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MAGNETO-ELASTIC INTERACTIONS IN TERBIUM
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Making use of the Hamiltonian for linear magneto-elastic coupling which has been proposed by Callen and Callen, we
have deduced expressions for changes in the velocity of acoustic waves in a Terbium crystal, due to ferromagnetic ordering

and the application of an external magnetic field.

These calculations agree semi-quantitatively with the results of experimental measurements. We have also examined
the extent to which this simple picture is applicable to explain the magnon—phonon interactions in Terbium, which have
been observed at finite wave vectors by inelastic neutron scattering.

1. INTRODUCTION

Because of their large orbital moments, the heavy
rare earth metals display the largest known mag-
netostriction effects.!’? This strong coupling
between the magnetic moments and the lattice
has the effect that the elastic constants and the
sound-wave velocities depend relatively strongly
on the magnetization of the crystal. A number of
experimental observations of this effect have
recently been published.’””. In this paper we
derive expressions for the change in sound veloci-
ties below the Curie temperature due to the linear
magneto-elastic interaction, in terms of the
magnetostriction coefficients and the magnon
energies. The change in velocity due to an applied
field is also considered. The extent to which these
considerations apply to the magnon-phonon inter-
gctions, which have been observed at finite wave
vector by neutron scattering, is also discussed.

2. THE MAGNETO-ELASTIC
HAMILTONIAN

In the spin wave theory® ? it is normally assumed
that the ions remain in their equilibrium positions.
However, the R-dependence of the exchange and
crystal-field parameters causes a coupling between
magnons and phonons, leading to a modification
of their energy and to magnetostriction. Mason'®
has-derived macroscopic expressions for the mag-
netostriction, while Callen and Callen'' have
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developed a phenomenological theory of the
magneto-clastic coupling. Following them, we
write the interaction between the lattice and the
spin system:
Hs—L =~ Z[(a‘]ij/aRia)aRia
ij,a
+ (8J ;0R;,)OR 1T, J;
+ G01Z[Jg2 — U+ Dlfes + e;))
J
+ GosZ[J;Z — 3 + 1D]jess
J
- Gzzz BIU*)? + (J‘)z],(eu — e33)
J
+ (120[(F)* — (J7)*1je12]
- G13Z [%[‘,LCJC + J§J§]jel3
J
+ %[Jg-],, + JJdeas] + G442 ER(TARN
J
+ (J_)4],(en — €3)

—(20[*)* = ) e] (D)
The strains e, are defined in terms of the elastic
displacements u,(7, t):

eup = (1 — 30,9)(0u,/0x, + Bup/Ox,)  (2)

In accordance with Rhyne and "Legvold,! the
coordinate system used for the hcp Tb structure
is orthogonal, with the 1-(oré-) axis along a(1120)
crystal axis, the 2- (y-) axis along the b (1010)
direction, and the 3- ({-) axis along the ¢ (0001)
crystal axis. The angle o is defined as the angle
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between the £-axis (hard direction) and the z-axis.
z is the direction of the net magnetization, assumed
to lie in the basal plane.

Hg_; has the symmetry of the hexagonal lattice.
The only two-ion term which is included is the one
arising from the exchange energy (J (R, R) is
assumed to be a function of R; — R only). The
Gy, Gos» Gy, and G,, terms comprise the total
one-ion magneto-elastic Hamiltonian to the second
power in the spin operators. Besides these, we have
included one term of fourth power (G,,), which has
about the same magnitude as G,, in Terbium. The
assumption that the terms have purely one-ion
character is in accordance with the measurements
performed by Rhyne and Legvold.!

Comparing the average value of this Hamil-

tonian at T = 0°K with Mason’s magnetostriction
equation,!' % we obtain:
D3y = Gyy(J — ) = 2Ccqe/NJ (3)
Dyy = GualJ — DU — DU — 3) = Acee/NJ (4
Gy = Hocaa/[NJ(J — 3)] (5)
and defining
D' =D +(4/2), Dy; = Go,(J = 3),
Do3 = GoslJ — %) (6)
we have
OE /ey — 3NJDy; = — [2D'(cy; — co6)+ Gey3)
(7)
OE.j0es3 — 3NJDoy = — [2D'c;3 + Geys) (®)
where
OE../0e,, ~ OEj0es; = — 2NJX(J, + J})
=2E, (9
or
$[20E . j0e;; + OE.,jdes;3]
= WE,,/0V = — (E.B/T)0T,/dp (10)

A, C, D, G and H, are the magnetostriction con-
stants, defined by Mason.'® c;; are the elastic
constants, ¢cgs = 3(c;; — ¢1,), B is the bulk modu-
lus. N is the number of atoms in the crystal (or
two times the number of primitive cells).

