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Abstract. The magnetic structures in a single crystal of isotopically enriched erbium
have been studied using a high-resolution neutron diffraction technique at the HFIR
reactor at Oak Ridge National Laboratory. In addition, these structures have been
examined by mean-field calculations, in which the primary interactions were derived
from magnetization and spin-wave measurements. The agreement between theory and
experiment is generally very good. At intermediate temperatures, the structure is based
on an elliptical cycloid in the a—c plane, and blocks of moments with alternating positive
and negative components in the c-direction give rise to a series of commensurable
structures in the manner proposed by Gibbs and co-workers. These structures are,
however, distorted by two-ion couplings of trigonal symmetry, which reflect the different
orientation of the two HCP sublattices and have a magnitude which is a substantial
fraction of the isotropic exchange interaction. The result is a wobbling cycloid, in which
there is an oscillating moment in the b-direction whose period differs from that of the
basic cycloidal structure. In the low-temperature cone phase, the moments bunch around
alternating a-directions in a pattern with trigonal rather than hexagonal symmetry. Some
further consequences of the trigonal couplings on the low-symmetry magnetic structures
in erbium and holmium are discussed.

1. Introduction

The first thorough study of the magnetic ordering in erbium was performed by
Cable et al (1965), using neutron diffraction. They reported three distinctly different
magnetically ordered phases which can be briefly described as follows.

(i) Between Ty = 84 K and T}, = 52 K, a sinusoidal ordering of the longitudinal
c-components of the magnetic moments, with a period of approximately three and a
half lattice spacings along the c-axis of the HCP lattice.

(ii) Between TY{ and T, = 18 K, the wavevector of the modulated phase g,
decreases from 27, to %Tc, and there is ordering of both the basal-plane and
longitudinal spin components (7, is the reciprocal lattice vector along the c-axis
of length ., = 27 /¢).

(iii) Below T, the magnetic structure is a cone with a ferromagnetic moment
along the c-axis, and a basal-plane component with a modulation wavevector of %Tc.

In 1974 more refined studies were made (Habenschuss et al 1974, Atoji 1974) and
phases (i) and (ii) showed higher harmonics of the modulation wavevector, the intensities
of which tended to increase with decreasing temperature. Later Gibbs et al (1986)
performed a high-resolution synchrotron x-ray study, and found in the intermediate
phase (ii) a number of long-period commensurable structures with wavevectors %, 2"—3,
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3, & and 27, Most recently Lin er al (1992) have investigated the magnetic phase”
diagram of erbium in a c-axis magnetic field by neutron diffraction experiments.

The main purpose of this paper is to provide an improved picture of these
structures, particularly in the intermediate phase (ii), by using both neutron scattering
and theoretical calculations. Magnetic x-ray scattering techniques provide very good
resolution, but the intensity is weak, preventing the determination of the intensities of
the weak reflections. In contrast, neutron diffraction reflections have high intensities,
although the resolution is relatively poor, and the use of a large single crystal and
a triple-axis spectrometer makes it possible to detect most of the scattering peaks
originating from the long-period commensurable structures, as illustrated by the
study of spin-slips in holmium (Cowley and Bates 1988). We have used very similar
techniques in these experiments.

The most important magnetic interaction in erbium, and in the other heavy rare-
earth metals, is the isotropic RKKY exchange interaction J(4j) between the localized
moments, which is long-ranged and oscillates in magnitude. If anisotropy effects can be
neglected, this two-ion coupling leads to a modulated structure with the wavevector g,
at which the Fourier transform J(q) has its maximum. The free energy is minimized
when the length of the ordered moments on different sites is constant, and the magnetic
structures thercfore consist of ferromagnetic sheets perpendicular to the c-axis, with
the moments rotating through a certain angle, as determined by ¢, from one sheet to
the next. The crystalline anisotropy in the HCP structure favours either a longitudinal
(along the c-axis) or transverse (perpendicular to the c-axis) alignment of the magnetic
moments. In the latter case, as found in holmium, the magnetic structure is a helix which
is distorted at low temperatures by the hexagonal anisotropy, with higher harmonics
at the wavevectors (6 + 1)q,.. In the former case, the magnetic structures depend on
the strength of the anisotropy. The longitudinal component orders at Ty, and if the
axial anisotropy is sufficiently large, as occurs in thulium, the ordering of the transversc
components is entirely suppressed, but the longitudinal wave squares up to form a
structure in which the magnitude of the ordered moments varics as little as possible.
If the axial anisotropy is weaker, mean-field analyses (Miwa and Yosida 1961, Nagamiya
1967, Jensen 1976) indicate that ordering of the longitudinal component will be followed,
at a lower temperature 7y, by ordering of one of the two basal-plane components of the
moments, to produce an elliptical cycloidal structure in which the moments are aligned
in a plane containing q.. As the temperature is lowered further, there is a competition
betwcen the squaring of the longitudinal ordering, to reduce the anisotropy energy, and
the reduction of the eccentricity of the ellipsoidal ordering, to reduce the cxchange
encrgy.

In the case of the intermediate phase (ii) in erbium, the nature of the ordering
has been the subject of some controversy. Cable et al (1965) suggested from their
neutron diffraction measurements that both basal-plane components ordered at Ty in
a helical structure. Unfortunately, the scattering from random domains of this non-
planar structure, and from random domains of the cycloidal structure are qualitatively
very similiar. The Landau expansion of the frce energy predicts, however, that the
non-planar structure is unstable compared to the cycloidal structure, at least close to
Ty, because the variation in the length of the moments is more effectively minimized
by the cycloidal arrangement than in the non-planar structure. The remaining basal-
plane component may order in a continuous way, at a lower temperature, if higher-
rank anisotropy cffects tilt the direction of the easy axis away from the c-axis, but
there are no indications of such an additional second-order transition in erbium. The
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diffraction experiments reported below did not reveal any difference between the
ordering wavevectors of the c-component and of the basal-plane components in the
intermediate phase, and they gave a strong third harmonic in the modulation of the
basal-plane moments. Both observations indicate that the longitudinal and the basal-
plane components are phase locked, and hence that erbium is ordered in a cycloidal
structure between Ty and T¢.

The commensurable structures in phase (ii) observed by Gibbs ef al (1986) arise
because the anisotropy favours a large component of the ordered moments along the
c-axis. Just below TY, the structure is similar to the commensurable thulium structure,
with four hexagonal layers in which the moments have a positive c-component,
followed by three layers of moments with a negative c-component. The ordering
wavevector is g, = 27, and this structure may be designated as (43). However,
the HCP structure has two inequivalent sublattices so that the magnetic structure
repeats after every fourteen magnetic layers, rather than seven, so a more appropriate
description is (4343) or 2(43). Below Ty, the ordering wavevector decreases
with decreasing temperature, and the system traverscs a series of commensurable
structures, in which more and more of the bunches of three moments are replaced by
bunches of four moments, giving 2(43) — 2(443) — 2(4443) etc. until, just above T,
the magnetic structure reaches (44), with a periodicity of eight layers and g, = %rc.

