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In a magnetic material, the conservation of the total angular momentum is known to give rise to
interactions between the magnetic moments and the phonons. The most spectacular effect is the
lifting of the degeneracy between transverse sound waves when the directions of propagation and
the polarization vectors are interchanged. Here the theory of rotational invariance is reconsidered.
It is found that long-wavelength effects appear only in the presence of an external magnetic field.
The second-order strain interactions, considered previously in conjunction with the rotational in-
teractions, are found to be eliminated by the equilibrium conditions. The contributions due to finite
deformations of the crystal, however, are significant. The magnetic dipole coupling changes rapidly
at long wavelengths and it affects the field dependence of the transverse-sound velocities, in a way
similar to the rotational interaction terms. The present theory, in which this dipolar contribution is
included, gives a much improved account of the ultrasonic experiments performed by Wang and

Liithi on TmSb.

I. INTRODUCTION

The conservation of the total angular momentum of
the combined system of localized electronic angular mo-
menta of the ions in a solid, and the angular momenta as-
sociated with the rotational part of the vibrations in the
crystal, is of fundamental importance. This problem has
been discussed several times in the literature. Continuum
theories were developed by Tiersten' and by Brown.?
The first microscopic Hamiltonian theory of Melcher?
was followed by a number of papers*~® discussing both
various modifications of the theory and experimental
findings. In the last decade the subject has not given rise
to much discussion. The rotational effects are not very
pronounced, and their proper identification requires a
considerable effort. Wang and Liithi’ did, however,
succeed in performing ultrasonic experiments on TmSb,
which confirmed, at least qualitatively, the predictions of
Dohm and Fulde.’

This matter seemed to be settled by the paper of Wang
and Liithi, but a reconsideration of the theory shows that
it is unnecessarily complicated and that it still contains
some erroneous results. The rotational effects on the field
dependence of the transverse sound waves in TmSb, in
the case of two different configurations, were predicted to
be a factor of 2—3 smaller than the experiments indicat-
ed. These large numerical discrepancies are found here
to be due to the magnetic dipole interaction, in the one
case, and to the variation in the path of the sound waves,
caused by relatively large magnetostrictive deformations,
in the other case.

In Sec. II the small-strain magnetoelastic theory,
which neglects rotational effects, is recapitulated and is
extended to account for the presence of the long-range
dipole-dipole interaction. In Sec. III the finite-strain con-
tributions are introduced together with the effects derived
from the requirement of rotational invariance. The
theory is mainly focused on the case of a cubic paramag-
net, corresponding to TmSb. In Sec. IV the theoretical
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predictions are compared with the experimental observa-
tions made on TmSb, and the conclusions are given in
Sec. V.

II. MAGNETOELASTIC EFFECTS
IN RARE-EARTH SYSTEMS
IN THE SMALL-STRAIN LIMIT

In this presentation of the influence of rotational in-
variance on the magnetomechanical properties of a solid
we assume a number of simplifying conditions. The mag-
netic moments of the ions are well localized and are equal
to gugJ;, where J; is the angular momentum of the ith
ion. In the crystal the ions are subjected to a crystalline
electric field of cubic point symmetry, and the two-ion in-
teractions are assumed to be linear in J;, but are allowed
to be anisotropic. Hence, the Hamiltonian for the angu-
lar momentum system is assumed to be

F,(D) =T {B,[03(3,)+50%(3,)]
+B[02(3,)—210%3,)]—guzH-J,}

=12 2 Fagli Vil g (D

a,B ij

including the Zeeman term due to the magnetic field H.
O/"(J) are the Stevens operator equivalents. m positive
or negative indicates the operators proportional te
(It qgimiyz2 or (JIm1 —g1m1)/2i, respectively.
The x, y, and z axes or, respectively, the 1, 2, and 3 axes
are assumed to be along the three cubic directions.

To begin with we neglect the possibility that the crystal
might rotate. Hence, we first outline the conventional
small-strain theory and then, in the next section, consider
the necessary modifications. In the presence of only
long-wavelength deformations, the elastic part of the
Hamiltonian is
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HAE)=1 3 (e, EL(D+c,[ES(D+3E (D]

+c [EL(D+E3()+E3L()]+p? /M),

(2)

with the inclusion of the kinetic energy of the ions of
mass M. Here we have introduced the reduced elastic
constants,

=1y +2¢,)V/N
C.,,=4C66V/N=2(CH—C12)V/N Py (3)
c.=4cyV/N,

where N is the number of (magnetic) ions and V the
volume. With no stress acting on the system, the mean
values of the strains are zero, in which case E, (i) is equal
to the strain tensor at the site i at the time ¢, €;; =¢,,(i,1),
with the short-hand notations,

=€ +En+Ez,

1
— -3-822 .

