechanism of entropy pro- 
duction; each is intended as an idealization one level more 
realistic than a reversible model. The Carnot engine, the 
archetype of all generic models for thermodynamic pro- 
cesses, reproduces only certain of the properties of real 
engines. Other standard reversible cycles such as the 
air-standard Stirling, Brayton, Otto, etc., cycles have been 
useful for describing the limiting behavior of real heat 
engines. Recently, models have been introduced which, 
by incorporating specific mechanisms of entropy produc- 
tion, become models of real processes that are more re- 
alistic than the reversible standard cycles.“’ 

We suppose, in accord with the findings of Andresen et 
al.,j that the entropy production for a system of interest 
will be dominated by that represented by some generic 
model. The choice of the entropy production mechanisms 
which are included in the model is dictated by the re- 
quirement that they are essential for the operation of the 
device that extracts work from the system or that they are 
inescapable because of the structure of the system. The 
generalization of availability from eq 1 is then expressed 
in terms of a variational form. Suppose the system is to 
go through a process Z with a set of constraints g .  ex- 
pressed in terms of the system’s extensive variables kl,... 
and conjugate intensive variables Yl,  ... and that the en- 
vironment toward which the system moves has intensive 

W,,, = -AA (4) 
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(4) J. H. Keenan, “Thermodynamics”, MIT Press, Cambridge, MA, 

(5) B. Andresen, P. Salamon, and R. S. Berry, J. Chem. Phys., 66,1571 

( 6 )  Y. B. Band, 0. Kafri, P. Salamon, J .  Appl .  Phys., 53, 8 (1982). 
(7) M. Mozurkewich and R. S. Berry, J. Appl .  Phys., 53, 34 (1982). 

1970. 

(1977). 

variables Ylo, ... . Then 
an upper bound to the work that can be obtained 
from a process Z in the time 7, subject to a set of 
constraints g j (X ,  ,..., X,,Y, ,..., Yn,7) = 0, is given by the 
finite-time availability 

A(Z0;7) = max W(Zo;7) (5 )  
where 2, is an idealized generic process suitable for 
modeling the realistic process Z 

(6) 

and the work W(Z0;7) of the generic process is com- 
puted as in eq 1 from the known initial state and the 
entropy production implied or specified by the 
definition of the generic process. 

An example illustrating this definition will be given in 
section 111. 

One such generic process Zo is the endoreversible two- 
reservoir heat engine with finite heat conductances be- 
tween the reservoirs and the system. When this process 
is further specified to have four branches, two isotherms 
and two adiabats, it is the familiar Curzon-Ahlborn en- 
gine.8 A second generic process is the two-reservoir heat 
engine with friction and a heat leak. I t  might seem that 
the heat leak should be treated separately, but it turns out 
that these two “nonidealities” can be treated simultane- 
ously and still yield a transparent solution that describes 
the examples of pure friction and pure heat leak as natural 
limiting cases.5 

This approach will justify itself if the concept of generic, 
finite-time models is successful in the sense that many real 
processes can be described as “imperfect” variations of one 
or more such processes, and the generic models are well- 
defined limiting cases for the real processes. At least two 
kinds of evidence support this view. One is the utility of 
the standard reversible cycles. Another is the result of ref 
5, that optimized two-reservoir heat engines with finite 
heat conductances, heat leaks, and friction fall into two 
classes sharply separated by a classical bifurcation: one 
class is dominated by friction and the other by heat con- 
ductance, and their characteristics are quite different. 

In discussing expressions 5 and 6, we used the clause “2, 
is a generic process suitable for modeling E’’. The meaning 
of “suitable” must be made more precise. Here, we intend 
it to mean that, within the constraints of the real process 
Z and its generic model Zo, it is not possible to change Z 
to produce more work than Zo produces. The problem of 
constructing model processes that are suitable in this sense 
is the subject of a future communication. One must, of 
course, show that a generic model is suitable before one 
relies on it. The need for such proofs has been made clear 
with the example given by Ben-Shaul and Levineg of a 
process in which speeding up a relaxation process yields 
more work rather than less work. We have been able to 
show, however, that for large classes of processes, both 
microscopic and macroscopic in nature, suitable generic 
models may be constructed. 

Some processes are defined with no freedom in the se- 
lection of the final state. (We assume, in the spirit of the 
definition of availability, that the initial state of the system 
is always well-defined.) Other processes are defined so that 
the final state may be chosen from within some set of 
states in order to optimize the chosen objective function 
such as A. It  is a truism, but nonetheless an important 
point, that in the former case determining the finite-time 

W(ZO;7) = -AA(Zo) - ToJrS,,(Zo;t) dt 

(8) F. L. Curzon and B. Ahlborn, Am. J .  Phys., 43, 22 (1975). 
(9) A. Ben-Shaul and R. D. Levine, J. Non-Equilib. Thermodyn., 4, 

363 (1979). 
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Flgurr 1. Schematic subdivision of a total system, in this case a finite 
heat reservoir of tempratwe Tdt) drained by an endoreversible engine 
into the environment at temperature To. The internal reversible engine 
operates between Th(f) and T, ( t ) .  

availability is merely a matter of minimizing the total 
entropy production in order to maximize W(T).  In the 
latter case, variational techniques also determine the final 
state and, thereby, the ordinary availability Af of that final 
state. We shall provide examples of both sorts of problems 
in section VI. 