In this paper, we present a detailed description of these structures, and of the
low-temperature cone structure, on the basis of both experiment and theory. In
the next section, we summarize the neutron scattering measurements, which were
performed at the HFIR reactor at the Oak Ridge National Laboratory, USA. In
section 3 a mean-field model for erbium is introduced, similar to that used earlier
(Jensen 1976), but extended to include a two-ion coupling with trigonal symmetry
between the different sublattices, introduced in order to explain the observed period
doubling of the magnetic structures. In section 4 the experimental diffraction results
are analysed and compared with the predictions of the mean-field calculations. Our
conclusions concerning the magnetic structures of erbium, and a general discussion
of the effects produced by the trigonal coupling are presented in section 3.

2. Experimental results

The neutron scattering measurements were performed with the HB3 triple-axis crystal
spectrometer at the HFIR reactor. Pyrolytic graphite was used as monochromator
and analyser and the horizontal collimation was 20'-20'-20/, open from reactor to
counter. The incident neutron energy was fixed at 14.8meV, and a pyrolytic graphite
filter was used to reduce the higher-order contaminent neutrons. The wavevector
resolution was typically 0.01-0.02 reciprocal lattice units and the spectrometer was
operated so as to measure the elastic scattering with wavevector transfers (00L),
(10L) and (20L) in reciprocal space.

The sample of erbium was the same isotopically enriched crystal as that used
in earlier inelastic studies (Nicklow et a/ 1971) and was mounted in a variable
temperature cryostat with the scattering plane of the spectrometer normal to (010).
The temperature could be held fixed to £0.1 K, and there was little evidence of
hysteresis in the results on heating or cooling.

Typical results are shown in figure 1 for scans along both [00L] and [10L], with
the intensity plotted on a logarithmic scale. There is clearly a series of regular peaks
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in intensity corresponding to a periodicity of %Tc» with the largest peaks occurring at
g. = 15 7.. The scattering may therefore be deduced to arise from the 2(4443) structure,
and the large number of peaks shows that the structure is far from sinusoidal. Similar
measurements were performed at other temperatures and the positions of the peaks are
shown in figure 2. At lower temperatures, the wavevector corresponds to a long-period
commensurable structure, but above about 40-50K, the structure is incommensurable,
though close to either 2(43) or 2(443). We have therefore chosen to analyse these
structures as though they were the nearest commensurable structure. The smallest
separation of the peaks determines the basic ordering periodicity, g,, and the ratio
r = q./q, gives the number of times the ordered moments rotate in one commensurable
period. The different structures are listed in tabie 1.
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Figure 1. The neutron scattering observed from erbium at 35K. The left-hand panel of
the figure shows a scan along [10L] and the right-hand one along [00L]. The peaks
marked N are from nuclear scattering and the remainder are magnetic in origin.

Further information about the structures can be obtained from the intensities of the
peaks. These are however difficult to measure and subject to significant errors. Firstly,
the data were corrected for the instrumental effects arising in obtaining integrated
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Table 1. Commensurable structures.

T (K) Structure qo (7¢) qc (7c)
54,49  2(43) 1/7 2/7
44,40  2(443) 1/11 3/11
35 2(4443) 1/15 4/15
29 2(44443) 1/19 5/19
25 2(444443) 1/23 6/23
20 (44), (3030) 1/4 1/4

intensities from triple-axis spectrometer scans along [00L] and [10L] lines in reciprocal
space (Cowley and Bates 1988). Secondly, the data were corrected for the wavevector
dependence of the magnetic form factor. Since the crystal was isotopically enriched and
of complex shape, no corrections were made for its neutron absorption. This is at least
in part justified because equivalent intensities obtained at different wavevector transfers
did agree with one another to within about a factor of 2. More difficult are the problems
of extinction and of multiple scattering. Since our objective was to measure the weak
reflections, we used a large crystal and there is no doubt that our data suffer from both of
these problems. We treated the extinction problem by comparing our results with those
of Habenschuss e al (1974), whose intensities were much lower and consequently less
affected. The higher-order reflections (third and fifth harmonics) in the two experiments
were scaled to one another, and the intensities of the primary satellites then deduced
from their data. This gave considerably more intensity for the primary reflections than
we actually measured, and provides a more satisfactory measure of the correct intensity.
In the analysis described below we have used these ‘corrected’ intensities. Multiple
scattering can give large errors in modulated structures and this was studied by rotating
the crystal around the scattering vector, and by comparing the intensities observed at
equivalent points in reciprocal space. By using these approaches, we obtained a list of
the best estimates for the intensities for the different peaks observed in the scans. These
intensities, which vary over about four orders of magnitude, are uncertain by factors of
the order of 2 or 3, but they can nevertheless be used to determine the detailed structures.

The different peaks shown in figures 1 and 2 can be classified as odd harmonics of
the primary refiections, and the intensities in the [10L] scans decrease systematically
with the rank of the harmonic. The intensities of the peaks in these scans are dominated
by the longitudinal components of the ordered moments. The corresponding results
for the [00L] scans, figures 1 and 2, arise from the scattering by the transverse or
basal-plane components of the ordered moments. It is clear that the same harmonics
occur as in the longitudinal ordering, which reflects the strong phase coherence between
the two components. This is incompatible with a helical ordering of the basal-plane
moments and is strong evidence for a cycloidal phase (Jensen and Mackintosh 1991).
An unexpected feature of the [00L] scans is the observation of higher harmonics at the
wavevectors ¢ = £(2p + 1)q, + nr, with n odd, as well as even. These peaks with n
odd would be absent in the scattering from a planar cycloidal structure, in which both of
the hexagonal sublattices are equivalent. They are also unusual in that the intensities
are largest for the third and fifth harmonics. As we shall demonstrate below, these
results show that there is a large two-ion coupling with trigonal symmetry in erbium,
which modifies the planar cycloid into a non-planar wobbling cycloidal structure.
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Figure 2. (a) A schematic plot of the positions at which peaks have been observed in
the [10L] scans, indicating the relative intensities by the size of the dots. The different
peaks are classified as higher odd harmonics of the fundamental, i.e. by the number
(2p + 1) which relates their position at ¢ = £(2p + 1)g. + n7. (p and n are integers
and p > 0) with the position of the main peak at g.. The magnetic contributions to
the Bragg peaks at (100) and (101) were not determined, but the expected harmonics
at the two positions are included in the figure. (b) A similar plot derived from the
[00L] scans. In the classification of the harmonics, the asterisk indicates those which
correspond to odd values of n, and would not be present in the absence of the trigonal
coupling which distinguishes between the two sublattices of the HCP structure. A few of
the lowest-intensity peaks in this plot, for T" £ 35K, were too weak Lo be observed, but

are included in the figure for completeness.
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3. The mean-field model