If r=r(i,t) is the position of the ith ion and R=RJ(i) the
equilibrium position R=(r ), then the displacements are

u(i,t)=r(i,t)—R(>i) (5a)

and the strain tensor is
sk,=%(auk/aR1+au1/aRk) . (Sb)

The crystalline field is modified if the crystal is
strained, and to leading order the crystal-field Hamiltoni-
an is modified linearly in the local deformations. Utiliz-
ing the cubic point symmetry, the extra contributions can
be written as

g

1B=-3 |

i

{G,[03(3,)E, (i)+ 1093, )E ,(i)]

+G5[053(J,)E (i) +201(J,)E ;3 (i)

+20571(3,)E, (D]}, (6)

including only the lowest, second-rank contributions.

The total Hamiltonian # =% (J)+7{2(E +7~[3(J E),
which describes the static and dynamic properties in the
long-wavelength limit, is first considered in the
molecular-field (MF) approximation (J;,J)g is replaced by
JialJig) + {Jig ) ;5—(J;q ) {J;g) ), and we assume that all
the expectation values are independent of the site con-
sidered (para- or ferromagnet with (J;,)=(J,)). The
homogeneous strains are classical quantities, and they are
determined by the equilibrium conditions { 3% /0E,, ) =0
or

JENS JENSEN 37

(E,)=—-L6,(01)
Y

(E,p)=—3--G,(03() , )
Y

<E12):——CI—G3(02-2(J)> ’

€

and similar equations for (E;;) and (E,; ) ({ ) are the
self-consistent thermal-average values at the temperature
7). Notice that in the present approximation (E,)=0,
because E, does not appear in #5(J,E).

Introducing the equilibrium conditions in the total
Hamiltonian # and assuming E;; = ( E; ) +¢€;, as usual
in a small-strain theory, we get

H=F(3)+FH,({E) )+ H,(¥)
+H(3AEN+H,(3—(1), D), 8)

where the argument J—(J) in the last terrn indicates
that 0%(J;) in (6) should be replaced by 03(J;)—(03),
and, s1m11ar1y, for the other terms. The expectatlon value
of #(J,(E)) is equal to —2%,({E)) and this term de-
scribes the contributions to the magnetic part of the
Hamiltonian which are proportional to the equlllbnum
strains. The MF part of %,(J)+%#,(J,{ E)) is diagonal-
ized, subject to conditions (7) determining the (2J+1)
eigenvalues &, and the corresponding eigenstates |v).
The two-ion part of #,(J) is expanded in terms of the ex-
citation operators of this basis, a,,()=(|v){u]);
Without the last term in (8), the equations of motion for
the Green functions constructed from these operators are
diagonalized straightforwardly, utilizing a random-phase
decoupling. This procedure leads to the usual RPA re-
sult for the generalized susceptibility. The nonequilibri-
um coupling term #;(J—(J),€) is linear in both the

operators a,,(i) and the phonon operators B intro-
duced via (5b) and
u(i)= 3 F(q,s)(By, +BL o e aR? (9a)
q,s
with
F(q,s)=#"*[2NMw,(q)]~/*f(q,s) . (9b)

w,(q) is the eigenfrequency of the sth phonon mode at
the wave vector q, and f(q,s) is the polarization unit vec-
tor of this mode. The coupled equations of motion for
the magnetic and the phonon Green functions are de-
duced, and are linearized as above by the random-phase
decoupling and a Fourier transformation. The energies
of the normal modes are then the roots of the deter-
minant of the linear set of equations or, equivalently, the
poles of the Green functions.

The amplitude of the coupling between the magnetic
excitations and the phonons goes to zero (as
qlw,(q)171/?) when g goes to zero, hence the energies of
the uniform modes are not changed. However, the slopes
of the low-frequency dispersion relations of the nearly
pure phononlike excitations are modified, corresponding
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to a change of the elastic constant M (N /V)[w,(q)/q I
Considering for instance the transverse sound waves
propagating along one of the cube axes, the result is

Ac“/c44=——cl—'5q(G3O{2), (10)
€

|

_ n,—n, 1
XAB= 3wl BN G
(6,#6),)

where n, is the population of the vth MF level, in terms
of which
Eq(A4)=X(4, 4)

+ XU AT ) F o {1 —X(T 4, T ) ol @)} 7,

(12)

assuming the Fourier transform of &,4(ij) and X(J,,Jp)
to be diagonal with respect to the (xyz) axes. Equations
(10)-(12) constitute the result also obtained in Ref. 10
(see also Thalmeier and Fulde'') and they reduce to the
result of, for instance, Dohm and Fulde® when &£,,(q~0)
can be neglected. Finite frequency corrections are negli-
gible as long as #w’(q) <<(€V—é°u)2, 6,#6,, which
condition may also effectively determine the regime
where the last elastic term in (11) stays constant.