The choice of what one optimizes, the objective function 
or functional, is a matter of some importance. Among the 
thermodynamic quantities-as opposed to economic 
quantities-that one may choose are A(?) ,  the objective 
function to which this paper is devoted, the effectiveness 
6 ,  the efficiency 7 ,  the average power generation, and the 
entropy production AS. For many purposes, notably for 
engineering design, cost or net revenue is the desired ob- 
jective function. It is important to recognize that different 
choices of objective functions usually give different re- 
~ults.~JO For example, in the two-reservoir system, if the 
heat absorbed from the hot reservoir is fixed, then the max 
e occurs at  the max 7, but, under other constraints, these 
maxima differ. 

As we have pointed out in the past, one can approach 
the maximization of work either by finding its extrema1 
value in a manner that sidesteps finding how to obtain that 
maximum5J1 or by finding the path that yields the max- 
imum The former is illustrated in the next 
section, in which we find A(?) for three generic models. 
The latter is described in sections 111-VI, where we con- 
struct and analyze a system of coupled finite heat reser- 
voirs and engines whose initial state is not in equilibrium. 
This particular system has a characteristic that makes it 
especially useful as a generic model; namely, it has a 
constant of the motion in its time evolution. The con- 
cluding section also outlines how to extend the generic 
model to chemical as well as other systems. 

11, Performance Bound without Path 
The simplest way of obtaining the time-dependent 

availability A( 7) without performing a full time-path op- 
timization is to make use of energy calculations based on 
conservation  equation^^,^ or thermodynamic potentials.'l 

(10) P. Sa lmon  and A. Nitzan, J.  Chem. Phys., 74, 3546 (1981). 
(11) P. Salmon,  B. Andresen, and R. S. Berry, Phys. Reu. A,  15,2094 

(1977). \-_. .,. 
(12) M. J. Ondrechen, B. Andresen, M. Mozurkewich, and R. S. Berry, 

(13) M. H. Rubin and B. Andresen, J .  Appl .  Phys., 53, 1 (1982). 
(14) M. J. Ondrechen, M. H. Rubin, and Y. B. Band, J.  Chem. Phys., 

Am. J. Phys., 49, 681 (1981). 

78, 4721 (1983). 

For the endoreversible engine depicted in Figure 1 the 
maximum extractable power iss 

If the hot reservoir a t  T H  is infinite, this power can be 
sustained indefinitely, and the time-dependent availability 
of the system operating for the interval 7 becomes 

A ( T )  = W"(T) = K ( T H ~ / '  - T o 1 / 2 ) 2 ~  (8) 

linear in the total operating time 7. By contrast, since both 
the driving reservoir and the environment are infinite, so 
is the traditional availability. This proportionality of the 
finite-time availability to time, A(7) a 7, is general for all 
systems with infinite reservoirs since they are not de- 
graded. This holds as well for systems with the more 
complicated loss mechanisms of ref 5. 

Next, consider extracting the maximum work from a 
finite reservoir (heat capacity C), originally at  temperature 
TH by connecting Carnot engines between it and the en- 
vironment at  To; each engine accepts heat at a fixed upper 
temperature.12 We assume that we can switch engines once 
per time unit. Then the extractable work as a function 
of the number of engines in the sequence12 becomes the 
time-dependent availability for the system: 

A(7)  = CTo{TH/To - 1 - (7 + l)[(TH/To)1/(7+1) - 1 11 (9) 

Finally, if one has a finite-time potentia1,ll P, then 
A(?)  = P(A) - P(B) (10) 

where B is the most distant point in thermodynamic space 
which can be reached from A in time 7. Note that this does 
not require any knowledge about how to get from A to B. 
One example of this is "Example 4: Quasistatic expansion" 
of ref 11, where we found 

(11) P = clT + c,V + c3 In V 

cl, cp, c3  are constants. In this case 
A(7)  = cl(TA - TB) + cp(VA2 - VB2) + ~3 In (VA/VB) 

(12) 

where TB and VB are determined by integrating the con- 
straint equations" 

dS/dt = K(T - To)/T dV/dt = aV (13) 
for the duration 7. 

This no-path procedure for finding A ( T )  is very con- 
venient when some of the above conditions are fulfilled. 
However, if the system is nonsteady and no potentials are 
available, it is necessary to perform a full optimization from 
which the desired time path also emerges. This is done 
in the following sections. 

111. Thermodynamic Problem 
We now construct a system intended to be a generic 

model for real complex systems in local thermal equilib- 
rium providing work in competition with internal relaxa- 
tion. 

To determine the time-dependent availability A(?) we 
must calculate the maximum work that can be extracted 
from a system in a stable environment. We begin with the 
equation for the work done by the system, eq 1-3, and 
recall that the process is of fixed duration T = tf - ti. 

The analysis of thermodynamic processes in terms of 
availability usually begins with an arbitrary division of the 
(isolated) total system into two interacting parts: the 
environment, characterized by unchanging intensive var- 
iables, and the system of i n t e r e ~ t . ~  To do our analysis of 
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irreversible processes, we find it more convenient to divide 
the total system into three parts: the environment, the 
system = internal reservoirs and interfaces, and the engines 
that perform useful work, as indicated with the example 
of Figure 1. This division helps to isolate irreversibilities 
and to clarify the basis of the somewhat arbitrary choices 
of generic processes for the representation of irreversible 
systems. This arbitrariness does not occur when reversible 
processes are used since all reversible heat engines using 
the same set of heat reservoirs will perform the same 
amount of work per unit heat absorbed. 