The model which we have adopted for erbium is similar to that used earlier (Jensen
1976). The Hamiltonian includes the single-ion anisotropy, the Heisenberg exchange
interaction, the classical magnetic dipole—dipole coupling, and an anisotropic two-ion
interaction indicated by the spin-wave dispersion relation. The Hamiltonian is then

Ho= S BlrOr(i) = 3 S (i, - J; = 15" Ip(i9) .4
im ] iy

i

— IS RE i) [03(5)03(5) + 05 4(1)052(5)]. )
iy

The z-, y-, and z-axes are along resPectively the a-, b- and c-axes of the HCP lattice.
The Stevens operators are O3” = 3(J,05% + 032J,), where O3 = JZ — JZ and
O;?=J,J, + J,J,. The Fourier transform of J(ij) is

J(q) = % Zj(ij)e—qu(R.-RJ) )
nJ
where N is the number of ions in the crystal, and we use J(q) as a short-hand
notation for J(gq) when g is parallel to the c-axis. Analogous quantities may be
defined for the other two-ion couplings.
The dipolar contribution to the coupling of the basal-plane moments is included
in J(q). The coupling of the c-components is J..(q) = J(q) + Jp(q), with

Ip(q) = —T44{0.919 4+ 0.0816 cos (gc/2) — 0.0006 cos (gc) } 3)
when ¢ is non-zero, and J;;(0) = 0. The coupling constant
Jaa = dn(gug)*N/V = 0.0316meV

where V' is the volume of the crystal.

The axial anisotropy Bj is obtained from the high-temperature susceptibilities
shown in figure 3, which determine J(0) = 0.207meV and, from the value of Ty,
J(q.) + Jp(q.) = 0.286meV. In the analysis of the susceptibility and the low-
temperature magnetization, we have included a contribution from the polarization
of the conduction electrons of 3%, which value, being proportional to (g — 1)/g,
corresponds to the 9% increase of the saturation magnetization observed in Gd. The
two remaining axial anisotropy parameters, BY and BY, are determined from the
magnetization along the c-axis in the cone phase at zero ficld, and its variation with
field along the c-axis, shown in figure 4. The hexagonal anisotropy B¢ favours an
alignment of the moments in the basal plane and is important, for instance, for the
low-temperature transition to an a-axis magnet, observed when a field is applied
along this axis. The point-charge model predicts BS = —Z By, and the best fit was
obtained using a value of BE about 25% smaller than indicated by this relation. The
final crystal-ficld parameters used in the model are given in table 2.

The inter-planar exchange parameters 7, arc defined by

J(q) =Ty +2) T, cos(nge/2) 4

n2l
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Figure 3. The reciprocal susceptibilities of paramagnetic erbium as a function of
temperature. The solid curves are calculated and the experimental data are taken from
Green et al (1961). The upper and lower results (squares and circles) refer respectively
to a field perpendicular or parallel to the c-axis. The triangles are the average obtained
from a polycrystalline sample.

and the anisotropic two-ion interaction parameters [K2 2] are defined similarly.
The high-temperature susceptibilities, the value of Ty and of ¢, (at Ty) lead to three
constraints on the J,,. The remaining parameters, determining J(¢) and A33 (q),
are derived from the experimental spin-wave energies in the cone phase (Nicklow et al
1971). In our analysis, the spin-wave energies were calculated numerically within the
MF-RPA approximation, without making use of the large-J approximation underlying
the usual linear spin-wave theory. A detailed account of the theory has been given
by Jensen and Mackintosh (1991) and by McEwen er al (1991). Nicklow et al (1971)
and Jensen (1976) showed, using linear spin-wave theory, that it is impossible to
explain the variation of the energies and scattering intensities of the c-axis spin waves
observed in the conical phase of erbium, if the two-ion anisotropy is neglected. This
conclusion is not changed when we apply the more accurate theory. The linear spin-
wave theory neglects higher-order 1/J-renormalization effects, and the anisotropic
component Ixzz 2(q) (Jensen 1974, 1976), is multiplied by an overall scale factor
of about 1.6, compared with the estimate based on the linear theory However, the
present analysis indicates that including ]x33 2(q), rather than K2 272(q), gives a better
overall account of the magnetic properties of erbium. Both kinds of anisotropy have
similar effects on the spin waves, but they modify the cycloidal structures slightly
at elevated temperatures in different ways, and KZ *(q) suppresses strongly the
transition to the a-axis magnet, when a field is applied along this direction, in
contradiction with the experimental behaviour shown in figure 4.

The final inter-planar coupling parameters are given in tablc 3, and thc intra-
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Figure 4. The magnetization curves in erbium at 4.2K. The figure shows the average
component parallel to the field of the site-dependent angular moments, (J"), as a
function of the internal magnetic field applied along the three symmetry-directions. The
solid curves display the MF results, and the experimental points are taken from Bozorth
et al (1972), which are consistent with the results obtained by Féron (1969) (see also
Cogblin 1977) below 60 kOe, shown by the black dots (his c-axis data are obtained at
20K, where the slope is expected to be slightly larger than at 4.2K). The saturation
value of the magnetization, when (J) = 7.5, is assumed to be 310 emug~! including
a 3% increase due to the polarization of the conduction electrons.

Table 2. Crystal-field parameters (meV).

0 0 0 6
By BY B B¢
-0027 -0.3x 10~ 0.13 x 10~3 -0.9x10-°

planar coupling [K%?], is chosen to be zero (Jensen 1976). The corresponding
results for the spin-wave energics are shown in figure 5. In addition, the calculated
scattering intensitics of the spin waves are in agreement with the previous theory and
hence with experiment (Jensen 1974). The two exchange coupling parameters, J(gq)
and J_.(q) = J(q) + Jp(q), are compared with the effective two-ion anisotropy

K(q) =(J—H2J-1)’K%(q) (5)

in figure 6. In terms of K(q) the (leading-order) contribution to the cone-energy
at zero temperature is — 1 N J2K(2q,) cos? 0sin* 0. A comparison of the magnitude
of the different couplings involves some arbitrariness. The anisotropy component
depends on the direction of magnetization (cos? 6 sin* @ ~ 0.04), and the comparison
may be based on the energy contribution, as here, or on the effects on the excitation
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Figure 5. Spin-wave dispersion relations in the c-
dircction in the cone phase of erbium at 45K.
The closed and open circles represent the measured
+¢ and —q branches, respectively (Nicklow et al
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Figure 6. The Fourier transform of the two-ion
couplings in erbium as determined from the inter-
planar coupling coeflicients given in table 3. J(q)
and Jec(g¢) (the dashed line) and the anisotropy

1971). The solid lines are the results of the MF-RPA
calculation.

component K(q) are plotted as functions of the
reduced wavevector q/7c, along the c-axis.