The q dependence of £,4(q) in (12) would normally be
entirely negligible at the small wave vectors employed in,
for instance, an ultrasonic experiment. This statement is
valid for all couplings except the magnetic dipole-dipole
interaction, which changes extremely rapidly around zero
wave vector. Although it is rather weak, the abrupt
changes of this coupling near q=0 lead to jumps in the
magnetic excitation spectrum which have recently been
observed in HogyTb,q in both its ferromagnetic and heli-
cal magnetic phases.!? In the present context the two-ion
coupling is considered to comprise an isotropic Heisen-
berg exchange interaction and the magnetic dipole cou-
pling, and its Fourier transform is

F g @)= HQ)8 5+ (g (N /V)D 5(q) . (13)

At long wavelengths #(q) may be replaced by #(0), and
additional anisotropic two-ion couplings may be con-
sidered to be included effectively in the crystal-field Ham-
iltonian. The dipole coupling is

D glij}=(V/N)[3R ()R g( J)—R 1/R} (14)

ij

where R;= |R(i))—R(j)|, and in a cubic system" at
long wavelengths the diagonal Fourier components are

D, is the component along the direction of q, and D,
gives the two transverse components. (15) is valid as long
as 27 /L <<q <<2m/a, where L is the length of the crys-
tal and a the lattice parameter (a more detail discussion is
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E (A4) is a zero-frequency susceptibility, which may,
however, depend on the wave vector of the sound wave
considered. The zero-frequency susceptibility of the
operator set ( 4,B) is determined from the MF Hamil-
tonian as

S (viA|u)Xp|B|vin,—(A4)(B)|, (11
v
6,=6,)

[

given by Keffer in Ref. 13), which is just the regime
probed in an ultrasonic experiment. In the paramagnetic
case at zero field, X( 4,J,) in (12) vanishes due to time-
reversal symmetry, 4 being a quadrupole operator. In
the presence of an external field or in an ordered state,
X(A,J,) depends strongly on a, which in combination
with the anisotropic behavior of D,4(q) introduces a
directional dependence of Z;. In the small-strain limit
the dynamic part of the Hamiltonian, (8), only involves
the phonon coordinates through €;;=¢;,. This means
that the velocities of the transverse sound waves for
which the directions of the polarization and propagation
vectors are interchanged, corresponding to an inter-
change of k and /, are equal, except for the dependence of
E, on the direction of q relatively to the direction of the
moments. This directional effect associated with the di-
pole coupling, has previously®~° been ascribed to be due
to rotational interactions alone. The two mechanisms
may produce effects of the same order of magnitude in
paramagnetic systems. In the case of a ferromagnet with
large magnetic moments, the dipole contribution may
strongly dominate as is the case of Terbium, where the
effect is clearly observed experimentally and where the
mechanism has been properly identified.'*

III. ROTATIONAL INVARIANCE
AND FINITE-STRAIN EFFECTS

In the preceding section the finite-strain contributions
to the MF Hamiltonian are included already via
F(J, (E)) in (8). Here we examine more carefully the
expression for E when (E) is nonzero, and we allow for
rotational displacements of the crystal. As discussed in
the previous papers, see, e.g., Ref. 5, the propagation of a
transverse phonon mode implies that both the symmetric
and the antisymmetric part of the time-dependent strain
tensor V{i,¢) are nonzero. Introducing

VU, ) =8, 1)+ &, 1) , (16a)
where the antisymmetric part is

wy=+(0u; /OR; —0du; /dR;) , (16b)
the position of the ith ion may be written as

(i, ) =R()+uli,) =[T+Wi,1)]-RG) (17)

in the linear regime, neglecting the second derivatives of
u (q <<2m/a). For simplification we restrict ourselves to
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the case where the displacements u(i,¢) all lie in the plane
perpendicular to the z axis, corresponding to phonons
which have their propagation and polarization vectors
parallel to this plane. Hence we assume

€ et 0
W!,t)= 812—‘(012 €22 0 . (18)
0 0 0

A constant w,, describes a rotation of the crystal around
the z axis by an angle —6, where tanf=ow,,[1
+(g,4+€5,)/2] 7 or 6=w, to leading order.