With this division of the isolated system, the rate of total 
entropy production consists of two parts: the rate of en- 
tropy production in the system, u, and the rate of entropy 
production in the devices that are used to perform useful 
work S M  
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by a,  or, if the machine is a continuous-flow machine, the 
constraint becomes 

s,, = 0 (1%) 

The transport of heat across the boundary is essential 
to the finite-time operation of the machine and is asso- 
ciated with an inevitable irreversibility. In other processes 
required to operate in finite time, one finds other essential 
irreversibilities, often a single kind that dominates the loss 
processes. One illustration is the diffusion to and from 
electrodes in nonturbulent batteries. 

To complete the definition of SMa it is necessary to 
specify S,,, uah, and u,]. We shall take 

(184 

(18b) 

= - JaOyal (19) 

unh = -Ja(y, - Yah) 

gal = -J,o(Y,o - Y,l) 

where J,  is the a-th flux into the system, Y,  is the con- 
jugate force, Jd is the a-th flux into the environment, and 
Yah and Yal characterize the state of the internal engine 
at different parts of the cycle. For convenience the en- 
vironmental thermodynamic variable corresponding to Y,  
has been labeled with a. We recognize Jay ,  and J,,Y,, 
as the entropy flowing out of the engine into the system 
and the environment, respectively. S,, is composed of the 
entropy flow out of the upper and lower parts of the in- 
ternal engine. 

The operation of the engine is determined by the regu- 
lation of the Yah's and Yal's. They are a subset of the 
control variables; we denote the entire set of these variables 
for all the working devices by u. The controls are usually 
restricted to some bounded set U in a k-dimensional Eu- 
clidean space. In order to determine the optimum process 
we must determine u. The set u may also contain rate 
coefficients or transport coefficients which appear in the 
fluxes, J,. For example heat flow into and out of a ma- 
chine is governed by the thermal conductances of the walls 
of the engine; transport of matter may be governed by 
diffusion coefficients, and electric current by conductances. 
If these parameters are treated as bounded control vari- 
ables, they usually lead to boundary extrema; that is, the 
system usually yields the extrema of the desired property 
when the parameters take on their maximum values, or 
when the device is turned off-which is equivalent to 
setting some conductances to zero. Thus, the flux J ,  will 
depend on Y, and U,h, the latter contains YUh, and the flux 
Ja0 will depend on Ya0 and ual. 

Note that eq 19 when substituted into eq 17a or 17b 
becomes 

u is taken to be a function of a set of intensive ther- 
modynamic variables ( Ya, p=1,2, ...I. Contributions from 
leaks directly between system and environment are as- 
sumed to be included in SM. Our system may be composed 
of several parts so that, for example, several Y i s  may 
correspond to temperatures. In contrast, the environment 
is characterized by a set of intensive parameters ( Yjo, J= 
1,2,...), where each j labels a physically distinct, intensive 
variable. Recall that the subscript zero is used to refer to 
the environment. 
, Next the rate of entropy increase of the working devices, 
SM, must be specified. Some subset of the Ya will be 
coupled to working devices which in turn are coupled to 
the environment. We shall write 

a 

where the sum is understood to be over this subset. Up 
to this point our entire discussion has been quite general 
but purely formal, subject only to the requirement that 
our system is describable in terms of thermodynamic 
variables. As explained in section I, we must make a choice 
of generic processes that will serve as standard processes. 
Each generic system is associated with a particular form 
of its SM,. In our case we choose to write 

S M a  = ueh + ual + $ma (16) 
where we describe the engine in terms of a "higher" p a d 5  
which is in contact with the system, a "lower" part which 
is in contact with the environment, and a part associated 
with the internal, work-producing machine (see Figure 1). 
In general, this division is arbitrary; however, in our case 
we shall see that the arbitrariness is eliminated. 

We require that each machine operate endoreversibly. 
This means that the work is produced by the internal 
machine which operates reversibly between the upper and 
lower parts of the working device. In such a machine all 
the entropy production occurs on its boundary and arises 
from the conditions necessary to produce nonzero fluxes 
J,  into and out of the device. An immediate consequence 
of this requirement is that we obtain a constraint equation 
for each flux path 

where 7, is the duration of one cycle of the machine labeled 

(15) The expression 'higher" part does not mean that the reservoirs 
are necessarily of a higher temperature than the environment, but should 
rather be taken pictorially, cf. Figure 1. A refrigeration system with some 
To < To is equally well treated by this formalism. 

or 

J a y a h  + JaOYd = 0 (20b) 
With eq 14-20 we have now formally specified all the 

sources of the entropy production. The final step necessary 
to complete the formulation of our problem is to specify 
the dynamics, given by the equations of motion of the set 
(Y,) which determines the state of the system: 

Yb = F,(Yl,Y2,...,u) (21) 

where we recall that u is the complete set of control var- 
iables including the I Yoh) and { YUl). It  is convenient to 
distinguish the equations for the subset (Y,), which are 
coupled to the working devices (cf. eq 15), and the re- 
mainder, (YJ:  
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Y x  = Kx(Yl ,Yz ,  ...I ( A  # a) (2%) 
where J ,  is the flux introduced in eq 18a. The K s  reflect 
the internal coupling of the system and assure that, in the 
absence of the working devices, the interacting parts of the 
system relax toward equilibrium. 

This completes our general formulation of the problem. 
We must now determine how to regulate the controls in 
order to extract the maximum work from the system when 
we are given the system in a specified initial state { Y,(O)) 
and any other constraints that are to be imposed. For 
example, we may require that some subset of the variables 
{Y,) take predetermined values a t  tf. This is now a well- 
defined problem in optimal control theory. In the next 
section we outline its formulation and solution. 