Table 3. Inter-planar coupling parameters (meV).

n 0 1 2 3 4 5
Tn 0165 0073 -0025 =-0006 0018 —0.003
[FE?] x100 00 08  -07 0 00 -03
[n3] x10° 0 06 025 —005

n

energies, as considered previously (Jensen 1976), in which case the effective K(q) is
a factor of 4 larger than the function defined in (5).

The general arguments presented in the appendix show that the symmetry of
the HCP lattice allows two-ion couplings which change sign when the sublattices
are interchanged, or when the crystal is rotated 60° around the c-axis. To lowest

order there are three possibilities, and the one which most readily accounts for the
measurements is

My =) K5(i)[05(0)d,; + O53(i)J,;]. (6)
i

We therefore take the total Hamiltonian as H = H;, + H,.
The two-ion couplings are treated in the mean-field approximation, so that the
MF Hamiltonian for the <th ion, M (7), includes the exchange term

= (Ji = 5T 2T @T).
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According to the general relations derived in the appendix, the contribution of H; to
Hyp(1) is given by

AMygr(i € pth plane) = (=1)? Y [K}]

n2l1
x |{03(3) = (03N} J (p+ n) = J,(p—n))
+{052(1) = HOTX (N HJo(p+ n) = J,(p — n)) ™

= (=D"{Jys = 34,0 (O3(p + m) - O3(p — n)
— (=)™ = {053 (p + 1) — O3 %(p - n)]

where the argument p + n denotes an ion in the (p £ n)th hexagonal layer. Table 3
gives the values used for the inter-planar coupling constants [A3!] , which were
obtained by comparison of the calculated and observed neutron diffraction intensities.

The structures were calculated by a straightforward iteration procedure. The first
step was to assume a distribution of the expectation values of the various operators,
and to insert these values in the MF Hamiltonian for the :th ion, which was then
diagonalized. The partition function, the free energy, and new expectation values for
this ion could then be calculated. By carrying out this calculation for all the different
ions in one commensurable period, we obtained a new distribution of expectation
values, and the procedure was then repeated until sclf-consistency was obtained. The
convergence is reasonably rapid except close to a second-order transition. In the
calculations, the length of the commensurable period was considered fixed, so that
the derived structures are generally only metastable. Except for the specification of
the length of the commensurable period and the main characteristics of the structure,
e.g. whether the arrangement is cycloidal or conical, the structures given by the model
are independent of the starting distribution.

The trigonal coupling was included in all the structure calculations, but estimates
showed that it is unimportant in the calculation of the spin-wave dispersion relation.
This is also the case for the single-ion hexagonal anisotropy B¢, and both were
neglected in the spin-wave calculations of figure 5. These interactions have a slight
influence on the mean opening angle 6 of the cone, which was accounted for by a
small adjustment of BY in the spin-wave calculation, and also lead to off-diagonal
interactions between spin-waves at different g-values. The second-order effects on the
spin waves are small, and the first-order energy gaps, which occur whenever the spin-
wave energies e(q) = e(+q +3q. + 7.) or e(q) = e(+q =+ 6q,), are estimated to be
of the order of 0.1 meV, which is too small to have been resolved in the experiments.
Such gaps do not coincide with the two gaps indicated by the experiments close to
q = +0.47, which may rather be explained as originating from a threefold symmetric
interaction between the spin waves and the transverse phonons (Jensen and Houmann
1974, Jensen and Mackintosh 1991).

The model developed here has the same deficiencies in describing erbium at low
temperatures as the earlier one (Jensen 1976); the cone phase has too high an energy and
the fit to the basal-plane magnetization curves at 4.2 K is unsatisfactory. The calculated
energy of the cone phase lics about 1 meV/ion above that of the cycloidal phase in the
zero-temperature limit. Part of the discrepancy arises from the two-ion magnetoelastic
effects, and the o-strain changes occurring at 7. account for about 0.2 me V/ion (Rosen
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et al 1973, Jensen and Mackintosh 1991). In the calculation of the low-temperature
magnetization curves in figure 4, we have neglected the more stable phase, in which the
c-axis moments oscillate between positive and negative values, as being an artefact of
the model. The agreement with experiment is good when the field is applied along the
c-axis, and also at low fields, but not at high fields, in the basal plane. The model accounts
correctly for the effective anisotropy in the zero-field cone phase.

The a-axis magnetization data (Bozorth et al 1972, Féron 1969) show two low-field
transitions, at about 20 and 35 kOe. The calculations indicate that the system is in the
fan phase between the two transitions, and that it is ferromagnetic above the second.
Around 120 kOe, the angle between the direction of the ferromagnetic moments and
the c-axis changes abruptly from ~ 35° to 90°. In the case where the field is applied
along the hard axis in the basal plane, the b-axis, the fan phase appears to be stable from
about 20 kOe up to the maximum field of about 140 kOe.

The discrepancies between the results predicted by the model and the experimental
data indicate that it is incomplete. We have already mentioned that the o-strain two-
ion couplings tend to stabilize the cone phase. All the strains influence the basal-plane
magnetization, but the magnetoelastic changes are estimated to be too small to explain
all the deficiencies. We have neglected any variation of the coupling parameters with
temperature, although the temperature dependence of the ordering wavevector suggests
such an effect, which has also been observed in other rare earths (Jensen and Mackintosh
1991). The RKKY exchange coupling may change due to the deformation of the Fermi
surface of the conduction electrons induced by the polarization of the local moments,
or, as proposed recently by Plumer (1991) for the case of holmium metal, because of
two-ion magnetoelastic effects. In addition, the analysis of the spin-wave dispersion
relation does not exclude the possibility that other axial anisotropic two-ion couplings,
besides the classical dipole term, are present. As discussed earlier (Jensen 1976), these
couplings do not influence the spin waves very much but may be important for the
structural energies. It is possible to remove the two specific discrepancies mentioned
above by allowing the difference J(q.) — J(0) to be temperature dependent, assuming
the low-temperature value to be about a factor of two smaller than that derived from the
high-temperature properties. However, this more complex model has other deficiencies,
as the descriptions of the spin-wave energies and of the magnetic structures in the
intermediate phase become less satisfactory. All in all, these features indicate that
a more realistic model for erbium than the one presented here should include the
magnetoelastic effects, a temperature variation of 7(g¢), and additional axial two-ion
anisotropy. Although the existence of various possibilities for the anisotropic two-ion
couplings in erbium may introduce some arbitrariness in the derivation of the isotropic
exchange coupling from the spin-wave data, the 7 (q) of figure 6 is close to that obtained
earlier, indicating that it is quite insensitive to the assumed form of the anisotropy.