The Hamiltonian H ; is mainly used for dis-
cussing magnetostriction. It can however be ex-
tended to account for the dynamical interactions
between magnons and phonons. The relative dis-
placement of the ions is allowed to depend on the

position of the ions. This deviation from the
homogeneous strain is then expanded in normal
phonon-coordinates. After introducing the spin
wave operators as defined in ref. 9, we find a

‘Hamiltonian with the form :

A =Yeq) o, +3) + A, + AP,
+ Zkhw(k)(ﬁ:ﬁk +9 1y

where
H(Sl—)l = ;W(k)(oc,:' + a_))(B + ﬁtk) (12)
and
(2) Z [U(k, Q)“qﬂc“
+ V(k’ q)f(aq+ka—q + aqa—q—k)] . (Bk + ﬂjk) (13)

B and «, are respectively phonon and magnen
annihilation operators.

3. ACOUSTIC VELOCITIES

The Hamiltonian with only the first kind of
interaction, H{,, (the effects of A, and of
H@, are assumed to be additive) can be diagonal-
ized exactly by a series of canonical transforma-
tions. It causes a splitting apart of the magnon and
the phonon dispersion curves, where they would
have crossed in the absence of the interaction, by
an amount 2| W(k)|. The energy shift of phonons
with long wavelengths is :

Aho(k) = — 2| W(k)| 2/&(0) (14)

when g(0) # 0. as is the case in Terbium.

The Hamiltonian involving the other kind of
interaction, A{”;, can be diagonalized approxi-
mately by the equation of motion method. New
phonon and magnon operators are constructed,
defined by

Y = B + 0By — %[éﬁb 5ﬁk+]ﬁk (15)

where
~  Ulk,q) .
i “Z g + k) — elg) — hofk) ™ "
q
1 Vik,q)
T I TR+ dlg) — hok) T
3 Vik. 9) oafat, . (16)

2 &g + k) + &(g) + hol(k) %a
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We then have:
[V m, 51 = how(k) + Aho(k) = hao(k)
+ <[6B, (AR, 11> (17)

where all terms which are not diagonal in magnon
and phonon operators are neglected. The energies
of phonons with long wavelengths are then changed
by an amount :

on(q)
Aho(k) = Z HU(I" 9P de(q)

q

— |Vik, q)}z.::;’;] (18)

where
(q) = ! (19
"= xple@ykyT] — 1 )

The resulting changes in velocities due to the linear
magneto-elastic coupling are:

N,
CarA4(0) — B)  ©

,1,, _1_# . _ 2 ani(q)
2c,,Zei(q)2 o a2

ndq)

Avd‘ua = —

— [« {q9)B — #,A49)]* .

where

edq) = [(A{q) + B)(A{q) — B)]* and i =1 or 2
corresponds to acoustic and optical modes res-
pectively (see refs. 8 and 9; it should be noted that
the exchange integral defined here is one half of that
in ref. 9).

For propagation in high symmetry directions,
the parameters of equation (20) have the following
values:

(I) Longitudinal sound waves in symmetry direc-
tions (« = 1, 2 and 3 here represents the direction
of the k-vector):

Aioq) = —2J(Jo + Jo — J,
+ (=] Jy|) + A, (21)
oy =Dy, + 3D,, cos2¢ — 10D, cos 4¢

A, =Dy, — D, co82¢ + 6D, cos 4¢ (22)
&, =Dy, — 3D,, cos2¢ + 10D, cos 4o
B, =Dy, + D,,co8 2 — 6D, cos 4p (23)

A3 =Dyy; B3 =Dy, (24)

F1 =F2=D22Sin2(p—2D44Sin4(p;F3:0
(25)

(II) Transverse sound waves in the basal plane
(either in a 1. or 2. direction) with the polarization
vector in the basal plane (¢ = 6):

A 6(q) = A5 =3D,,sin2¢ + 10D, sin4¢;
Bs = — D,,sin2¢p — 6D, sindgp  (26)

I'c =D,, cos 2¢ + 2D, cos 4¢ (27

(II) Transverse sound waves in the c-direction
(¢ can here be considered as the angle between the
polarization vector and the z-axis). This velocity
(and change in velocity) is equal to the velocity
(change) of the transverse sound waves in the basal
plane with the polarization vector parallel to the
c-axis:

Avs Hic,, cos?

vs  2NJ(4,(0) + B)

Hicy, sin’e n (61)

TN =D ek (28)

An external magnetic field (H) will, besides a
possible change of the angle ¢, modify the strength
of the magneto-elastic interaction. This is mainly
due to the H-dependence of g(q):

Ai(q’ H )
which implies:
AAvjv)joH = gug) d(4dvjv)dAfq)  (30)
q,t

= Aig,0) + gugH (29)

so that
o) = [a(Av5/IUS)/aH]¢=0
= Hicaagug/[2NJ(4,(0) + B)*1  (31)
and
o, = [0(4vs/vs5)/0H] 5= o5

Hicqaagps Adq)n{q)
~ 2NZJ(J — ) edq)?

ngg+1 1
X|: kT +8i(4)] 32)
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A = [Avs/vs])5-r2 — [AVs/vs])5-0, %) and a; have
been measured in Terbium at T = 140°K by
Moran and Liithi,* who find :

4=30.10"3 oy =3.6.107° 1/kOe
and
o, =7.2.1073 1/kOe
From these experimental values we deduce :

Hy,=14-10"21/N Y, l/e{q)* =~ 1/[3.3 meV]?
i

and
(IN)Y. 1/e{q)® ~ 1/[3.6 meV]?
q,i

The values of the energy sums are reasonable, when
compared with the experimentally determined
dispersion relations for the spin waves.!>'3 The
value of H,, is in fair agreement with the value
deduced from magnetostriction measurements?:
Hy, =23-10"% at T = 140°K.