IV. Optimal Control Problem 
In this section we outline the mathematical formulation 

and solution to the problem discussed in the previous 
section. In the standard fashioni6J7 we write a variational 
function 

L = V f  + J , t f (H - C+BY,) dt 
0 

where the Hamiltonian is given by 
H = -$tot + C A m S m ,  + C+,FB (24) 

with S,, defined by eq 14-16,18, and 19, and Sm, given 
by eq 19. The sets and {A,) are Lagrange functions 
which are introduced to enforce the constraints 22 and 20. 
If a constraint of the form of eq 20a is used, then the 
corresponding A, is constant over each cycle but may 
change from cycle to cycle. The quantity V f  is a function 
of the thermodynamic variables of the system a t  the end 
of the process. In the case that interests us here, eq 1 
shows that V f  is -AA/T,, where the temperature of the 
environment has been divided out for convenience. 

The equations of motion which determine the optimal 
path are found by obtaining the extrema of L. The var- 
iation with respect to YB gives 

a B 

- aH 
$ , = - - j j 7 y  

+@of) = av f /ayB( t f )  (26) 

where 6,, is zero if Ys is not in the set IY,) defined before 
eq 15 and is 1 otherwise. Equation 26 comes from the 
variation of the final value of the system variable Y,. If 
this value is not free, then eq 26 is replaced by the re- 
quirement Y,(tf) = Yon where Yaf is specified. 

The variation with respect to the controls is complicated 
by the fact that conductances often appear linearly in the 
fluxes and, therefore, in H. The variation with respect to 
such linear control variables requires special handling.lGi8 
We simply quote the result that the conductances that 
appear linearly in H take either their maximum value or 
their minimum value of zero. In the latter case the ma- 
chine whose conductance vanishes decouples from either 
the system, the environment, or both. Finally, the varia- 

(16) (a) M. H. Rubin, Phys. Reu. A,  19,1272 (1979); (b) ibid., 19, 1277 

(17) M. H. Rubin, Phys. Reu. A ,  22, 1741 (1980). 
(18) A. E. Bryson, Jr., and Y. Ho, "Applied Optimal Control", Hemi- 

(1979). 

sphere, Washington, DC, 1975. 

tions with respect to Yah and YmI yield 

where the form of FB given in eq 22 has been used to obtain 
the last term in eq 27. 

Equations 17, 22, and 25-28 determine the optimal so- 
lution once the J,'s and the K's in eq 22, the initial con- 
ditions Yp(ti), and any final condition Yp(t f )  are specified. 
In general, these equations are nonlinear and must be 
solved numerically. 

Equations 27 and 28 prove an interesting result when 
Y,(tf) is not specified but is determined from the opti- 
mization process. At t = tf eq 26 may be combined with 
these equations to eliminate +,(tf) and A,(tf). We then get 
a relation connecting Y,(tf), Yd(t f ) ,  and Yal(tf) independent 
of the remaining variables (except the conductances for 
the a-flux path). The general equation is not very in- 
formative, but a specific example is provided by eq 49. 
Such a relation is easy to understand physically. As t 
approaches tf, there is a time at which the internal relax- 
ation time of the variable Y ,  becomes long compared to 
the remaining extraction time, in which case it becomes 
irrelevant that the a-th subsystem is coupled to the rest 
of the system. From that point on, the engine should be 
run in the mode optimal for the decoupled boundary 
subsystem. Thus, the condition just depends on the a-th 
engine and a-th subsystem. Furthermore, as t approaches 
t f ,  and the engines no longer interact with one another, 
more work is produced by having all the work-producing 
engines operate than by having some idle. Earlier on in 
the process, the effects of flows between subsystems 
sometimes may make it optimal to have some engines not 
running or even running backward, as heat pumps. 

V. A Linear Model 
The equations of section IV become nonlinear because 

of the nonlinearity of the entropy production SM,. 
Equations 27, 28, and 17 lead to a nonlinear relation 
connecting Y,, Yah, Yel, and +,. For this reason it is useful 
to study a very simple model using eq 1 before we examine 
the results of the detailed calculations in the next section. 

We introduce a generalized linear model through the 
following set of equations: 

n 

AA/To = C(Y,f - Y,JN,Y,o 
a 

Y, = J ,  + CKaa 
B 

J ,  = K,(Y,, - Y,) K,p = Map(Y~ - Y,) (29) 
where quantities K,, Ma,, and N ,  are all constants, and 
Yai and Ymf are the initial and final values of Y,. The Y,, 
are control variables. The condition that S,, be nonne- 
gative requires that K,  2 0 and that the symmetric part 
of the matrix M be nonnegative. It is clear that the di- 
agonal elements of M do not enter the problem and so are 
simply set to zero. 

This model makes no explicit mention of the working 
device which is hidden in J,. The machine has been de- 
vised so that it operates a t  a rate proportional to the de- 
viation from equilibrium of the subsystem to which it is 
connected. K,, is the flux between the a and /3 subsystem. 
We wish to emphasize that our linear model is not in any 
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way related to the usual linearization of the flux-force 
relation in nonequilibrium thermodynamics. In particular, 
M is not required to be a symmetric matrix. 

