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Abstract. The effects of fluctuations in an S = 1 Heisenberg system with strong easy-planar 
crystal-field anisotropy are considered in the paramagnetic phase. The Green functions are 
derived from their equations of motion. The decoupling procedure properly accounts for 
single-site correlation. The spin-correlation functions are determined self-consistently by 
equations which reduce to the ones derived in the correlated-effective-field approximation 
of M E Lines in the limits of high temperatures or small anisotropy. The linewidths deduced 
for the magnetic excitations compare with the results of Bak, determined by a diagrammatic 
expansion of the Green functions to first order in 1/Z. Except for the introduction of the 
finite lifetime of the excitations. the application of the theory to the case of Pr leads to only 
minor adjustment of the 'effective' molecular-field properties. 

1. Introduction 

The magnetic properties of DHCP (double hexagonal close-packed) Pr have been studied 
in great detail (Houmann eta1 1979, Jensen 1979). The magnetic behaviour is dominated 
by the ions on the hexagonal sites in the Pr lattice. The ground state of these ions is the 
singlet 10) state ( z  is along the c axis) and the lowest excited state is the 1 r 1) doublet. 
This arrangement of the crystal-field levels implies that the low-temperature properties 
of the hexagonal ions correspond to the spin-1 case, even though J = 4 for the tripositive 
Pr ions. 

Pr is a singlet-ground-state system for which the two-ion coupling is just below the 
critical value. In fact, an antiferromagnetic ordering takes place in the millikelvin range, 
where the nuclear spins become important (McEwen and Stirling 1981) or between 5- 
15 K when the crystal is subjected to a moderate uniaxial stress (McEwen er a1 1978). 
Later and more extensive measurements of TN as a function of the uniaxial stress (K A 
McEwen, private communication) suggest that the exchange coupling is about 0.96 
times the critical value, which is closer to 1 than the previous estimate of 0.92 (see 
Houmann et a1 1979). Pr is thus very close to ordering magnetically in its electronic 
regime above 1 K,  where the nuclear spins can be neglected. This suggests that spin 
correlation should be included in a description of the low-temperature properties of Pr. 
This point of view is substantiated by the observation of a central peak in the neutron- 
scattering response below 10 K and close to the wavevector characterising the ordered 
phase (Houmann et a1 1977, McEwen et a1 1978, McEwen and Stirling 1981). 

Motivated by these considerations we analyse in 8 2  the spin-fluctuations in an 
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S = 1 Heisenberg paramagnet in the presence of easy-planar single-ion anisotropy. The 
opposite case of easy-axis anisotropy has been treated by Yang and Wang (1975). Bak 
(1975a, b) considered the effect of spin fluctuations on the damping of the magnetic 
excitons in the easy-planar case. 

In 0 3 the theory is applied to the case of Pr. The self-consistent correlation effects 
are determined numerically, and comparisons with experiments are given. Finally, we 
discuss in 0 4 the success and shortcomings of the present theory in its application to Pr. 

2. Spin fluctuations in an S = 1 system 

The Hamiltonian of the system is taken as 

%! = Ao (Sf)* - 12 B(ij) SI . SI 
1.1 

with S = 1 and A0 positive, and it is assumed to be in the paramagnetic state. First we 
introduce the standard basis operators (Haley and Erdos 1972, see also Yang and Wang 
1975) for the ith ion: 

a;” = (lP)(4),, p ,  2, = 0, 1 ,2  

taking the single-spin (molecular-field) eigenstates as the basis: 11) = 2-’ ( I  + 1) + 
1-1)) and 12) = ( -2)-”2 ( 1  + 1) - I - 1)). In terms of these operators the Hamiltonian can 
be written: 

at = A O  (ail + ~ $ 2 )  - 12 [$l(ij) (ail + aio) (a61 + ~110) 
[ I  

+ %2(ij) ( 4 2  + 40) ( 4 2  + d o )  - B3(ij) ( 4 2  - ail) ( 4 2  - ah>]  
with 

= l(0l S” 11)12 %(U),  

M i j )  = KO1 Sy  P)12 B(ij), 

93(4 = l(1I S’ P)I2 m. 
and 

If S = 1, all the squared matrix elements are equal to 1, whereas in Pr(S = 4) 

Bl(ij) = $&(ij) = 10 &(ij) = 10 B(ij). 