The Hamiltonians (2) and (6) are established by general
symmetry arguments referring to the unstrained lattice,
and the deformation matrix E is determined with
reference to the atomic positions R%i) of the unstrained
lattice, not to the equilibrium positions

R(i)=(T+(E))-R%) . (19)

Furthermore, it cannot include terms which correspond
to a rigid rotation of the crystal, which does not involve
any change in the distances between the ions. According
to this we shall write

r(i,)=%(0)-(T+E)-R%i) , (20)

where #(0) is the transformation matrix rotating a vec-
tor (at site i) through the angle — around the z axis:

cos@ sinf 0O
R(0)= | —sin6 cosd 0] . 1)
0 0 0

leen Wi, t) the easiest way to proceed is to assume that
E in 20 is a symmetric matrix. This assumption is
justified through the general finite-strain theory, see Refs.
2, 3, 5 and references therein. The symmetric deforma-
tion matrix 7, defined by

1 auk du) oul oul
=72 | 3RY °+E aR? aR?

(22a)

where u’=r—R?, can be shown to be invariant under a
rigid rotation of the lattice, and

r=7(0)-(T+25%)/2R%) , (22b)

hence E= n—l’iiz - is a symmetric matrix. Com-

bining Egs. (17)-(20) we have
T+E=F'0)(T+")-T+(E)) (23)
with 6 determined so that E is symmetric, implying

9=w12+%2(elm(Em2>_52m<Eml>) (24)

to leading order in the small strains V, neglecting terms of
second order in the equilibrium strains. Within the same
accuracy

Ey—(Ey)=ty+43 3 (im {Em) +€m(En)) . (29
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The Hamiltonians (2) and (6) are derived from an ex-
pansion in powers of E, and in order to restore the validi-
ty of this expansion, when 6 is nonzero, the vectors in the
system 1, J, and H (and p) are replaced by R-UO)r,

#-16)-3, and R~ (6)-H [ and ﬁ_l(Q)-p], respectively.
This transformation is valid on account of conservation
of the total angular momentum for the whole system un-
der consideration (including the sources of the external
fields). Another way to express this is that the require-
ment that the whole system should be rotationally invari-
ant implies that the Hamiltonian considered in Sec. II
can only be valid when 6=0. As soon as @ is nonzero
new terms have to appear, which are obtained by replac-
ing O/"(J) by

ioJ

oA~ \8)N=e""20/m¥e "

=0/"(J)cos(mB)—O0; ™(J)sin(mB) (26)

in all terms in #, and also replacing H by 7 ~4(6)-H, im-
plying that the Zeeman term is unchanged (the same is
the case with the kinetic-energy term). The argumenta-
tion is strictly valid only if 0 is constant throughout the
crystal. However, it remains valid in the inhomogeneous
case, with 0 replaced by its local value 8;, as long as the
modulation wavelength is long compared to the range of
the microscopic interactions (i.e., ¢ <<2m/a). With the
use of (26) the extra contributions to the total Hamiltoni-
an introduced when 6; is nonzero:

AFH(6)=H (R ~1(6)-3,7 () H)—%,(J,H)
+HAFR10)-3,E)— 7,3, E) 27

can be written down without difficulty. The equilibrium
conditions have to be supplemented with (3% /36)=0.
The implicit assumption that () =0, as made in (23) or
(24), can be considered to be valid in general. {(8) being
nonzero means that the external field is applied in a
different direction than intended, and one merely has to
provide a mechanical torque in order to assure that
(6)=0. With (6)=0 the equilibrium Egs. (7) are un-
changed. The modifications are then purely dynamic,
and they amount to replacing & in #,( "') and
H3(J — (J),) in the total Hamiltonian (8) by E— (E)
given by (25), and adding A%(6) (27), to this Hamiltoni-
an.