Inspection of eq 29 shows that Y,, always appears in the 
combination Y,, - Y,  = C, which we take as our control 
variable. Then the Hamiltonian for this model is 

H = -'/,CK,C,2 - ' / C ( Y ,  - Yp)2M,s + C$s,C, + 
a aB 12 

C$&L&YB - Y,) (30) 
aB 

The variational principle leads to the results 

$a = c, 
Ca = C (Map + Moa) ( Y,  - Yo) - 

B 
(CC,&,g, - CaCMa~)C(Cp - C,)M,o (31) 

Thus, the equations for Y ,  and C, are sets of coupled, 
linear, first-order differential equations. Note that C,C, 
is a constant of motion along the optimal trajectory. This 
can be seen from the equations for C, directly and is a 
manifestation of the invariance of the Hamiltonian with 
respect to the transformation Y,  -+ Y, + D for all CY, where 
D is a constant. The general solution of these equations 
is a linear combination of a steady-state term plus terms 
with exponential time dependence. 

A particularly simple case is obtained if M is zero. Then 
the different subsystems do not interact. We find for each 
subsystem, when the final states Y,(tf) are not specified, 
that 

AA/To = -2ASbt (32) 

IA/AAI = 72 (33) 

le le B 

so 

and that A(7)  is proportional to the duration 7 of the 
process. If the final state is prescribed 

AA/To = (Yaf - Yai)NaYao 
C, = -Nay,, 

Y,f - Y,i = K,C,r 

As,, = f / , (Yaf  - YJ2/(K,27)  

A / T o  = (Yaf - YaJNaYaO - YZ(Yaf - YaJZ/(K,2T) (34) 

In this case, if r - m, we get a reversible process. There 
is no contradiction between results 33 and 34 in the limit 
7 - OD, because AA is fixed in the latter but increases with 
7 in the former. 

The simple linear model presented in this section has 
many features in common with the more physical case 
discussed in the next section. In particular, there is a local 
constant of motion connecting the control variables, and 
the trajectories of the optimal paths can be found from the 
optimal H. These trajectories have a characteristic form 
in the space with coordinates of the state variables {Y,] and 
some set of independent variables describing the controls 
(C,l (in the next section there is one such variable, the angle 
e). These trajectories are of the type that are associated 
with unstable systems where stationary states are saddle 
points. We do not pursue the linear problem any further 
here. 

VI. A More Complex Generic Model. An 
Internally Relaxing System 

A. General Description. In this section we apply the 
general formalism of sections I11 and IV to the case of an 

Flgure 2. Thermal interaction of M reservoirs. The first N are also 
connected to the environment through endoreversible engines pro- 
ducing work w,, ..., w,. 

internally relaxing system. The system is composed of M 
finite heat reservoirs that are characterized by their heat 
capacities C; and their temperatures Tp These reservoirs 
are connected, as shown in Figure 2, by heat conductors 
with the heat flow from j to r given by a linear law 

(35) 

Some of the reservoirs are also drained by heat engines to 
the environment, as described below. Thus, the system 
is completely characterized by a set of fixed parameters 

and its state is given by the state vector T = 
(T1, ..., TM).  The environment is an infinite heat reservoir 
whose temperature is T,. The engines are continuous-flow 
endoreversible engines of the type shown in Figure 1. The 
a-th engine is characterized by its heat conductances, K,h 

and K , ~ ,  and by the temperature of its working fluid at the 
two ends of the engine, Trrh and Tal. We assume CY = 1, 
2, ..., N ,  where N I M, Le., we number the reservoirs such 
that the first N are connected to the engines. 

For this example, V f  of eq 23 is (Ai - Af)/To, where the 
availability 

Qjr = Kjr(Tj - Tr) 

M 

n=l 
A = C Cn[Tn - To - To In (Tn/To)] (36) 

and Stat, according to eq 14-18, consists of the terms 

(374 

(37b) 

M M 

;=I r=l 
u = -C Tj-'(C Q;,) 

The constraint eq 20b becomes 

(37c) 

Finally, the equations of motion (eq 22) become 

(39) 
N 1  

cj r=l  a c; 
T j  = -- l M  c Qjr  + D a j - - Q &  

where fiUj is the Kronecker delta function. 
With the Qah and Qa1 given by linear laws, we have 

We now introduce the control variables 
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uah = Tah/Ta ud = (41) 

Andresen et al. 

With these definitions the total entropy production of the 
heat engines becomes 

Qjr 

Figure 3. Model system consistlng of two reservoirs at temperatures 
T,(t) and T2( f )  and the environment at temperature To. The reservoirs 
produce work through their respective engines in competition with 
internal relaxation through the conductance t i .  

(43) 

where 

Qah = KahT,(uah - 1) (44) 

and the A, are the Lagrange functions defined following 
eq 24. 

Using eq 25-28 and eq 36 one can now show that 

uel(t)  = {I + X,(t))1/2 for tia1 z 0 (45) 

rC;(tf) = -Cj(l/T, - 1/Tjf) (47) 

if Ti, = Tj(tf) is not specified by the process and therefore 
is free to be varied. 

If we combine eq 45-47, we have 

(UaI/uah)f2 = T a / T O  (48) 

or 

(T,l/T,h)f = (To/T,dl" for Kah # 0 (49) 

This is precisely the operating condition for a single engine 
connected to a system composed of a single reservoir, as 
we expect on physical grounds from the discussion at  the 
end of section IV. 

From eq 39 and the equations for $j one can show that 

d N + j ~ j  = N 1  -(-Cj + TjlC;)QjNL (50) dt j =1  j=1 CjTj 

where the nonlinear contribution 

If Q,, depends only on the temperature difference T, - 
Tr, and Q1r = fjr(Tj - T,) = -frj(Tr - Tj), then 

N 

r=l 
GINL = C [ Q l r  - (7'1 - Tr)Q;rI (52) 

where the prime denotes the. derivative with respect to the 
temperature argument of Q,,.. Note that in our model, 
where Qlr is linear in TI - T,, QJrNL, the nonlinear part of 
Q,,, when QJr is an odd function of TI - T,, vanishes, and 

E TI$, 
]=1 

is a constant of motion. It is clear from the derivation that 
the existence of this constant depends critically on the 
linearity of Qjl. 