In order to be able to generalise the results to the case of Pr we shall differentiate 
between the three Cartesian components. Further, we introduce the simplification that 
93(ij) = 0, and discuss this term separately later. 

The retarded double-time Green functions are defined (Zubarev 1960) in the form 
of a 2 x 2 matrix: 

Introducing the Fourier transforms of G(ij, t )  with respect to the space and the time 
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variables 

then the generalised susceptibility x1(q, U) (the x x  component in units of 
S ( S  + 1) ( g p d 2 )  is 

The equations of motion of the Green functions are derived using the commutator 
relation: 

[a;,, d , ~ ]  = ~,(&t a t v  - 6," ah J .  (4) 

Introducing the double-bracket notation for the higher-order Green functions we obtain 
((U = 1 or 2): 

where all and a$ mean aIlo and n b  respectively, and nol no - n l  is the thermal expec- 
tation value (a$) -( ail). In the random-phase approximation (RPA) the higher-order 
Green functions (@&zL ; a; )),+!are replaced by 

In this approximation the terms in the square bracket of (5) are neglected and the result 
is 

D,  is the excitation energy at wavevector q:  

D i  = A' - 2A& 

where in the RPA: 

The following matrix of equal-time correlation functions: 

should according to the fluctuation-dissipation theorem be related to G(q,  U): 
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where /3 = l / k ~ T ,  or 

where 

qq = coth(gDd2). (9b) 

A:' - Ai2 = no1 (10) 

These correlation functions should satisfy a number of relations, for instance 

according to the equations (4) and (7). By definition (equation (7)) 

and 

which imply the following relations 

1 p - 5 ,  no+n1 
774 =- - -  

N q D, no1 

and 
-x4qq= 1 0. 
N 4 Dq 

In RPA (10) is fulfilled; however, (12) is in general vioiated to second order in Bil(q)/A0 
(using the relation (UN) Z4 $l(q) = 0). This means that different combinations of 
correlation functions lead to different results for the single-ion averages, and (11) is only 
useable to zero order in $L(q)/Ao, in which order it reduces to the molecular-field 
expression. This inconsistency of the RPA method is discussed further by Yang and Wang 
(1975). In order to eliminate this arbitrariness we have to include effects due to the 
higher-order Green functions in ( 5 ) .  

We shall illustrate the method by deriving the equation of motion for the Green 
function: 

Fldq, k, w) = 
1 2 exp( -iq R r )  exp( -ik Rij) 

'11 

x (((1 - 6 i j ) ( U & J  - U'll - n0l)aiol; aid), (13) 

and Fzdq, k, w) where 40 replaces 41. First, we consider the commutator: 

[(l - dij)(a&J - ail - nol)&, %e] = Ao(1 - dij)(a&- ail - nol)a61 

- 2 (1 - di j )  [ ~ i ~ ~ j ' )  (U& - ail  - nol) ( a b  - ah) (a& + a&) 

+ ~ $ ~ ( i j ' )  (abl - a$) (a61 + ai;o)d~l - Mjj')(& - ail  - nol)ail(a& + ~ $ 0 )  

+ 92(ij') (ah  - d o )  (a62 + ai;o)a61] 

1' 



Spin fluctuations in Pr 2407 

= Ao(1 - 6,)(& - ail - nol)& 

- E BilCii')nol(l - aijn)(ab - ail - nol)(aL + .io) 
1' 

- Bl(ij) [(no + nl - nil)& - (no + nl + n&)aio] 

- 2 291(ij') [ ( a b A -  a\oa61)(1 - 6,) (a61 + aio) 

+ (dlaS1 + d;osol>(1 - djj*)(abl - aio)]. 

i' 

(14) 

When j '  is equal to i o r j  in the exact commutator the triple-product operators truncate 
into two operators. For other values of j' the triple-products are reduced by an RPA (or 
Hartree-Fock) decoupling. Further, we neglect terms like 

or 
2l(ii) (&I - 41 - nodab1 

82(ij)ab241 

which are off-diagonal in Fourier space, and therefore are higher-order corrections. 
With the approximate commutator relation, the equation of motion becomes: 