A7£(0) is expanded to second order in 6;, with 6 given
by (24). As first realized by Dohm and Fulde® the terms
of second order contribute to the phonon energies in the
same order of magnitude as the first-order terms. In the
situation where H is applied along one of the cubic axes
only the strains (E,;) and (E,,)=(E;;)=—((E};)
+(E,,)) are different from zero. Further, if only trans-
verse phonons with q parallel to the 1 axis and f parallel
to the 2 axis, or with q and f interchanged, are excited,
then the only nonzero dynamic strain parameters are €,
and w;,, where €,,= —w;; Or £, =0,,, respectively. The
relevant phonon part of the Hamiltonian, linear and
quadratic in &£, and ®,,, describing this situation is to
leading order in the equilibrium strains:
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S {teeh(D(1—(E ,))+G507 23, e (i)

1

~[0,()=2G503(3 ey (D@1 = E,; Yer(i)]— 1@y 0h(i) =20 E, Dep(Doy(D]} - (28)

)

when introducing the two operators

Q,=20B,0;*—84B,0s*+2G,0;*(E, ) —2G,05(E ;) (29a)
and

0,=80B,04—336B,0¢+4G,0}(E, ) +4G;0;*(E;) (29b)
and defining

Gy=G;(1-E,)); Gy=G}. (29¢)

In (28) we have neglected the contribution of the two-ion interaction to A##(6). This is proportional to #,5(q) — & ,5(0),
so that only the magnetic dipole coupling contributes and this is a minute term. According to the procedure of Sec. II
the Hamiltonian above leads to the following change of the “‘dynamic” elastic constant:

Ac44/c44=—;l—{Eq[GQOQZiQ,(Ii(Ew))]+(92)(1i2(EY1))t4G§'(0§)(1i(Eyl M —(E,), (30)

where the upper signs ( + ) refer to the case where q||1 axis and the lower ones to q||2 axis. Considering instead the situ-
ation where H||(1,1,0) and where q and f are parallel to, respectively, (1,1,0) and (1, —1,0), then we get the following

result with the upper signs:

Acgg/Coe= _-cl—[sq[-G;ogin,(1i<E,2>)]+<Qz><1iz<E12>)i4G;'<o;2 YAE(ER)}—(E,,) , 31
Y

whereas the lower signs (— ) apply to the case where the
directions of q and f are interchanged. The primes on
G, have the same meanings as in (29c), G,
=G,(1—1(E,,)); Gy =G). Neglecting the contribu-
tions of the dipole coupling and the terms proportional to
the equilibrium strains (and By), these two results reduce
to those derived by Dohm and Fulde.’ They (and Melch-
er and coworkers”®) alsg_ include contributions arising
from the terms linear in E—(E) but of second-order in
the dynamic strain variables (appearing when E is re-
placed by 7). However, these contributions are simply
cancelled by the equilibrium conditions. The expectation
value of the prefactor to E—(E) in the Hamiltonian
vanishes at equilibrium, as does the expectation value of
the prefactor to @, in (28) ({Q,)=0 or (6)=0 is not
properly fulfilled). In these papers®~° the dynamic Ham-
iltonian linear in the deformations is considered
(effectively) to be #(J,5— (7)), which should rather be
FHI—(3),57—(7%)) at equilibrium, corresponding to
(8). There is no principal reason for preferring either % or
E=(1+27%)""2—1 as the expansion parameter, as both
are invariant to a rigid rotation of the lattice. The results
depend on this choice, but it is only the finite-
deformation contributions which are affected. (E ﬂ) is
replaced by 2(E,, ) (or rather 2(7,,)) in Egs. (28)-(31)
if we substitute % for E in the Hamiltonian. This
difference just reflects the fact that the parameters occur-
ring to next order in the strains, i.e., the third-order elas-
tic and the second-order magnetoelastic constants, de-
pend on this choice. Our motivation for choosing E is
that it is the more familiar quantity in small-strain
theories; for instance the third-order elastic constants,
are normally defined in terms of these strains. The

f

finite-strain terms in (30) and (31) may be taken as a mea-
sure for the modifications which may occur due to the
higher-order strain terms in the Hamiltonian. This sug-
gests that only the third-order elastic constants may be of
importance. They introduce terms corresponding to the
rather trivial contribution —(E,,) appearing both in
(30) and (31).

In the paramagnetic phase, at zero field, the terms in
(30) and (31) which change sign when the directions of q
and f are interchanged have to cancel each other by sym-
metry. Numerical calculations show that this cancella-
tion applies to all terms introduced by A#(6), and that
this is a more general feature than indicated by symmetry
arguments. For instance, it also occurs in the presence of
a tetragonal contribution BO3(J;) to #,(J) (or, corre-
spondingly, in the presence of an external stress), and in
the ferromagnetic case. The reason may be traced back
to the manner in which A7(6) was constructed, (26) and
(27). Apart from the kinetic and the Zeeman energies,
the total Hamiltonian #(0)=#(6=0)+A%(6) can be
obtained from #(6=0) by a unitary transformation:

HO)=UH(6=0)U"'40(0*"?)
with
U= exp [i S 6,J, ]

(32a)

