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I. INTRODUCTION

“Staging free energy” is a term introduced to describe the necessary investment
of free energy into a thermodynamic system to allow certain near equilibrium
processes to proceed in a desired direction and in finite time (Chapter 4). Such
processes may seem—if viewed detached from their surroundings—to be truly
reversible. However, if one views them together with the changes occurring in their
environment, it becomes clear that they are not completely reversible. This is the
assumption formalized in Chapter 4 which asserts that truly reversible processes
proceeding in finite time do not exist.

Thus it was suggested in Chapter 4 to dub such processes invertible instead.
Nonetheless, the seemingly reversible processes proceeding in finite time point
to the problem that to localize the necessary dissipation is a nontrivial problem,
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especially in biological systems, where many processes occur simultaneously on
a molecular level.

While it is certainly not easy to find ways to quantify the dissipation occurring in
conjunction with those invertible processes, there are already a number of methods
established successfully in a more macroscopic setting. These methods evolved in
the field of finite-time thermodynamics, which was started in 1975 in Steve Berry’s
group [1]. The field started with investigations of thermodynamic processes that
proceed in finite time. For such processes, losses make the associated efficiencies
lower than expected from reversible limits. The field of finite-time thermodynamics
considers the following four questions:

e Does dissipation necessarily occur if a thermodynamic process takes place
in finite time?

e Ifso, what is the dissipation for a given process taking place in a given time?

® What is the minimum dissipation necessary for a given net change and a
given time?

® What are the processes that achieve that minimal dissipation?

The first question is answered by the finite-time impossibility principle, which can
be put in the form of a non-existence theorem of perpetual motion machines of
the third kind (Chapter 4). A number of different approaches have been developed
to answer the second question [2—4]. The last two questions are typically treated
by optimization and control methods [5, 6]. Such methods were originally used
on simple heat engines [7-10] and later on a large variety of systems where the
following references are only a selection [11-22]. A typical problem for process
optimization is, for instance, the piston path in a heat engine [14,23,24]. While
we here concentrate on the dissipation of free energy, in other circumstances
the analysis of finite-time processes puts its focus on other measures like the
maximization of power [25,26]. In this note, we want to present four concepts
which highlight the basic features of finite-time thermodynamics and shed some
light on the staging free energy problem. These concepts are also promising
candidates for further development and application in biological systems.

II. TRICYCLES

Conceptually the interpretation of the fluxes entering and leaving a thermody-
namic system is nicely illustrated by the so-called tricycle formalism [27]. This
formalism splits the fluxes into a part connected to the reversible operation of the
process under investigation and a fully dissipative part. A further separation of
the fully dissipative part into the unavoidable irreversibilities associated with the
type of process chosen and the excess irreversibilities associated with suboptimal
operation was later introduced [28].
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Figure 1. Tricycle decomposition of a thermal process into a reversible component and a
totally irreversible component. The quantities ¢, q,, and g3 are the heat flows into the reservoirs with
temperatures 7, T, and T3, and s is the entropy production. Adapted from [27].

The tricycle formalism is based on conservation equations for the process in
question. A heat exchange system is represented pictorially in Figure 1 by a
triangle with heat flow rates gy, ¢,, and g5 into reservoirs with temperatures 77,
T,, and T;. A conventional heat engine or refrigerator is a special case with one of
the temperatures, for example T, infinite, such that no entropy flow is associated
with this energy flow, and ¢; is identifiable as power. Any such process can then
be divided into a reversible part with zero rate of entropy production, s = 0, and a
totally irreversible component.

The idea behind the tricycle is that it represents either a cyclic or a continuously
operating energy conversion system. Energy conservation in a thermal system
requires

9 +9+q3=0. )]

For a cyclically operating system, the gs are cycle averages. The corresponding
rate of entropy production s is given by

491 492 | 93
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It is now possible to decompose the three flows gy, g1, g3 into a triple g, gy, g, for
which the total entropy flow s = 0, the reversible part, and the remainder, ¢y, ge,
q¢,» which carries all the irreversibility. This decomposition is not unique unless a
further restriction is imposed. We choose g, = 0.

Nothing new, of course, is learned from such a decomposition per se, but by
putting in specific loss mechanisms like heat resistance, friction, and heat leak,
the rate dependencies of such irreversibilities can be deduced. It may seem that
these three loss mechanisms should be treated individually, but they are in fact
interdependent and can be solved simultaneously. The decomposition provides the
advantage of giving the costs or losses for suboptimal operation.
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The tricycle formalism (see also References 29 and 30) with the reversible con-
tributions separated off enables one to focus on the losses and calculate which are
the most serious ones. Certain processes, like ordinary distillation, have unavoid-
able irreversibilities built into them. It will then be convenient to divide the loss-
tricycle, g4, g, g5, further into one for the unavoidable losses and one for the
excess losses. Comparing different (e.g. separation) processes, the latter tells how
much room there is for improvement of this particular process, and the former how
much energy can be saved by developing an entirely new, more nearly reversible
process.