4. The commensurable magnetic structures

The magnetic structures of erbium have been determined in two different ways.
Firstly, the mean-field theory described in section 3 has been used to calculate them.
The structure is specified by (J,,), where p is a label of one of the m different layers
in a commensurable period. The static correlation function is then given by
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, 2

Soa(r) = % Z(Jaj) e 8)
2

We assume an equal distribution of domains, so that terms in the cross-section which
are either off-diagonal or odd with respect to « cancel. The scattered intensity is
proportional to the components of the moments perpendicular to the wavevector
transfer, so that

I(00L) = S,, (k) + S, , (k) ©)
with L = q/7_, while
I(10L) = (1= 3RS, (8) + S, (R)] + (1= &]) S, (%) (10)

where & and & are respectively the component of the unit vector  /« perpendicular
and parallel to the c-axis.

When & is parallel to the c-axis, the scattering function does not depend on
the orientation of the two sublattices and equation (8) is identical to that which
would be derived for a simple hexagonal lattice with the smallest effective reciprocal
lattice vector of 27,. Similarly, in the absence of the trigonal intcractions, the mcan-
field Hamiltonian does not distinguish between the two sublattices. Consequently,
alternate peaks in the [00L] scans, figures 1 and 2, should have zero intensity for the
magnetic structures suggested in table 1. We can obtain non-zero intensity for these
peaks by interchanging the triplets and quartets to give for example a (4433) structure
instead of a (4343) structure. These structures are however energetically unfavourable
and furthermore give significantly different neutron diffraction intensities from those
observed. This explanation of the extra peaks must therefore be rejected.

A more satisfactory explanation is that the Hamiltonian contains a term, or terms,
which distinguish between the two sublattices, such as the trigonal interaction given
by H, in equation (6). The different possible forms of such an interaction are
discussed in the appendix, and all have similiar effects. If, in the absence of these
terms, the magnetic ordering is a planar cycloidal structure in the x—z plane, they
cause the structure to distort in the y-direction, imparting a wobble to the cycloid as it
propagates in the c-direction. These distortions have wavevectors 3q.+ 7., and g, + 7.
In the case of the (4343), structure g, = %7, and the x- and z-components repeat
after every seven layers, while the y-component repeats only after every fourteen
layers. The mean-field theory was used to calculate the commensurable structures
throughout the cycloidal phase, and the results are shown in figure 7 for the 2(43)
and 2(4443) structures, and in table 4 for the 2(44443) structure. The correlation
functions for these structures were also calculated and are compared, in figure §,
with the results derived from the corrected experimental intensities. As explained in
section 2, we used the results of Habenschuss er al (1974), supplemented by those
of Atoji (1974) to determine the intensities of the primary reflections relative to the
higher harmonics. We furthermore used their careful analysis in converting these
intensities into absolute amplitudes and hence in deriving the correlation functions.
The agreement between the theory and the experiments clearly indicates that the
calculated structures are substantially correct.

The structures were also deduced directly from the experimental correlation
functions (neglecting the peaks at (001)). The intensities are proportional to the
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2(43) 2(4443)

Figure 7. The structures of the 2(43) and 2(4443) phases of erbium as determined from
the model at, respectively, 49K and 35K. The (a, b, c)-axes shown are of length J = 7.5,
corresponding to the saturated 4f moment. The dashed lines show the projections of
the angular moments on the a—c plane. The moments are labelled according to the
phase convention of eqn (12), and in the remaining halves of the periodic units have the
same a- and c-components but reversed b-components. This gives rise to a non-planar
wobbling of the cycloid, which is small at high temperatures.

squares of the appropriate amplitudes of the Fourier expansions for the ordered
moments. In general the structures cannot be obtained from the intensities without
a knowledge of the phases. In all of the calculated 2(4...3) structures the ordered
moments are, however, characterized by the expansions:

(er)z Z (—1)(5—1)/2Az(s)sin[sqcpc/2]

s=1,3,..

(J,,) = Z (_1)(s—1)/2Ay(s)Sin[.s(qc + 7.) pc/2) (11)
s=1,3,...

(Jop) = (~DED2 A, (s) cossq, pe/2]
s=1,3,...

in which all the amplitudes A_(s) are positive, and s < 7./q,. A,(s) decreases
monotonically with increasing s as does A_(s) in general, while the behaviour of
A (s) is more complicated. The choice of these signs is supported by the observation
that if (J,,) = +£J then A,(s) = 4J/ns, and that the z- and y-components are
smallest/largest when (J,,) is largest/smallest. By using these phases, the intensities
measured in our experiments and those of Habenschuss er al. (1974), we obtain
the results shown by the circles in figure 9 for the 2(443), 2(4443) and 2(44443)
structures. The comparison with the mean-field results shows that both methods give
rise to very similiar structures for the J, and J, components. The J, components
are similar to those shown in figure 7 but are omitted from figure 9 for clarity. The
main difference is that the projections of the structures on the a—c plane obtained
from the experimental intensities are rather more open than those obtained from the
model.
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Figure 8. The correlation functions (00L) and I(10L) of the commensurable magnetic
structures in erbium in the intermediate cycloidal phase. The lines are derived from the
calculations of the structures, and the circles are the experimental resulis determined
from the neutron scattering intensities. The logarithmic scales in the two plots differ by
one decade.

The ordered moments in a layer next to the triplet (p = 2 and 17 in table 4)
have a large basal-plane component. At 25K, the model predicts a tendency for this
moment to jump into the basal plane to give a structure we denote as 2(4444303)
instead of 2(444443). However, a comparison of the calculated intensities with the
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Table 4. The 2(44443) structure at 29K as determined from the model. The next 19
layers are identical with the first 19 given in the table, except that the signs of (J:p)
and of (J.p) are reversed.

Uzp)  (Jup)  (Jap)
0.0 0.0 6.964
2730 0421 6261
4782 0871 3500

P
0
1
2
3 1.910 0474 —6.709
4 —0.651 0018 —-6.924
S
6
7
8

-2.891 -0.210 -6.000

-3369 —-0.419 5.567
-1.214 -0.259 6.860
0897 -0.115 6.899

9 2965 -0.077 5.899

10 2.965 0077 -5.899
11 0.897 0.11s -6.899
12 —-1.214 0259 -6.860
13 -3.369 0.419  —-5.567

14 -2891 0.210 6.000
IS —0.651 —0.018 6.924
16 1910 —-0.474 6.709
17 4782 —-0.871 3.500

18 2730 -0421 —-6.261

2(443) 2(4443) 2(44443)

Figure 9. The structures of the 2(443), 2(4443) and 2(44443) phases. The lines are
the calculated angular moments projected onto the a—c plane, and the circles are the
results deduced from the experimental intensities shown in figure 8. The moments in
the remaining parts of the periodic structures, which are not included, are related to
those shown by simple symmetry operations.

observations clearly favours the latter structure.