(32b)

as long as H=0. This means that, in the limit of long
wavelengths at low frequencies, where the kinetic correc-
tions proportional to @’’? can be neglected, the depen-
dence on 6; can be removed from #(8) when H=0, by
performing the reciprocal unitary transformation. There-
fore the effects of A%(6) on the acoustic sound waves
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must vanish at zero magnetic field. A slow rotation of
the lattice causes no energy changes as long as there is no
external magnetic field to define the amount of rotation
(the magnetic system adjusts itself so as to follow the slow
rotation adiabatically). The reciprocal transformation
may be utilized also when H=£0 for deriving alternative
expressions for the effects of the rotational interactions.
The results are derived straightforwardly and amount to
the replacement of the quantities given by (29) in Egs.
(30) and (31) by

O =gup(HJ,—H,J,),
Q,=—gupHJ,
Gy =G% =0,

(29

(G5 and G} are unchanged). This alternative result is
more transparent and easier to generalize than the origi-
nal one. In fact it is more correct as it includes, implicit-
ly, the small rotational effects of the dipole coupling
neglecting in Egs. (28) and (29). The introduction of (29)
instead of (29) shows that the rotational effects on the
sound velocities are quadratic in the magnetic field, at
low fields in the paramagnetic phase. In this case the cu-
bic symmetry implies that the rotational interactions con-
tribute exclusively to the velocity difference between the
two related transverse sound waves, if the dipole coupling
is neglected.

IV. APPLICATION TO TmSb

TmSb is very well suited for studying the effects of ro-
tational invariance. The Tm ions (/=6 and g=7) are
positioned on a fcc lattice, with the lattice parameter
a=6.084 A, corresponding to N/V=1.78%x10 Tm-
ions/cm’. It is paramagnetic down to the lowest temper-
atures (singlet ground-state system), and the exchange in-
teraction is found to be negligible. This was concluded
from susceptibility measurements'> and from neutron-
scattering experiments,'® through which the values
B,=1.12X1073 meV and B¢= —2.46X 107% meV were
determined. The two magnetoelastic parameters G, and
G, have been derived from the temperature variation of
c44 and c¢g, relative to that observed in nonmagnetic
LaSb by Wang and Liithi’® and Mullen et al.!” They
found G,=—5.43 meV and G;=1.72 meV. The signs of
the two parameters are those indicated by point-charge
calculations, and the sign of G, has been checked by
measuring!® the magnetostriction along an (100) axis
parallel to an applied field of 15 kOe. The magnetostric-
tion Al /I is found to be nearly constant between 2—12 K
with a mean value of 1.2 10~%, which is, however, near-
ly a factor of 2 larger than predicted by the value for G,
stated above. The estimated demagnetization field is
about 1 kOe so that, assuming the internal field to be 14
kOe, the magnetostriction data indicate G,=—9.60
meV. The elastic constant c¢ exhibits a very rapid varia-
tion between 5-20 K, see Fig. 1. In this narrow tempera-
ture interval the nonmagnetic cq stays constant, so the
rapid change of cq¢ can only be ascribed to crystal-field
effects. It turns out that it is reproduced only if the mag-
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FIG. 1. The elastic constant ¢;; —c;;=2c¢ in TmSb as a
function of temperature. The circles are the experimental re-
sults of Mullen et al. (Ref. 17) and the associated line is the cal-
culated behavior obtained with G,=—9.60 meV. The other
solid line shows the assumed variation of the nonmagnetic
¢11—¢y2. The dashed line is the same quantity obtained from a
scaling of the experimental results on LaSb of Mullen et al.
(Ref. 17).

13.0

nitude of G, is increased to be about the same as indicat-
ed by the magnetostriction measurements. Using
G,=—9.60 meV, we obtained the fit shown in Fig. 1 to
the temperature variation of ¢,; —c,, =2c¢ measured by
Mullen et al.!” We assume that the nonmagnetic value of
¢y —cy, varies smoothly with temperature as shown in
the figure. This variation is greater than indicated by the
scaling of the LaSb results,!” also shown in Fig. 1. How-
ever, the absolute value of ¢, —c, is nearly a factor of 2
larger in TmSb than in LaSb, making the scaling assump-
tion applied by Mullen et al. somewhat questionable.
The low-temperature behavior of ¢; —c,, combined with
the magnetostriction data provide a firmer basis for our
analysis, and we shall use G, = —9.60 meV in the follow-
ing. Wang and Liithi® accounted almost perfectly for the
temperature dependence of ¢4 using G;=1.72 meV. We
have chosen the slightly higher value G;=1.85 meV
which still accounts well for ¢4, as a function of T, recal-
ling that the variation of the nonmagnetic value of cg,
(which is about 30% larger than in LaSb) is somewhat
uncertain.