4. THE MAGNON-PHONON
INTERACTION

As stated above H{, gives rise to energy gaps in
the magnon energy spectrum. In directions where
J;, is real (J; =J_,) interactions only occur
between magnons and phonons which are both
acoustic or both optical. J; is real in the c- and
the a- directions, and the Hamiltonian predicts
here energy gaps at the nominal crossing points of
the magnon and phonon dispersion relations,
which have the magnitudes:

: J 3
Aea(q) = 2]’15] I:M(A(q)*_—B)] |Fa| , o= land 6
(33)
J #Hocaa
o0 =i O

M is the mass of the atoms. The indices « = 1,5
and 6 refer to the phonon modes defined above.
Fig. 1 shows the magnon and the transverse
phonon dispersion curves for Terbium in the
c-direction at T = 79°K, where 4; = 0.6 meV and
A, = 1.5meV. Interactions between acoustic longi-
tudinal phonons and acoustic magnons are also
observed in the a- and b- directions.!® Due to the
multi-domain character of a ferromagnetic crystal
in the absence of a magnetic field, three neutron-
groups of equal magnitude should be observed at
the crossing points, in a constant g-scan. One

neutron-group arises from domains in which
¢ =n/2 and 37m/2 (where the magnetization is
perpendicular to the g-vector); and two groups show
the energy splitting in those domains where
¢ =mn/6, 5n/6, Tn/6 and 11m/6 (see equations
(25) and (33)). The neutron data may in fact be
satisfactorily interpreted in this manner.! 4 The
expressions (33) and (34) give almost correct

meV §
10+

Qg

€(q)

05 06 A’

]
T

1 1 1 1
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q

FIGURE 1. The magnon (MA, MO) and transverse phonon
(TA, TO) dispersion curves (or Terbium in the c-direction at
79°K. The magnon-phonon intcraction causes a mixing of
the modes and energy gaps A, and 4, at the crossing points of
the unperturbed dispersion relations (indicated by dashed
lines).

values for 4, and the energy splitting in the a-direc-
tion. However, the Hamiltonian (1) cannot explain
the observation of the energy gap 4, near the
Brillouin zone in the c-direction, where an acoustic
magnon and an optical phonon dispersion curve
cross. The reason why this Hamiltonian is not com-
pletely adequate for large wave vectors is probably
the use of the concept of “strain” in the one-ion
terms. The strain is well defined for small g-vectors,
but for large g-vectors the R-differentiation (see (2))
is not uniquely defined. One should use instead the
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relative displacements of neighbouring ions. This
results in no qualitative modifications, but intro-
duces a correction factor, (2/gc) sin (gc/2), to
expression (34), where ic is the distance between
neighbouring planes in the c¢-direction (and a
similar correction factor in (33). An explanation
for the energy splitting 4, requires a direct calcula-
tion of the behaviour of the crystal field due to
changes in the positions of neighbouring ions.

5. CONCLUSION

Beginning with the magneto-elastic Hamiltonian,
we have therefore deduced general expressions for
the modification of the velocity of acoustic waves
in a ferromagnetic metal due to magnetic ordering
and the application of a magnetic field. It has been
shown that these expressions give semi-quantitative
agreement with the experimental results for
Terbium, and they should also be readily applicable
to measurements on the other ferromagnetic heavy
rare earth metals. The same Hamiltonian, with
macroscopic magneto-elastic parameters, also gives
an adequate account of the magnon—phonon
interactions at short wavelengths which have been
observed by inelastic neutron scattering, provided
that the interaction is between acoustic phonons
and acoustic magnons, or optical phonons and
optical magnons. The treatment of other cases
requires an extension of the Hamiltonian to include
explicitly the relative displacements of neighbour-
ing ions.

We are attempting to reformulatc thc problem
in order to take account of such effects and we

also plan to carry out numerical calculations of
the magnon sums involved in the expressions for
the acoustic velocities, to allow a more detailed
comparison with experiments. Further experi-
mental measurements are also being made of the
effect of magnetization and field on acoustic
velocities in Terbium. The magnon—phonon inter-
action is being further examined by inelastic
neutron scattering measurements in a Terbium
crystal which has been made into a single domain
by the application of a field. The results of these
studies will be reported in due course.

Helpful discussions with A. R. Mackintosh and
P. A. Lingard are gratefully acknowledged.
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