(A0 - 0) F d q ,  k, w) - no1 9dk)  V'ldq, k, 0) + F2dq, k, 4 1 
= KXq,  k, w) + K%q, k, 4 (15) 

where 

KXq, k, U) = -[Ai2 - (Ai' - no)] + {2%(q)[Ai2 - (Ah1 - no)] - nil 6Ei(k)) 

Kba(q, k, U) = (Ai2 + A i '  - no)(6,,1 - S,2) + $l(k)[no + nl + 2(AL2 + Ai'-  no)] 

x [Gdq, 4 - Gzdq, 41 (16b) 

and equivalently with lcvand 2ainterchanged and A0 - w replaced by A. + w. The first 
term in the square bracket of ( 5 )  is then found to be: 

N k  2 9l(k) [Fldq, k, 4 + W q ,  k, 4 1  

Following the same procedure we get for the second term in the square bracket of ( 5 ) :  
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Introducing these results into (5) we find that G(q,  w)  can be expressed in the same way 
as the RPA result, (6), except that (6c) is replaced by: 

A = A O  + la2 - ( n l h )  (b2(w) - a2) 

and 

u2 and b2(w) are defined equivalently, except that 9 1 ( k )  is replaced by $%(k) in (20) and 
(21). In order to obtain this expression for G(q,  w )  we have occasionally neglected terms 
of second order in a, and bdw) .  

It is straightforward to see that the zz  term, 93(ij) in (l), does not contribute to the 
imaginary part of xl(q, w). The quantities al and a2 are real, and only bl(w) and b2(w) 
give rise to a finite lifetime of the elementary excitation at w = D,. The imaginary part 
is 

where 

n1 A2 + w2 
no1 2A 

T(o) =- - Imbl  + y 7 1 m b 2  A2 2Ano1 - w2 ("' nil 

N l ( o )  and N2(w) are the densities of states of the x -  and y-polarised excitations respec- 
tively. This result can be compared with the one deduced by Bak (1975a, b). There are 
higher-order differences, like (A2 - d) T(w) in the denominator of (22) instead of 
(A2 -D:)T(w), and Bak shows that the susceptibility appearing in (21) should have the 
self-consistently calculated value instead of the RPA result which we use in (23). There 
is, however, one fundamental difference between our result and that deduced by Bak. 
He argues that the yy coupling (92(ij)) does not contribute to T(w) in contrast to our 
result. In practice the difference is small as n1 is only about 0.25-0.3 times n3 in the 
temperature range of interest in Pr. If 92(ij) is neglected the model is similar to the 
S = f Ising model in a transverse field, which has been analysed thoroughly by Stinch- 
combe (1973). 

With respect to the real parts of the corrections to A and $, we first observe that the 
sum rule (12) is now fulfilled in the low-temperature range where n1 and n3 = 5nl are 
much less than 1.  It is difficult to establish precisely the area within which the decoupling 
procedure is valid. However, there are arguments which indicate that Re(b,(w) - a,) 
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should be considered as spurious ‘higher-order’ terms in (19). If 9 l ( k )  in (21) is replaced 
by (l/nol) g k ,  then it is straightforward to show that 

1 
- 2 Re[bl(o = Dq) - 
N q  

0 

and equivalently for Re[b2(w = Dq) - u2]. Hence these terms are of the order 
u$LI(q)/A, in which order corrections are expected, and we shall therefore neglect them. 
In order to be consistent we also neglect th: finite-lifetime modifications due to Im b,(w) 
when performing the integration (8). In other words, the low-temperature expressions 
for the correlation functions and the excitation energies are taken to be valid at all 
temperatures. Within this presupposition the sum rule (12) is identically fulfilled at all 
temperatures, and the equation (11) may be safely applied. 

In the limit POq-, 0, that is at high temperatures and/or small values of A0 then 
qq = 2/PDq. Inserting this value for q, in (11) and (20) we get 

and a similar expression for u2. With these approximate values for al and a2 our results, 
A = A0 + and gq = nol(jl(q) - al), become identical to those obtained by the 
correlated-effective-field method of Lines (1974, 1975). 