In order to agree with the analysis of the magnetic sus-
ceptibility measurements, including the dipolar coupling,
we assume

#.(q=~0)=H#(0)+(guy)*D,(q=0)N/V=0,

as this is the parameter determining the molecular field
(when the demagnetization field H is subtracted from

the applied field H ;). This means that we use
#(q=0)=—4n(gug)*N/V ,
(33)
4l(qz0)=0 N

where #,(q=0)= —0.0163 meV in TmSb.



37 ROTATIONAL INVARIANCE AND DIPOLAR MAGNETOELASTIC . .. 9501

With these values for the parameters we have calculat-
ed the field dependences of ¢y, and ¢ at T=2 K. In or-
der to make a comparison with the ultrasonic measure-
ments of Wang and Liithi we need to introduce two
corrections. The first concerns the demagnetization-field
correction to the internal field H considered in the equa-
tions above. The applied field is

HA=H+HD; Hszngqg(J)N/V. (34)

Wang and Liithi state that the demagnetization factor
Np is about 4 in their measurements. The correction is
small so the precise value is not important, and we use
Np =4 in all the calculations, implying that Hj, is about
2.5 kOe at maximum field. The other correction is due to
magnetostriction, which changes the distances over
which the travelling times of the sound waves are mea-
sured. The experimental changes of the velocities derived
by Wang and Liithi are not corrected for this effect.
They do consider it in the case of the c,4 modes, where
they estimate the length changes to be unimportant. We
agree with this conclusion, but when the field is applied
along (1,1,0), {E,;)=—0.6Xx10"? at 60 kOe leading to
important corrections. The nominal velocity change,
found by Wang and Liithi, is determined in terms of the
real change by

(AV /0 ) pomina =AV /v —AlL/1 (35a)

where Av /v is half the relative change of the elastic con-
stant, and

<E12>_%<E72) for q"H ,

Al/l= —(Elz)"%<Er2) for qlH ,

(35b)

when H||(1,1,0), and the analogous relations when
H||(1,0,0). With the two corrections included we show
in Figs. 2 and 3 the experimental results for (Av /v),ominal
obtained by Wang and Liithi’ in comparison with our
calculations.

When the field is applied along (1,0,0) the equilibrium
strains are small and their contributions to the (nominal)
velocity changes in Fig. 2 are insignificant. Instead the
rotational interactions, which contribute chiefly to the
difference between the two sound velocities, are impor-
tant. &(q~=0) only affects the velocity of the sound
waves for which qlH [because X(4,J,)=0 when J, is
the component parallel to H]. Hence, the dipole cou-
pling contributes to the splitting between the two veloci-
ties, and as indicated in the figure the two mechanisms
contribute nearly equally. The agreement found in Fig. 2
is good, with a predicted splitting about 10% larger than
observed. For the ¢, modes, where both the polarization
and the propagation vectors are perpendicular to
H]|(1,0,0), the changes are predicted to be about the
same as for the ¢4y mode with qLH in Fig. 2, but of oppo-
site sign. For the ¢4 modes considered in Fig. 3, where
H is along (1,1,0), the equilibrium-strain contributions to
Av /v are again rather small, but the correction given by
(35) is of decisive importance for the difference between
the field dependence of the two velocities. The sign of the
splitting is reversed in comparison with Fig. 2. This

change of sign only applies to the rotational contribu-
tions, which are here about twice as large as the dipolar
contributions.

V. CONCLUSION

TmSb is a simple magnetic system. The crystal-field
symmetry is cubic, and the ground state is a singlet with
no signs of any significant modifications due to two-ion
interactions. This makes the system suitable for a sensi-
tive test of the magnetoelastic effects predicted from the
requirement of rotational invariance. We have recon-
sidered the theory for these effects. The rotational in-
teractions only influence the sound velocities in the pres-
ence of an external magnetic field, independently of the
crystal symmetry. This is shown by performing a unitary
transformation of the Hamiltonian, which also leads to
simplifications in the account of the low-frequency rota-
tional effects. Contrary to the previous analyses we find
that the magnetoelastic second-order dynamic effects on
the acoustic sound waves cancel out, within the harmonic

-2 T T T T T T
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c,, modes
B S n

, - dipole
contributiorl

VELOCITY CHANGE (%)
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(<4}
[

| L | |
0 20 40 60 80

APPLIED MAGNETIC FIELD (kOe)