The situation is more uncertain at 20K for the eight-layered, g, = }—17—0, structure.

The mean-field theory predicts that the free energies of the (3030) and the (44) structure
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are nearly equal, but the scattering from these structures differs in that the third
harmonic in an [00L] scan is a factor of about 200 larger for the (3030) structure than
for the (44) structure, so that it should be easy to distinguish between the two. However,
our experimental results and those of Habenschuss et al (1974) give very different values
for this intensity; our results shown in figure 10 favour the (3030) structure, but theirs
indicate the (44) structure. We conclude that further work is needed to clarify the
structure of this phase and that, since the energies of the two competing structures are
very close, both may occur under different circumstances or in different crystals.

f(ooL) I(10L)
10' 10°
20K 20 K (3030)-structure
10° F  (3030)-structure 10 b Q
10" CS 10° F
10° F 10"
10° | 107 |
10" 5 10°
10K 10 K Cone-structure
10° | Cone-structure 10" f
10" | 10° F ?
10% o 10" |
10° o 10° |
¢ o o ? [¢] o TT I
10° . . , 10° Lo, Lo 1 |
1.0 1.2 1.4 1.6 1.8 2.0 0.0 0.2 0.4 0.6 0.8 1.0
Reduced Wavevector Reduced Wavevector

Figure 10. The correlation functions of the %‘-phase and of the cone. The meaning of
the symbols is the same as in figure 8.

The experimental results obtained for the cone phase at 10K are shown in figure 10.
s

The ordering wave vector is 0.2837_ ~ 3t 7, giving a period of 42 hexagonal layers. The
second largest peak in the [00L] scan has ¢ = 1.4767, and in the [10L] scan there
are large peaks with ¢ = 0.4767, and 0.5247_. These peaks are readily explained as
arising from the effect of the trigonal coupling on the basal-plane helical ordering. If the
basal-plane moments spiral uniformly, the trigonal coupling induces an anisotropy term
proportional to (—1)? cos3¢,, where ¢,, is the angle between the z-axis and the basal-
plane moments in the pth layer. This term leads to bunching, analogous to the effect
of the single-ion hexagonal anisotropy, and thus to higher harmonics at (3 + 1)g, + 7.
The model predicts not only the 2.*-harmonic at ¢ = 1.4767,, but also a 4.*-harmonic
at ¢ = 1.9527, close to the nuclear Bragg peak, which is nearly as strong but was not
observed in our measurements. In contrast, Lin et a/ (1992) have clearly resolved both
harmonics in the cone phase (at zero field), and a comparison shows a close agreement
between their intensities for the two harmonics and those predicted by the mean-field
model. We do not understand the origin of the differences between the two experiments.
If, in the mean-field model, the A'%{(ij) coupling is replaced by K3%(ij), the 2.*-
harmonic is much weaker than that observed, and consequently the latter was neglected.
The absence of a 5.-harmonic in both the calculations and in the measurcments shows
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that the single-ion hexagonal anisotropy is unimportant for the cone structure (it is '
effectively multiplied by sin® @ ~ 0.01). The trigonal coupling is therefore responsible
for the lock-in of the structure at g, = % .. Although the period of the commensurable
structure is 42 layers, it effectively repeats itself after every 7 layers, modulus an odd/even
multiple of 60° for an odd/even numbcr of layers. This periodicity is reflected in the
observed and calculated 7.-harmonic at ¢ = 1.6677,. This structure is shown in figure 11,
which illustrates the repeat every 120°, with the moments on alternate sublattices having
equivalent structures rotated by 60°. This structure is therefore a graphic illustration of
the importance of the trigonal coupling and its effect in stabilizing the 37, wavevector.
The measurements contain a number of other weak peaks, both in the [10L] and the
[00L] scan, which are not reproduced by the model. Some of these may be due to
magnetoelastic effects, the effects of which are neglected in the model, and others may be
spurious. For example, peaks in the [10L] scan corresponding to the one at ¢ = 1.286,
in the [00 L] scan should have been visible, but were not observed.

Figure 11. A projection on the basal plane of the calculated moments in the cone phase.
The solid and dashed lines distinguish between the two sublattices. The moments on
a particular sublattice bunch around the corresponding three a directions, leading to
a pattern with a threefold rather than sixfold symmetry. The magnitude of the planar
moment varies slightly, and is accompanied by a corresponding small variation of the
c-axis component.

The calculated neutron diffraction intensities in general agree so completely with
the experimental observations that there can be little doubt that the basic features of the
structures are correct. However, there are some discrepancies, and it is difficult to judge
which of them are due to failures in the model and which to experimental difficulties. In
spite of the precautions which were taken, some of the weak peaks are contaminated by
multiple scattering and possibly by weak contaminants in the incident beam. In addition,
extinction is important. For instance, at the transition to the cone phase near 18K,
the intensity of the (100) Bragg reflection increases abruptly. We observed roughly a
doubling of this intensity at the transition, while Habenschuss et al (1974) obtained an
increase of a factor of six. The discrepancies at the highest temperatures in figure 8
may, in part, reflect that the model predicts T, = 54.8K, whereas the experimental
value seems to be higher (some 3-5K above that reported earlier). In fact, there are
indications that thc basal-plane moments are ordered at even higher temperatures,
but at a different wavevector from that of the c-axis component. This requires more
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experimental study, as do the peaks observed at and near to [001] in many of the [00L]
scans. It is hard to understand how these peaks, which have also been observed and
discussed by Lin et al (1992), are produced by the magnetic structures. On the other
hand, neither do they seem to be due to multiple scattering. It is possible that they
are due to stacking faults combined with the trigonal couplings, or that the conduction
electrons can produce this kind of scattering in the magnetically ordered state.

§. Conclusion

High-resolution neutron diffraction experiments and mean-field calculations
have been used to determine the commensurable magnetic structures of erbium. This
study illustrates very effectively the complementarity of the two techniques. Neutron
diffraction alone can go far towards solving even rather complex structures, but ex-
perimental difficulties with, for example, multi-domain samples, multiple scattering
and extinction, as well as the fundamental problem of phase determination, make
the support of the calculations invaluable. They also suggest distortions of the struc-
tures, such as the wobbling of the cycloid and the trigonal bunching of the cone,
which would be very difficult to deduce directly from the experimental data, as well
as identifying the novel type of interaction which must be invoked to produce such
distortions. The good agreement between the experimental and calculated diffracted
intensities gives the deduced structures great credibility.

All the parameters of the model Hamiltonian, except the trigonal coupling,
were obtained from magnetization and spin-wave measurements. The somewhat
unsatisfactory fit to the basal-plane magnetization curve in the cone phase, shown
in figure 4, makes it evident that the present model for erbium is incomplete. The
basic reason is presumably that, since S is small in erbium compared with L, the
RKKY exchange is relatively weak compared to other two-ion couplings and to the
magnetoelastic effects. We anticipate that there are a number of additional two-ion
anisotropic couplings in erbium, which have effects on the magnetic properties, but
which we have not considered and are difficult to isolate.