The zz coupling, j 3 ( q ) ,  may be included in a similar way to theyy coupling. We have 
already mentioned that the z-polarised zero-energy excitations do not affect the lifetime 
of the x-polarised modes. The real contributions to x1(q, U )  appear to be of the same 
order of magnitude as (nl/nol) Re(b2(0) - a2), and we cannot expect a valid answer 
unless the calculation is performed to higher order. Based on the comparison above we 
anticipate that the method of Lines leads to a correct estimate in this case, namely that 
gq is unaffected whereas, to leading order in j 3 ( k ) ,  

(subject to a minor adjustment of nl in the limit P-, =). These same comments apply 
to the zz component of the susceptibility, which should be well represented by the 
molecular-field model, with the one exception that it may stay finite in the zero-tem- 
perature limit, because the self-consistent RPA theory predicts a finite n1 at T = 0. 

3. Self-consistent RPA for praseodymium 

Subject to a few modifications, the results deduced in the preceding section are applicable 
to the case of Pr. First, we may neglect correlation effects due to $3(ij), for instance the 
last term of (25), because ($3(k))2 is a factor of 100 smaller than ($1(k))2. Next, we have 
to abandon the sharp distinction between the x and y modes. In Pr these modes are only 
orthogonal when q is along a b axis. As also discussed by Bak (1975a, b) the two densities 
of states, Nl(w)  and N2(w), are replaced by their average value, N ( o ) ,  so that we get 
al = a2 = a as demanded by symmetry. Finally, the trace of the single-ion averages 
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(U& +ail + &) = no + 2n1 is not equal to 1 as when S = 1. Instead we use 
2s+1 

no + 2n1 + no exp( - P E p )  = 1 (26) 
P’2 

where Ep are the energies relative to the ground-state of the six remaining single-ion 
levels. In this combined RPA-molecular-field model the internal energy per ion is 

U = AO((LZ~J + (1122))  - 2 - 2 $1(q) (Ai’ + Ai2 + Ai’ + Ai2) 
1 

2N q 

+ no C exp( - PE,) 
P’2 

= 2Af11 - (no + nl )a  + no 2 E, exp( -PE,). (27) 
P’2 

The density of states, N(w) ,  has been calculated by Bak (1975a, b). He used the 
simple RPA expression for D,, and determined the interionic couplings from the experi- 
mental dispersion in the high-symmetry directions. This procedure for determining 
N ( w )  is subject to some uncertainties, for instance, the result depends on the value of 
A. used in the calculation. Bak used a value of A0 of 3.2 meV, as estimated from the 
temperature dependence of D, (Houmann er a1 1975). The field dependence of the 
dispersion relation (Houmann e? al 1979) indicates a slightly larger value of A0 = 
3.52 meV. Correlation tends to increase this number by about 0.05 meV, which is less 
than the uncertainties involved, and we shall ignore this correction. The second moment 

I I I I 1 

Energy ( m e V )  

Figure 1. The density of states, N ( w ) ,  in Pr at T = 0.  The broken line shows the result 
deduced by Bak (1975a, b) assuming (2)”* equal to 3.20 meV. The full line shows the 
density of states used in the present calculations. 
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depends on the correlation: 
- 
w2 = (A0 + la)(Ao + l a  + 2nola) (28) 

which implies that N ( w ) ,  at T = 0, has to be established in a self-consistent way. In the 
estimate of the correlation effects the precise form of N ( o )  is not important. However, 
in order to isolate these contributions in a comparison with the MF (molecular-field) 
model, N ( w )  should fulfil the relation (28). Besides this, the most important part of the 
spectrum is that of low frequencies, which is well characterised by the experimental 
results. 

In figure 1 is shown N ( w )  at T = 0 used in the present calculations. For this density 
of states(z)112is equal to 3.70 meV. Thiscurve hasnot beendetermined byamicroscopic 
model calculation, but is a plausible modification of the broken curve deduced by Bak 
(1975a, b) assuming (3)”’ =3.20meV. The equations ( l l) ,  (19), (20) and (26) were 
solved in a self-consistent way, and at T = 0 we obtained a = 0.124 meV and nl = 0,010. 
Inserted in (28) A,, = 3.52 meVleads t o ( s ) 1 ’ 2  = 3.70 meV consistent withn(w) in figure 
1. Adjusting N(w) in a self-consistent manner, we solved the equations at non-zero 
temperatures. In figure 2 is shown the result for a as a function of T .  The value of nol, 