Such a decomposition would be very interesting for processes of biochemical
interest. How much of the staging investment and dissipation are unavoidable and
thereby intrinsic to the mechanism and how much to suboptimal operation is of
biological interest. We would expect that optimality regarding the operation would
be selected for on a much shorter time scale than improvements in the unavoidable
costs.

IIIl. THERMODYNAMIC LENGTH

Another very interesting concept to quantify and bound the dissipation in a ther-
modynamic process is ‘thermodynamic length.” This length is calculated with a
metric in the space of thermodynamic equilibrium states. The metric matrix is the
matrix of second derivatives Uj; = = 0*U/dX; 0X; of the energy with respect to the
extensive variables X; and X; (entropy, vqume mole number, etc.). The Uj; play
an important role in the calculatlon of the change in the internal energy of a system
if its extensive variables are varied by small amounts:

-Ut= 2 (X —Xx2)( X—Xf)_ 3)

Here U — U°® represents the availability of a system that relaxes from its state Xto
X¢, its state of equilibrium with its environment.

The first and second law of thermodynamics endow the U;; with the positivity
needed for a semi-metric on the surface of thermodynamic equilibrium states.
In fact Uj; has the positivity to be a metric everywhere except along changes in
the amounts of coexisting equilibrium subsystems [31]. For example, if we heat
a coexisting mixture of (say) ice and water, the system moves along a degree
of freedom with U = Uy + AH,;-(amount of ice melted). Along this degree of
freedom, U is linear and thus its second derivative vanishes along such direc-
tions [3, 32]. Such modes also play an important role in distillation processes
[33-35].
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Based on this metric, one can define a length L for a path P between two
thermodynamic equilibrium states of a system

Y

Note that here L is independent of the way in which the path is parametrized.

Salamon and Berry [3] named this length ‘thermodynamic length’ and con-
structed a bound for the entropy production by establishing a connection between
the thermodynamic length of a process and the availability dissipated in that pro-
cess. In particular, they considered an endoreversible system which exchanges
fluxes dX; of extensive variables with an environment. Each of those fluxes flows
over a ‘potential’ difference, that is, a difference between the respective conjugate
variable Y} of the system and Y;’ of the environment.

Then one can show that for processes which proceed endoreversibly along
equilibrium states, the availability loss

_AAU=/Z(Y1S_Yk)ka ®)
x

is bounded by
A" 3 EAE (6)
T

where L is the length of the path from the initial state i to the final state f, ©
is the duration of the process and e is a mean relaxation time for the system.

The singularity of this metric along coexisting equilibria results in L = 0 for
movement along such degrees of freedom. As commented on in Chapter 4, a
number of such degrees of freedom are used in biological systems. These degrees
of freedom enable the associated processes to proceed forward or backward with
very small input of free energy and can achieve near perpetual motion machine
performance.

As concerns the bound (6), a recent generalization [36] has pushed through a
derivation based on any control variables. The prospect of basing optimal con-
trol of molecular manipulation protocols using the associated geometry appears
promising.

IV. WORK DEFICIENCY

As pointed out above, the bound (6) obtained for the loss of availability [37] rests
on the assumption that all the dissipated energy f Zk(Y,f — Y})dX;, ends up at the
temperature of the environment without doing any additional work enroute. This is
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not the only possibility. If the process takes place at a temperature different from
the environment, this dissipated work carries with it some residual availability
equalling what remains to be extracted by a (reversible!) heat engine that carries
this heat to the environment temperature!. It turns out that for such systems, the
connection to thermodynamic length is not via the loss of availability but via a
new quantity called “work deficiency”.
LetdX, be the flux of extensities X from subsystemmton andletY, and Y

be the vectors of the corresponding intensities of subsystems m and n, re-s_p"éctiveT;f
Then the work deficiency dW9 is defined as

a_ 1
W' = 2 Y (¥, - ¥, )X, @

mn

It equals the work which one could have extracted from the process performed
reversibly. For further work see References 38—41.

A thorough investigation shows that the bound provided by the thermodynamic
length is in general one for the work deficiency

wd > ng. ®)

The loss of availability is on the other hand always connected to the entropy
production

—AAY = T,AS". 9)

This entropy production is in turn bounded by a similar length-squared inequal-
ity, but using another length defined by the second derivative matrix of the
entropy [3].

The generalization of the original Berry/Salamon result [3] presented in
Inequality (8) highlights an important point in connection with the Holliday junc-
tion paradox: it is crucial to analyze the pathways along which the free energy in
a biological system is degraded. Even though this free energy ends finally up as
heat in the environment, the dissipation can take place via a cascade of processes,
which can store and later make use of the remnant availability. In particular, avail-
ability freed by a conformational change in a molecule might—before becoming
thermalized to vibrational modes—power another reaction. This is exactly what
needs to be carefully accounted for to find accurate values of the staging free
energy.