In order to interpret this constant, we evaluate it at  t 
= t,. If we assume that all the final temperatures Tjf are 
free, then eq 47 may be used in evaluating the constant, 
and we find 

(53) 

Each individual term Cj(Tjf - To) is the thermal energy 
remaining in the j-th reservoir compared to its energy when 
it is in equilibrium with the environment. Thus, the 
constant is the negative of the remaining total energy 
divided by the temperature of the environment. If this 
remaining energy were all to go as heat into the environ- 
ment, then the increase in entropy of the environment 
would be exactly the negative of this constant. 

If all the final temperatures are not free, then the con- 
stant does not have so simple an interpretation because 
+jf must be computed by using the final-state condition 
T,(tf) = Tjf, the given value of Tj  at t = t,. 

We have completed the solution of this problem for the 
case of M = N = 2 and now summarize the result of this 
calculation. 

B. Two-Reservoir System. For M = N = 2 the system 
is shown in Figure 3. We want to extract the maximum 
work in time T starting with reservoirs 1 and 2 at tem- 
peratures TIi and TZi, thus leaving the final temperatures 
Tlf and T,, free for the optimization. Then eq 53 is a 
constant of motion which we use to define K 

2 

j = l  
K2 = T0-l C CjTj (54) 

Another constant of motion is of course H, eq 43. In order 
to simplify the variational equations 25-28, constraint 
equations 38, and equations of motion 39 as far as possible, 
we define the reduced variables 

B = T2/T1 (55) 

and the angle 0 through 

Loosely speaking, 0 describes the relative rate of drainage 



Availability for Finite-Time Processes The Journal of Physical Chemistry, Vol. 87, No. 15, 1983 2711 

trajectory, A‘ from a,,’ to af,  completely different from A, 
and thereby produce more work than the sum of the 
contributions from A and an optimal extension from 7 to 
7’. Thus, it is imperative to know from the outset how 
much time is available. Trajectory B is an example 
showing that an optimal trajectory does not necessarily 
approach equilibrium between the reservoirs (B  = l), but 
may increase the temperature difference, as happens be- 
tween points bl and bp It is even possible to start with 
equal temperatures and evolve along the optimal trajectory 
to unequal reservoir temperatures as on trajectory C. This, 
of course, requires some asymmetry in the system, such 
as different heat capacities or conductances for the two 
reservoirs. 

For very long process times the optimal trajectories 
approach the curves X and Y which intersect at the 
“stationary” point S, where 0 = B = 0. (Note that 0 = B 
= 0 do not imply T1 = T2 = 0, so S is not in general a point 
of static equilibrium; it is only a kind of steady state.) A 
point on a typical slow trajectory thus moves along next 
to X and slows down as it approaches S (from left or right 
depending on the initial condition), spends most of the 
available time in the neighborhood of S, and just before 
time is up, moves up to the final-state curve close to Y. 
The curves X and Y are called separatrixes because they 
divide the B-0 plane into the four regions I-IV with dif- 
ferent types of trajectories. Thus, the final-state points 
bf and cf describe very similar conditions, whereas the 
initial states bo and co are quite different. Obviously, no 
optimal trajectory crosses a separatrix because that would 
require infinite time. There is a symmetry between the 
regions I and 111, and similarly between I1 and IV, such 
that any optimal trajectory in I by interchange of all pa- 
rameters connected with the two engines and reservoirs 
is transformed into an optimal trajectory in I11 and vice 
versa. (The separatrixes depend on the final state, so the 
stationary point S may be situated above or below the 
final-state curve.) Thus, it is only necessary to investigate 
trajectories in two of these regions; we chose I and 11. The 
time direction of the optimal trajectories is as indicated 
by the arrows in Figure 4. 

When 8 is less than some value 02, engine 2 reverses and 
acts as a heat pump. This is observed in extreme cases 
when Tl >> T2 so that it is advantageous to expend some 
work in the initial phase to keep down the temperature 
difference TI  - T,, and thereby minimize the losses in K, 
while reaping more work later from combined higher 
temperature reservoirs. An analogous reversal in engine 
1 occurs when 0 > O1. 

The somewhat idealized curves of Figure 4 have been 
used to clarify the variations among optimal trajectories. 
Numerically calculated optimal trajectories with realistic 
system parameters (an example is shown in Figure 5 )  have 
all these interesting effects squeezed into a very small 
region around the stationary point. In addition, the sep- 
aratrixes depend on the final state, so it is somewhat in- 
correct to show all the trajectories A, A’, B, C in the same 
figure. However, for our qualitative discussion it has 
sufficed. In order to show its time evolution, a heavy line 
indicates that part of the optimal trajectory in Figure 5 
where 90% of the total duration is spent, and 50% is spent 
in the extra-heavy-line segment. 