0.1 5 

0.lC - 
> 
E“ - 
U 

0.05 

\ 

0 10 20 30 40 50 
Temperature ( K  I 

Figure 2. The correlation parameter, a .  shown as a function of temperature. 

which is equal to 0.970 at T = 0, approaches the MF value very fast, and the difference 
is negligible above - 15 K. In figure 3 we show the temperature dependences of the 
excitation energies at three different values of q.  The MF prediction is calculated using 
the total single-ion Hamiltonian proposed by Houmann et a1 (1979). The modifications 
which are introduced by the self-consistent RPA calculation seems adequate in com- 
parison with the experimental results. We note that Lindgird (1975) derived similar 
modifications using a simple RPA model. 

At T = 0 the correlation between spins on different sites increases the single-spin 
energy, corresponding to nl being non-zero, but the total energy, (27), is decreased by 
0.051 meV in comparison with the MF value. This energy gain is small in comparison 
with Ao. Consequently, the presence of this correlation has only minor influences on the 
‘effective’ MF properties of the system. (The word ‘effective’ refers to the replacement 
of the bare value of $(q)  by an appropriate effective value.) Considering the bulk 
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I I 

Temperature I K )  
0 10 20 30 

Figure 3. The excitation energies at three different q-vectors in Pr as functions of T. The 
lowest-lying mode on the figure is the incipient soft mode. The experimental results are from 
Houmann et a1 (1975). The broken lines are the MF results deduced using the model of 
Houmannetal(1979). The full lines show the results of the self-consistent RPA theory applied 
to the same model. 

0.21 

O L  
1 2 

Temperature ( K l  

Figure 4. The magnetic specific heat of Pr as a function of temperature. The measured points 
are from Parkinson eta1 (1951). The full line is the RPA result using the Pr model of Houmann 
et a1 (1979). 
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susceptibility, we find that the modification introduced by the temperature variation of 
a is insignificant. The existing discrepancy between the high-temperature susceptibility 
predicted by the MF model of Houmann et a1 (1979) and the experiments remains almost 
unaltered. In figure 4 is shown the specific heat of Pr as a function of temperature. The 
theoretical result is that predicted by the model of Houmann er a1 (1979), when the 
correlation effects are included by (27). However, the correction to the MF result is 
barely visible in the figure. It is of the order of 5 0.02, and is negative in the interval 6- 
16 K. 

4. Discussion 

In 0 2 we deduced the generalised susceptibility in the case of an easy-planar S = 1 
paramagnet. The imaginary part of the self-energy is comparable with that deduced to 
leading order in a diagrammatic l /Z expansion (Z is the number of neighbouring spins). 
The inclusion of the higher-order corrections remedied the failure of the simple RPA 
model in accounting for single-site correlation, allowing a calculation of the single-ion 
averages, which includes effects due to two-site correlation in a self-consistent fashion. 

The self-consistent RPA model introduces a (slight) temperature dependence of the 
effective MF parameters, and the transition temperature is reduced in comparison with 
the MF model. More fundamentally, the spin fluctuations are not quenched totally at 
T = 0, and nl or T(u) remains finite in this limit. The application of the model to Pr 
leads to a minor improvement of the theoretical temperature dependence of D ,  in 
comparison with the experimental behaviour. In most other connections the modifica- 
tions of the effective MF properties were found to be unimportant. 

The density of states at T = 0, N ( u )  in figure 1, is different from zero at quite low 
energies. This reflects the circumstance that Pr is close to ordering magnetically at low 
temperatures, and it indicates that correlation is important. On the other hand N ( w )  
stays small until the energy becomes close to Ao, because the intra-planar couplings in 
Pr are of very long range (see Houmann eta1 1979). This tends to weaken the correlation. 