This issue of whether or not to count the residual availability in a heat stream was also at the core
of the controversy regarding the equivalence of minimum entropy production and maximum power as
criteria of merit for finite time processes [13,25].
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V. ACCOUNTING FOR STAGING FREE ENERGY WITH
NETWORK THERMODYNAMICS

As already pointed out in the Introduction, processes without dissipation do not
occur in nature if performed in finite time. The real goal then for such processes is
to account for their dissipation, that is, the entropy production going on. This—in
general—is a nearly impossible task, especially if the process in question is
related to many different constituents of the overall system. For instance, in
biological systems, it is unclear where one can sensibly draw a border for what
one considers “the system”.

However, there are thermodynamic tools available that guide in such situa-
tions. The emergence of network approaches like endoreversible thermodynamics
[17,42] provides the means to organize the analysis of complex thermodynamic
processes such that the ongoing loss in staging free energy can be attributed to the
different dissipation mechanisms at work. This analysis allows us to localize and
quantify this dissipation. This approach has proven very helpful in a variety of
processes, including those occurring in heat engines operating in finite time [5,6].
Even for complex systems, it was shown that a coarse description gives quite good
results [43].

To achieve this, endoreversible thermodynamics makes one particular assump-
tion, namely that all dissipation occurs in the transport between reversible sub-
systems. This might seem to be a strong requirement, however, in many cases,
the description can be quite coarse; one can get a long way by catching the major
dissipative processes.

The transport between the subsystems always consists of at least two interde-
pendent fluxes: energy and another thermodynamic extensity, for instance entropy
(for heat transport), a particle flux or a charge flux. The accounting then proceeds
via the corresponding intensive thermodynamic quantities. In the cases above,
these quantities are the temperature, the chemical potential or the electric potential.

It is important to note that these intensive thermodynamic quantities will in
general depend on all the extensities present in the system, that is, the change in
the charge content or the volume will have impact not only on the electric potential
or the pressure, but also on the chemical potential or the temperature of the system.
With respect to the initial Holiday junction paradox, this means that one has to
perform a very subtle analysis of these cross dependencies.

In Figure 2, we show how such a thermodynamic network might look for
the protein folding case. The two configurations of the protein—folded and
unfolded—constitute two subsystems of a wider network which encompasses
also a reservoir for what we here call control reagent A, a chemical whose con-
centration controls the configuration of the protein. The transport between the
two configurations (i.e. flux between the two compartments) is controlled via the
chemical potential for control reagent A. The flux between any two compart-
ments, however, will be dissipative, as a flux only occurs for a finite difference in
the chemical potential of the transported quantity.
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Figure 2.  The figure shows a part of a thermodynamic network of endoreversible subsystems.
erre, two of the subsystems (1 and 2) represent the folded and unfolded states of a protein. Subsystem
3 is areservoir for a control reagent A. When the concentration of A in the first two subsystems changes
due to an influx (black arrows) from reservoir 3, this change influences the chemical potentials for the

folded and unfolded protein, thereby creating a flux (thick black arrow) of the protein between the
folded and the unfolded states,
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Figure 3. The figure shows the same three subsystems of a thermodynamic network as Figure 2.
Now a fourth subsystem, a heat reservoir, is added which takes up the free energy dissipated in the
processes described in Figure 2. The dissipated free energy flows are depicted by dashed arrows.
Note that the irreversibilities in this endoreversible approach only occur in conjunction with the fluxes
between the reversible subsystems.
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The dissipated energy shows up as heat input into the subsystems of the network;
in Figure 3, for display reasons, they all end up in one heat reservoir. In reality
the heat (i.e. the dissipated energy along with the produced entropy) is of course
distributed into the different subsystems present.

Beyond the descriptive power of the endoreversible approach it opens new
questions: Can we—from the network structure (and some transport properties)—
obtain bounds on the entropy production?

This could also shed light on the biological systems where apparently reversible
processes might not take all the changes in the system into account, which make
the process feasible. A network approach might then show, where the staging
entropy production did occur.

VI. CONCLUSION

In this chapter, we presented four concepts: the tricycle, thermodynamic length,
work deficiency, and network thermodynamics. They reflect in part the develop-
ment which was started by Steve Berry and coworkers in a field called finite-time
thermodynamics. These concepts show the evolution of conceptual approaches
as well as the arrival of applicable thermodynamic tools. These methods devel-
oped in a variety of directions. While tricycles by definition have systems with
three heat reservoirs in mind, finite-time thermodynamics methods have also
been extended to systems with more heat reservoirs [44]. Beyond the realm of
macroscopic systems, these concepts have been extended during the past years
also to the realm of quantum systems [45,46]. While network thermodynamics
has proven its usefulness in macroscopic applications like the analysis of internal
combustion engines, the complexity of biological systems remains a challenge.
But again, a basic goal of finite-time thermodynamics might help: address the
major dissipative processes and determine their entropy production. In that sense,
the challenge for the Holiday junction paradox is to localize where the staging
free energy is needed and what its dissipative pathways are (Chapter 4).
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