Probably the most interesting aspect of the finite-time 
availability A(7) is how it depends on the process time 7 

for a fixed initial state. The results of two such calculations 
are shown in Figure 6; the left scale is for A,  and the right 
scale for the effectiveness = W/AA, i.e., the maximal 
captured work divided by the corresponding drop in or- 

B 

Flgurs 4. Idealized optimal time evolution paths for the model system. 
All final states lie on the heavy curve marked F, and the Infinite-time 
paths are labeled X and Y. B and 6 are defined in eq 55 and 56, 
respectively. Time direction in the four regions I - I V  is shown by the 
arrows. 

of the two reservoirs. Then an optimal trajectory in the 
(B,O) plane is obtained by using the constancy of 

where 

The time evolution is obtained from either 
K i  = KihKil/(Kih + KiJ (58) 

or 

K( + :)(I - B)  (59b) 

A few idealized optimal trajectories are shown in Figure 
4. Equation 53 applied to eq 27 in the final situation 
yields 

Bf = (C,/C,) t a n 2  Of (60) 
so that all final states must be on the heavy curve in Figure 
4. This provides the last bit of information necessary to 
fully determine a trajectory. A similar “initial-state curve” 
unfortunately does not exist, which means that the optimal 
solution-as is usually the case-must be calculated by 
starting from the final state. The final state may be chosen 
arbitrarily, but only one such choice yields precisely the 
trajectory that hits the desired initial state a t  a time T 
earlier. Consequently, the problem has to be solved by 
iteration, e.g., as an extrapolation problem (see Appendix 
for the procedure used). 

Let us now look at  some features of the optimal tra- 
jectories. Trajectory A in Figure 4 starts with a given B 
= TZi/Tli at point a,, and evolves to af in time 7. If, starting 
from the same initial B, the process were allowed a time 
d > 7, it would begin with a different 0 and follow another 
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neighborhood of ’I2. The rationale of this is that, with 
work as our objective function, the optimization first at- 
tempts to increase W and later e. 

These results are distinctly different from those obtained 
by reversible thermodynamics: (1) A(T)  << A,,,, except for 
very long times T ;  ( 2 )  even A(..) < A,,,, unless Tli = Tzi; 
(3 )  in most situations, when all five conductances are of 
the same order of magnitude, roughly only half of the drop 
in availability of the two reservoirs is captured as work, 
compared to t = 1 for reversible operation (cf. the linear 
model of section V, eq 33). This effectiveness of one-half 
has actually been proposed as a general conjecture for all 
power-producing systems.lg In the general case of many 
interacting systems (see Figure 2 )  the finite-time effects 
would be even greater. 

The calculations reported here are for continuous-flow 
engines, using the instantaneous constraint equation 17b. 
A few exploratory calculations were also carried out with 
the cycle-averaged constraint 17a. Differences were very 
small, the most significant being that the lower internal 
temperatures Tal remained constant within each cycle. 

C. Other Interpretations. Apart from the general 
definition of finite-time availability, eq 5, the entire 
treatment so far has been in terms of heat flows and heat 
engines. However, the concepts and the model are not 
limited to mechanical systems. Rather, they can be given 
a number of other interpretations simply by renaming the 
variables or by modifying the equations of motion or 
constraint equations slightly. The general conclusions 
remain unchanged. For example, to treat a hydraulic 
system, the resistors 1/Kjh  and 1 / ~ ~ ~  can be directly 
translated into viscosity of the fluid in the pipes, K ~ ,  are 
leaks between reservoirs, and the reservoirs are compressed 
fluid reservoirs. Turbine configurations come in this 
category too. In a realistic description there must, of 
course, be a generator system to charge the reservoirs in 
addition to the engine system. This can be viewed simply 
as the model operated in reverse with the initial temper- 
atures/pressures below the final ones. For lightly damped 
systems this “mirror image” will behave similarly to its 
engine counterpart. However, strongly damped systems 
show no resemblance between forward and backward op- 
timal operation. An analogous behavior was observed for 
an engine with thermal resistance, friction, and heat leak5 
where a bifurcation separated the engine performance into 
a single-optimum thermally dominated region and a dou- 
ble-optimum frictionally dominated region, whereas heat 
pump operation was thermallike at all rates. 

Furthermore, the model of Figure 3 may be translated 
into molecular physics to describe the interaction of two 
degrees of freedom of a molecule. We may take reservoir 
1 to be vibrational excitation and reservoir 2 rotational 
excitation, for example. In the two-reservoir model each 
degree of freedom must either be thermally distributed, 
i.e., be described by an internal temperature, Tvlb or Trot, 
or consist of only two energy levels, whereas the general 
model of Figure 2 can handle any distribution. Then en- 
ergy flow through K becomes internal relaxation, the two 
engines may be lasers with light carrying away the work, 
the surrounding resistors represent the molecular rate 
constants, and finally To is the temperature of the sur- 
rounding translational heat bath. This model is akin to 
the lasing system of ref 9 but, as a two-reservoir model, 
does not contain sufficient detail to reproduce the sur- 
prising conclusion obtained there that increasing a par- 
ticular rate of relaxation increases work output. Actually 
adding such connections-K,, in the notation of Figure 
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Ftgwe 5. Calculated optimal time evolution path for the model system 
defined by C , / C 2  = 3, T o  = 1, K = 1, and K~ = K,, = 10. The initial 
state is T,, = 8.8, T, = 4.0, and the duration 7 = 2; 90% of this time 
is spent along the heavy segment and 50% along the extra-heavy 
segment. F is the curve of final states, f the present final state, i the 
initial state, S the “stationary” point, and B the intersection of the 
separatrix Y and F; Le., region I1 is to the left and region I to the right. 
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Flgure 6. Finite-time availability, A (left scale), and effectiveness, e ,  
in producing this work (right scale) for the model system as a function 
of process duration, 7. The initial state is T, ,  = 10, T,, = 5, and the 
system is defined by C , / C p  = 3, T o  = 1, K = 1, and K , ~  = K,, = 1 
(-) or 10 (---). The units of A and T are arbitrary. 