The critical ratio is defined as 

R = R(T)  = 1 - x % ' x ~ Q )  (29) 

where f i  is the non-interacting susceptibility, and XT(Q) =xr(Q,  U = 0) is the static 
susceptibility at the wavevector Q characterising the ordered phase. By definition 
R = 1 at a second-order phase transition (at T = 7'~). The RPA theory leads to 

R = 1 - ( D Q / h ) '  (30) 

reflecting that this theory predicts a soft-mode behaviour, DQ -t 0, when T - t  TN. Intro- 
ducing the numbersfor Pr in (30) we get Ro = R( T-. 0) = 0.918. There exists, however, 
evidence that the actual Ro is closer to 1. Between 5 and 10 K the transition induced by 
the application of a uniaxial stress occurs at approximately half the stress predicted by 
the RPA theory (K A McEwen, private communication). The RPA value of Ro predicts 
the ordering, due to the nuclear spins, to occur around 45 mK, but the transition to true 
magnetic ordering is observed (H Bjerrum Mdler and A R Mackintosh, private com- 
munication) to occur at roughly double this temperature. 

Houmann et a1 (1977) and McEwen et a1 (1978, 1981) have observed a quasi-elastic 
peak in x(q, U) below 10 K and centred around q = Q .  This peak might be due to the 
presence of static clusters of ordered moments surrounding local distortions in the Pr 
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crystal (stacking faults, magnetic impurities, the surface). However, we shall now argue 
that most of this quasi-elastic scattering is due to a dynamic mode of slowly varying spins. 
The temperature dependences of the energy and the intensity of the incipient soft mode 
(see figure 3 and Bak 1975a, b) both compare with the RPA theory. Because of the 
Kramers-Kronig relation the integrated inelastic peak intensity then corresponds to a 
value of (1 - R)-' C=Z x@) which cannot differ very much from that determined by (30). 
Experimentally, (1 - R)-' is larger by a factor of about 2 in the zero-temperature limit. 
This can only be consistent with the Kramers-Kronig relation if most of the extra 
scattering intensity around zero energy is due to a dynamic mode contributing to 
f ( Q ,  U)/@. If we replace the non-interacting susceptibility f ( w )  by f (w) ( l  + &,,OW) 
in the RPA expression for x(q, U) ,  then the elastic term accounts in a phenomenological 
way for the elastic neutron scattering intensity, with respect to both the frequency and 
the q dependence. Furthermore, if we assume 

= 0.004 [ ( A / D e ) *  - 11 

then we can account reasonably well for the temperature dependence of the elastic 
intensity (above 3 K), the ratio between this intensity and the inelastic peak intensities, 
and the stress dependence of TN. Further the extra contribution to x(Q, = 0) implies 
Ro -- 0.96, and hence TN = 100 mK. An estimate of the contribution of the elastic term 
to the heat capacity (above 3 K) shows it to be of the same order of magnitude as that 
due to the RPA correlation. The estimate indicates that the presence of correlation plays 
a minor role for reducing the discrepancies in figure 4 between the calculated and the 
experimental values of the specific heat, also in the temperature interval between 6 and 
10 K. 

The appearance of the central peak in Pr below 10 K is presumably an intrinsic 
dynamic phenomenon due to the small value of 1 - Ro, although the surface and 
impurities might influence the quantitative behaviour. We note that 1 - R( T)  corre- 
sponds to the critical temperature parameter E = ( T  - T,)/T, or rather cy, in a normal 
paramagnet. The extension of the theory in § 2, or equivalently the 11.2 expansion, to 
higher order does not, in any simple way, lead to a narrow peak at zero energy, but 
rather to intensities spread out in a broad band (also to regions where N (  w )  is zero). The 
higher-order Green functions in ( 5 )  are always multiplied by w f an odd integer times 
A. in their equations of motion, reflecting the rapid fluctuations of the spins. The central 
peak in the present singlet-ground-state system might be of the same origin as the central 
peak in systems near a structural phase transition. Ohnari (1980) has proposed that 
non-linear coupling between the soft mode and a thermal diffusion mode is responsible 
for this phenomenon. 
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Note added in prooJ The recent high-temperature series expansion of Johnson and Wang (1981) gives as 
a result that the critical ratio at T = 0 is r, = Ad23(0) = 0.858 in the case of an FCC nearest-neighbour spin-1 
magnet. The present self-consistent RPA theory predicts rc = 0.864, inclose agreementwith this result, whereas 
the theory of Lines gives rc = 0.680. In the other limit, A0 - 0, the results for T, of the three theories coincide. 
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