In the intermediate phase, between the ordering temperature 7y of the basal-
plane components and T, the basal-plane components are not helically ordered, as
originally proposed by Cable et al (1965). To a first approximation, the hodograph of
the moments is an elliptically polarized cycloid, whose plane lies in an a—c plane of the
crystal. The c-component of the ordered moments is the largest at all temperatures,
and the commensurable structures are constructed from sequences of 3 or 4 successive
hexagonal layers, with the c-component alternating in sign from one block to the next.
This type of commensurable ordering of c-axis blocks was originally proposed by
Gibbs et al (1986), and is confirmed, with one reservation, by the present work. From
our more detailed examination of the structures, we conclude that the 3-sequences
are all very similar, with the ordered moments in the second layer along the c-axis
and those in the first and third layer rotated oppositely an equal angle away from
the c-axis, like the layers 29-0-1 in figure 7. The four different ordered moments
in a 4-sequence, surrounded by other quartets, are also arranged (approximately)
symmetrically with respect to the c-axis, as the layers 6-9 in figure 7, whereas a
4-sequence next to a 3-sequence is distorted. The triplet induces a large rotation of
the moments towards the basal plane in the layer closest to the triplet, and because
of the hexagonal anisotropy, there is a tendency for these moments to jump into the
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plane, creating a O-layer with no ordered c-axis moment. This tendency increascs
with decreasing temperature, and our calculations and experiments indicate that the
eight-layered structure at 20K is more likely to be (3030) rather than (44), whereas
the structures studied at higher temperatures do not seem to involve any 0-layers.

The planar arrangement of the moments in the cycloidal intermediate phase,
between Ty and T, is only an approximation. The experiments show clearly that
the magnetic structures depend on the two different orientations of the hexagonal
layers in the HCP lattice. The smallest effective reciprocal lattice vector along the
c-axis, reflected in the magnetic peak positions in the [00L] scans, has the length
7. and not twice this value. This can only be explained by a trigonal coupling in
the magnetic Hamiltonian, and the possible couplings of this type were established
in a systematic way using general symmetry arguments. Such interactions induce
a simultaneous ordering of the b-component with the a-component at 7Y, whose
magnitude is proportional to the square of the a-component, to leading order. The
basic ordering vector of the b-moment is ¢ = 3¢q.+ 7, and gives rise to the harmonics
in the [00L] scans with ¢ = £(2p + 1)q_ + nr, with odd values of n, whereas the a-
component is responsible for the even-n harmonics. In accordance with equation (11)
the largest displacements along the b-axis occur for the moments in the 4-blocks
closest to a 3-block, as shown in figure 7 and table 4. The difference in the ordering
wavevectors of the two basal-plane components means that the magnetic structure is
essentially non-planar, and forms a wobbling cycloid. In the case of the eight-layered
structure, the two kinds of harmonics coincide, and the (3030) and (44) structures
are calculated to be only weakly non-planar. Consequently, the (44) structure is, to a
good approximation, a tilted rather than a wobbling cycloid. We note that the trigonal
coupling is cancelled out if the ellipsoid of the ordered moments is parallel to the
b—c mirror-plane of the HCP lattice, and does not therefore produce any distortion of
a cycloidal structure in this plane.

This is not the first time that trigonal couplings in the rare-earth metals have
been considered, but it is the first time that unambiguous features of the magnetic
structures have required such low-symmetry couplings for their explanation. In their
study of the commensurable spin-slip structures in the helical phase of holmium,
Cowley and Bates (1988) observed some weak peaks which suggested a modulated
c-axis component superimposed on the helix. This result can be explained by the
trigonal couplings (Jensen and Mackintosh 1991), since the helical components with
the wavevector g, along the c-axis induce an ordering of the c-component with
q = 3q. + 7. In the spin-slip structures of holmium, the c-axis moment is zero at
the single spin-slip planes, where the basal-plane moment is along an easy b-axis. On
the pairs of planes, in which the deviation between the basal-plane moments and the
nearest easy b-axis is (approximately) plus and minus the same angle, the magnitude of
the c-axis component is constant but changes sign after every pair. The corresponding
modulation of the c-axis component in the cone structure of erbium is calculated to be
extremely weak and has not been observed. The trigonal coupling may also explain the
lock-in transition to an eight-layered commensurable structure observed in holmium
near 96K (Plumer 1989, Steinitz et al 1989, Tindall ef al. 1991). In the absence of
the trigonal couplings, the lock-in can only be caused by the hexagonal anisotropy
(possibly somewhat enhanced by a ~-strain deformation of the basal plane), and this
single-ion anisotropy is very weak at such high temperatures. In the eight-layered
structure with g, = 17, the trigonal couplings induce a modulated c-component at
g = —3q.+ 7., which has the same wavevector as the helix. This structure is analogous
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to the (3030) structure in erbium, and in holmium it is (approximately) a tilted helix,
with the O-layer moments and tilt-axis parallel to an easy b-axis. Hence, although
the coupling is weak, its importance for the umklapp energy is much enhanced. If
the trigonal couplings are responsible for the lock-in transition in holmium, they also
offer a simple explanation for the strong enhancement of the lock-in effect observed
when a magnetic field is applied in the c-direction. In this case the 4.*-modulation of
the helix, which is proportional to the ferromagnetic moment along the c-axis, leads
to a ferromagnetic basal-plane component (4q, + 7. = 27.) contributing directly to
the umklapp energy. Hence the trigonal couplings have the unusual effect of inducing
a ferromagnetic basal-plane component in the eight-layered cone structure.

The trigonal couplings were first considered in order to explain the strong
interaction between the acoustic magnons and the optical transverse phonons
observed in the c-direction of Tb (Jensen and Houmann 1974). Their analysis shows
that this dynamical interaction is a consequence of a coupling with threefold symmetry,
and that the coupling depends on a non-collinear polarization of the conduction
electrons, because it is found to involve the transverse phonons polarized orthogonal
to those predicted in the case of a pure ferromagnet. Liu (1972) also concluded that
the acoustic—optical interaction must derive directly from the spin—orbit coupling of
the conduction electrons. His arguments are straightforwardly generalized to produce
the trigonal couplings which we have considered from the spin—orbit coupling of
the conduction electrons, and these interactions are equivalent to the antisymmetric
Dzyaloshinsky—Moriya interaction in the magnetic transition metals. The spin—orbit
effects on the band electrons in the rare-earth metals are stronger than in the
transition metals and the localized moments in the rare earths (except Gd) have
a large orbital component. The combination of these two factors may explain why
the trigonal couplings in the rare-earth metals are relatively much larger than the
very weak Dzyaloshinsky—Moriya interactions in the transition metals.