dinary availability. The upper line labeled A,, is the total 
availability of the initial state and hence the maximum 
work that could be extracted reversibly with the environ- 
ment at T,,. This is not the upper limit to A,  A(..), because 
the finite conductance K always permits the two reservoirs 
to come to thermal equilibrium, whether or not the engines 
run infinitely slowly. The true limit, A,, is only the same 
as A,,, when the initial state Tli = T2i, that is, when the 
initial constrained state of the system is in internal 
equilibrium. If that internal equilibrium condition is not 
met, the infinite-time limit of finite-time thermodynamics 
does not correspond to the limit of reversible thermody- 
namics, by which we mean that no entropy is produced in 
any part of the system. The two pairs of curves are for 
all conductances equal ( K  = Klh = ~~1 = K2h = ~~1 = 1) (-), 
a moderately strongly damped system, and for the engine 
conductances 10 times as large as the relaxation conductor 

system. As is evident from Figure 6, A 0: T for short times 
and only slowly approaches the upper limit A,. Similarly 
the approach of t to 1 is also slow, even more so than A ,  
but it starts out with a nonzero value, generally in the 

( K  = 1, Klh = K11 = K2h = Kz1 = 10) (---), a weakly damped 

(19) H. T. Odum and R. C. Pinkerton, Am. Sci.. 43, 331 (1955) 
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2-must be taken as a change in the generic model as 
defined in eq 5 and can therefore indeed increase work 
output. 

As a last example consider the two reservoirs to contain 
chemical substances which can react, e.g., according to 

Hz + ' / 2 0 2  + HzO (61) 

The substances need not be spatially separated. Then the 
temperatures of Figure 3 translate into chemical potentials 
or, for simplicity, into concentrations c,. Each engine is 
a chemical half-reaction 

H2 2H+ + 2e- (6%) 

(62b) 

which operates reversibly. If the process is heterogeneous 
as in a typical fuel cell, the resistors represent diffusion 
to and from the catalytic surfaces according to Fick's law 

j ,  = DJc,' - c,) (63) 
for each substance CY, where D, is the diffusion constant 
and c,' and c, are the concentrations on the catalytic 
surface and in the reaction mixture, respectively. In the 
example above cH+ and cOH- are considered to be their 
equilibrium values represented by the environment. Note 
that eq 63 is completely analogous to the thermal equation 
40. The relaxation resistor K represents uncatalyzed (un- 
captured) reaction between the reactants. Looked at this 
way our model describes how to obtain the most energy 
from, e.g., a fuel cell in time 7. If energy is no objective, 
but one wants a reaction of the type 

A + B = C + D  (64) 
consider it implemented as two pairs of half-reactions back 

1/20z + 2e- + 02- 
(or f/z02 + 2e-+ H 2 0  20H7 

to back such that the work output of one drives the other. 
The description using half-reactions is purely to emphasize 
the analogy with the thermal treatment in the previous 
sections. Finite-time availability is just as important in 
homogeneous reactions, and we believe that the notion of 
nonvanishing rate will be very useful for designing and 
describing chemical reactions in general. 
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Appendix 
Extrapolation Procedure to Initial State. As mentioned 

in section VIB, the optimal control problem has to be 
solved backward from a guessed final state even though 
it is the initial state which is specified. In order to find 
that final-state Tf whose optimal trajectory was less than 
a prescribed distance from the desired initial-state Ti a 
time 7 earlier, a simple linear two-dimensional extrapola- 
tion procedure was set up. 

First a nonoptimal trajectory was integrated from Ti for 
time T to obtain an estimate of Tf which, along with two 
other points in the vicinity of this estimate, formed starting 
points from which optimal trajectories were calculated 
backward. Two-dimensional extrapolation in Ti from these 
initial states with replacement of the trajectory which was 
furthest away from Ti was repeated until the error was less 
than a prescribed value. 

Vibrational Predissociation of H2-, D2-, and HD-Ar van der Waals Molecules 
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Accurate close-coupling calculations are peformed for vibrationally predissociating states of H2-Ar, D2-Ar, and 
HD-Ar, using the best potential energy surface available. All the states examined have very small widths (I? 
<< lo4 cm-', corresponding to lifetimes >20 ps). There is a pronounced tendency for predissociation to yield 
rotationally hot diatomic molecules, even for the H2-Ar and D2-Ar complexes where the present potential has 
no anisotropic terms of higher order than P2(cos 6). This near-resonant effect is particularly strong for HD-Ar, 
where all Legendre terms are present in the potential; in this case, about 50% of the HD products are formed 
in the highest two accessible rotational levels. There is some evidence for a rotational rainbow effect in the 
product rotational state distributions. Perturbation theory calculations which attempt to reproduce the accurate 
calculations are also reported. They successfully model the qualitative features of the close-coupling results, 
but are not quantitatively accurate even for these weakly coupled systems. It appears that this inadequacy 
is due to the need for a very accurate representation of the bound state wave function and to the neglect of 
important couplings between the different open channels. This conclusion is supported by the observation 
that very large basis sets are required to obtain convergence of the close-coupling calculations. 

1. Introduction excited often have enough energy to predissociate, and may 
do SO by several mechanisms. Of particular interest here 
is vibrational predissociation (VP), where internal vibra- 
tional energy of one of the monomers is converted into 
rotational and/or translational energy of the fragments. 

van der molecules whose monomers are internally 
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