FIG. 2. The relative (nominal) velocity changes of the cy,
modes in TmSb at T'=2 K, as functions of an applied magnetic
field along (1,0,0). The experimental results are taken from
Wang and Liithi (Ref. 9). The solid circles denote the case
where the propagation vector q of the transverse sound waves is
parallel to H, and the open circles show the changes when q is
perpendicular to H and the polarization vector is parallel to H.
The solid lines show the theoretical results obtained from Eq.
(30) using G;=1.85 meV together with the other parameters
given in the text. The contribution due to the dipole interaction
is indicated on the figure.
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FIG. 3. The nominal relative velocity changes of the cq
modes in TmSb at 2 K as functions of the square of the external
magnetic field H, applied along (1,1,0). The experimental re-
sults are determined by Wang and Liithi (Ref. 9). The polariza-
tion vector of the transverse sound waves is along (1,—1,0)
when q||H (solid circles), and the other mode is the one obtained
when interchanging the directions of the propagation and polar-
ization vectors. The theoretical predictions shown by the solid
lines are obtained from Eq. (31) with G, = —9.60 meV, and they
include the corrections (35) to the actual velocity changes, cal-
culated using G;=1.85 meV. The dashed lines show the calcu-
lated results for the actual velocity changes. The upper and
lower dashed lines are associated, respectively, with the upper
and lower solid lines.

approximation, due to the equilibrium conditions. In-
stead we account for the effects of the nonzero equilibri-
um strains, assuming the elastic Hamiltonian to be quad-
ratic and the magnetoelastic Hamiltonian to be linear in
the deformation matrix E. These effects are of impor-
tance in principle, even though the modifications in
TmSb are only of the order of 1-4%. If the strain-
dependent corrections were significant the higher-order
strain terms in the Hamiltonian should also be con-
sidered, especially the third-order elastic constants which
contribute to Ac /c with terms of the order of the equilib-
rium strains. In the case of TmSb, Wang and Liithi® did
estimate the importance of the magnetoelastic couplings
quadratic in the strains, as well as the linear ones involv-
ing octupole operators, by utilizing the point-charge
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model, and they concluded that these terms should have
no serious consequences.

The agreement between the calculations and the exper-
imental field dependences of the transverse sound-wave
velocities in TmSb is very close. This leaves very little
room for possible effects of the third-order elastic con-
stants, in accordance with the fact that the third-order
modification of the velocity of a transverse sound wave is
normally small when volume changes can be neglected.
The only uncertainty is in the temperature dependences
of the nonmagnetic elastic constants which could lead to
a 5-10 % change of G, or G;. These uncertainties have
nearly no influence on the calculated differences in the ve-
locities found on interchanging the directions of propaga-
tion and the polarization vectors for the transverse sound
waves. These differences observed in TmSb by Wang and
Liithi® are here reproduced quite accurately with no ad-
justable parameters. The explanation involves both the
interaction terms introduced when the total system is re-
quired to be rotationally invariant, and the rapid varia-
tion of the magnetic dipole-dipole coupling occurring at
long wavelengths. The two mechanisms are of roughly
equal importance.

The present theory can be generalized straightforward-
ly to cover other cases. We have applied the theory to
SmSb, which closely resembles TmSb, and using the pa-
rameters deduced by Mullen et al.,'” we find the field
dependences of the c¢q modes to be vanishingly small in
accordance with the observation of Mullen et al. (at 6.7
K, where the presence of the magnetic phase transition at
Ty=2.1 K can be neglected). In the case of CeAl, the
rotational interactions and, in addition, the dipolar in-
teractions only lead to small effects, in agreement with
the experiments and the numerical analysis of Liithi and
Lingner.!* We have also considered the basal-plane fer-
romagnet Tb metal (hexagonal closed packed), analyzed'*
previously estimating the rotational effects to be unim-
portant. This approximation is justified; the corrections
are proportional to the internal magnetic field and they
modify the field dependence of c¢ only by a few percent.
These corrections are nearly of the same magnitude as
those produced by the third-order elastic constants, using
the values calculated by Rao and Ramanand.?® One in-
teresting phenomenon is worth mentioning, namely that
the rotational interactions produce a slight shift in the
critical field H,, which is required to rotate the moments
to be along a hard a axis. A shift of H, may be intro-
duced by the external mechanical forces, which are need-
ed in order to prevent the crystal from rotating. With the
appropriate boundary conditions, the change in H, is
found to compensate the effects of the rotational interac-
tions, so that cg (with q||H) still vanishes at the critical
field.
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