The trigonal inter-planar couplings in the model were determined from the
neutron diffraction intensities. The [3)(:j) interaction was neglected because of
its weak influence on the cone structure. The two other couplings, K%j(ij) and
K32(ij), give similar results. We have chosen to concentrate on the first, mainly
because it is a coupling between two odd-rank tensors, and thereby emphasizes that
this interaction derives from the spin—orbit coupling of the conduction electrons.
A model including only the inter-planar coupling [K3l], between neighbouring
planes leads to much larger differences between the 3.*-; 5.*- and 1.*-harmonics
than observed experimentally. Consequently second and third neighbouring-plane
interactions were included and the fit thereby significantly improved. The fits of
the (2p + 1).*-harmonics in the c-axis scans could possibly be improved further
by introducing more inter-planar couplings, but most of the remaining discrepancies
behave somewhat unsystematically and may be largely due to experimental difficulties.
The inter-planar coupling coefficients, scaled with respect to their J-dependence,
(J-HJ - n[KE ,» are comparable in magnitude to the two-ion anisotropy
constants (J — 3)?(J — 1)2[K3;?] and are only about a factor of three smaller
than the isotropic exchange J,. This comparison does not take account of the
strong dependence of the anisotropy terms on the orientation of the moments. The
contribution of the trigonal coupling to the energy of the different structures is at least
a factor of 100 smaller than the exchange energy. Nevertheless, the trigonal coupling
in erbium is surprisingly large relative to the RKKY interaction, and its magnitude
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emphasizes again that a first-principles explanation of the relative magnitudes of the
various magnetic interactions in the rare-earth metals is still lacking.
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Appendix

In this appendix symmetry arguments are used to obtain a general form for the
magnetic Hamiltonian when the moments are localized on an HCP lattice. The
method used is the same as that of Jensen and Houmann (1975) in their discussion
of the magnon—phonon interaction in terbium. We consider only the case where the
magnetic moments are the same throughout a single hexagonal layer perpendicular to
the c-axis, and derive a general Hamiltonian from the completeness and the relatively
simple transformation properties of the Racah operators, 5,m (see the review by
Lindgdrd and Danielsen (1974)). We assume that only axial tensors contribute. Polar
tensors vanish for the isolated ions, but may in principle be non-zero in the HCP
metals, because the surroundings lack inversion symmetry. They occur then because of
odd-parity configuration-mixing of the 4f wavefunctions, which should be insignificant
for the ground-state multiplet.

The combination of the requirements that the Hamiltonian should be Hermitian,

(cO,, )t = ¢*(~1)™O, _,,, and invariant with respect to time reversal, cO,  —
(—I)I(célm)f, implies that a general term in the Hamiltonian may be written
H =3 [K7F™ (i5)01n (1) O (5)
ij
+ (=)™ K™ (05)7 01 ()01 _ (3] (A1)

where [ 4+ " must be even. The axial tensor operators transform as follows:
{l}olm = 5lm
{Cf}élm = eim¢61m
{az}élm = {CZJ:}éIm = (_1)161 -m (Az)
{Uy}ozm = {CZy}OIm = (_1)I+m51 -m

{Uz}élm = {C22}61m = (_l)mélm

where {I} is the inversion operator, {o,} is a reflection in the plane perpendicular
to the z-axis, {C,,} is a rotation by m around the z-axis, and {C¢} is a rotation
around the z-axis by an angle ¢.



Magnetic structures and interactions in erbium 9695

For the HCP structure with uniform hexagonal layers, the c-axis is a threefold axis,
and when the x-, y-, or z-axes are parallel respectively to the a-, b-, or c-axis of the
lattice, the Hamiltonian (A1) is invariant with respect to the application of {Ci”“},
to give

m+m' =3p p=0,1,2,.... (A3)

The (p = 0)-terms include the isotropic exchange, the anisotropic interaction
K323_2(q), and the axial crystal-field anisotropy, whereas the hexagonal crystal-field
anisotropy is a (p = 2)-term. We shall not consider these contributions further but
concentrate on the terms for which p is odd, or more specifically on the case p = 1
orm+m’'=3.

Introducing (-1)™*™ = —1 in (A1) and using that the plane perpendicular to
an a-axis, or {o,}, is a symmetry element, we obtain

{o 1 = (- [K7™ (i5)0y - (1)Op _pi(5)
]

(A4)
= K7™ (i5)" Ot ()01 (4)] = M.
Since [ 4 !’ is even, this implies that K’mm'(ij) is purely imaginary,
Kpmi (i)t = =N7m™ (i) (AS)

and the resulting Hamiltonian may be written as H = .. H(ij) with

H(ig) = K7 (i)[00n ()00 (3) + O) _n(D)0p _i(§)]. (A6)

The hexagonal layers are mirror planes of the lattice. A reflection with respect to the
layer in which the 7th ion is situated implies that (¢, j) — (7,7), and hence that

H(i,§) = {0, YH(i,7) = —H(3,7)
or
Kymi(i,3) = =Kjm™'(i,5). (A7)

In the following, the indices 1 and 2 label the two HCP sublattices and («, 8) = (1,2)
or (2,1). The HCP lattice is invariant under a translation plus a rotation by = (or
7/3) around the c-axis, in which operation (7y,j,) — (#3,373),

H(iy,J0) = {sz}H(iz,jg) = _H(i23jﬁ)
or
K (i3005) = =K ™ (41 4) (A8)

The combination of (A7) and (A8) implies that

I(mm (ioﬂjﬁ) = I(mm (jﬁ’ia (?Il’m (Z.a’ja) = '—]\’mm (ja’ia) (Ag)

showing that the coupling is symmetric in 7 and j, or in ({m) and ({’m’), when
the sites belong to different sublattices, but antisymmetric if they belong to the same
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sublattice. The combination of the symmetry operations used above generate the HCP
lattice.

In the lowest order of [+’ > m+m/, i.e. for [+1' = 4, there are three possibilities

for a trigonal coupling: K2, K39, and K2} Introducing the Stevens operators, which

73
are Hermitian, instead of the Racah operators, we may write the K3:-coupling as in

equation (2.1.39) of Jensen and Mackintosh (1991). Here we consider instead the
coupling K%, Using O;,, = VI5(03 £i03%)/V8 and O, = (J, —iJ,)/V2,
we obtain

H=Hy=» K}N(ij)[053i)J,; + O7%(i)J,;] (A10)
17

where K21(ij) = (V15/2i) K2 (ij) and is real.
We have neglected the complication that the Hamiltonian (Al) in the ordered
phase, where the time-reversal symmetry is broken, may contain terms proportional

to (61,,1) of (mainly) magnetoelastic origin, because these terms do not change the
qualitative features of the model.
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