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The mass enhancement of the conduction electrons due to their interaction with the ionic
magnetic moments is derived. The effect of the mass enhancement on the specific heat is
considered as a function of temperature in both the paramagnetic and the spin-polarized
ferromagnetic cases. The experimental magnitude and the field dependence of the low-
temperature specific heat of Pr metal clearly indicates large mass enhancement. An esti-
mate shows that the theory gives a good account of these observations. A comparison be-
tween the result of band-structure calculations and the experimental electronic heat capacity
indicates that the electronic masses in the magnetically ordered heavy rare-earth metals are
enhanced due to the spin waves. This indication is found to be fairly consistent with a

theoretical estimate of the effect.

I. INTRODUCTION

It is known that conduction electrons can acquire
an appreciable increase in their effective mass m*
due to interactions with different low-lying excita-
tions of the solid. Well-known examples are the
mass enhancements due to the electron-phonon in-
teraction! (e.g., in Pb) or the interaction with
paramagnons>? (e.g., in Pd). In the former case the
low-lying excitations, i.e., the phonons, refer to a
system which is distinct from the electron system,
while the paramagnon excitations occur in the
conduction-electron system itself. In the latter case
we can therefore view the increase in m* as being
due to electron-electron correlations. Recently it
was demonstrated* that a large m* can also result in
rare-earth systems due to the interaction of the con-
duction electrons with the excited levels of the angu-
lar momentum of the 4f electrons. This explains
the experimental findings of Forgan® that the low-
temperature specific heat of Pr metal is large and
strongly dependent on an applied magnetic field.

In the present investigation we want to extend this
earlier work. The effect of the mass enhancement
on the specific heat is considered at finite tempera-
tures. An effort is made to demonstrate that the
mass enhancements due to phonons, paramagnons,
and magnetic excitons can be treated on the same
footing. Furthermore, the theory is generalized to
the case of ferromagnetically ordered systems. The
general theory is developed in Sec. II.

In Sec. III the theory is applied to the rare-earth
metals. In the case of Pr the theory is quantitatively
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improved without loss of simplicity. In addition,
the effects of both the “hexagonal” and the “cubic”
sites in Pr are included. The heavy rare-earth metals
are magnetically ordered at low temperatures. The
increase of the effective masses in these metals is
found to be partly canceled by the reduction of the
density of states in the exchange split ground state
in fair agreement with band-structure calculations.
The absolute magnitude of the coupling parameter
predicted by the mass-enhancement effects in the
rare-earth metals is discussed. It is found to be con-
sistent with other properties depending on the ex-
change interaction between the conduction and 4f
electrons. A summary is given in Sec. IV which also
contains the conclusion.

II. DERIVATION OF THE EFFECTIVE
MASS

The Green’s function of an interacting electron
system has the general form

1

_, (1)
0—€=—2(P,0)

G(p,0)=
where e—p»=(p2—p})/2m is the kinetic energy of a

noninteracting electron with momentum P calculat-
ed from the Fermi surface and py is the Fermi
momentum. 3X(P,w) is the mass operator and con-
tains all irreducible scattering events of the electron
with its surroundings. The poles

E(F)=e;+2(5,E ()

of G(P,w) determine the excitations of the electron-
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ic system. The effective mass m* is defined for the
excitations close to the Fermi surface and is given
by

1 1 3E(P)
= . (2)
m PF 3P |p=pF
This equation can be rewritten in the form
* 9Z(pr,»)
m dw ©=0

when assuming

m 93(P,w)
Pr 0P p=pF

to be small compared to 1. m*/m is a real quantity
because the imaginary part of 2(p,w) vanishes like
w* for the quasiparticles close to the Fermi surface.
The contribution to m* becomes appreciable if
2(pg,w) varies rapidly with o close to @=0. This
will be the case when =(pr,w) results from interac-
tions of the conduction electrons with excitations of
sufficiently low energies.

The effective mass may be determined by cyclo-
tron resonance experiments or by low-temperature
heat-capacity measurements. In the zero-
temperature limit the electronic part of the specific
heat is

C= yT——yoT yO—Eﬂ—ZkBN 0). (4)
|

2(Briwn)=— 3—2 f—LG(p iy R(B—

P-p .Wn-wWm

P',Wm
FIG. 1. Lowest-order contribution to the self-energy
2(P,iw,). The solid line represents the electron Green’s
function G(P',iw,). The wavy line represents the boson
propagator R(p—Pp ',i (0, —wn)) and the dots stand for
the coupling constant g.

N(0) is the density of states per spin state at the
Fermi surface in the noninteracting case.

Owing to Migdal’s theorem,! which holds in all
cases that will be considered, it suffices to consider
the lowest-order diagram shown in Fig. 1 when cal-
culating 2(P,w). In it the propagator of the boson
excitation (phonon, paramagnon, or magnetic exci-
ton) appears just once. We shall denote this propa-
gator by R (q,w) and specify it only in the end. The
coupling constant of the electron to the boson exci-
tations is denoted by g. Since we are interested in
calculating m* at finite temperatures T =1/kzf3 we
must perform the calculations with finite-
temperature Green’s functions. This implies work-
ing  with  discrete = Matsubara  frequencies
w,=1(2n +1)/B, n being an integer, which replaces
the continuous variable . The mass operator corre-
sponding to Fig. 1 is then given by

PLilw,—w,)) . (5

3(P,w) is obtained from =(P,iw,) by analytic continuation. We use the spectral representations’

G(p ,lco,,,)— f dET(:()—R—_E)

R(P—Pilwp—wp,))= f dE'M

’
iw,—iw, —E'

(6)

and perform the frequency sum over m. This results in (see, for instance, Ref. 6)

Z(p,zw,,)——zng 25 )3

— oo

In order to simplify the dP ’ integration we use

(—J?—N(O)—f "dgq [dey. .

The calculation of the average value

. 1 - .
2(p,tw,,)=; fin.E(p,la),,)

""dE [T dE'S (5", E)r (55 E)
P E

tanh +coth | ——

BE
2

—iw, +E’

)

(8)

9)
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can be performed at once. One merely has to use the fact that close to the Fermi surface the Landau quasipar-
ticle picture holds:

)
0E,

S(iJ",E)ES(E—EF,)/ 1—Re , (10)

where
Eg. =€, +ReX(p',E3.)

is the energy of a quasiparticle with momentum P’. Hence neglecting Im3(p ',E F’) we obtain, after analyti-
cally continuing 2(p,iw,)=2(iw,),

fE)—5

f_ww dE f_ww dE'r(q’E,)E—-l-E_'——a) )

(11)

2p
Re3(0)=g™N (0)=—; [ " dgqP
2pi

where P indicates the principal part of the integral. Furthermore, f(E)=(1+e?E)~! is the Fermi function,
and r(q,E’) is the average of r(q,E’) with respect to the direction of q corresponding to Eq. (9). The neglect-
ing of the term proportional to coth(BE’/2) in Eq. (7) and the extension of the integration over dE to *+ o im-
ply only corrections of the order /D, where D is the conduction-electron bandwidth. By making use of the
property r(q,—E')= —r(q,E’), which follows from time reversal symmetry, and introducing

r(g,E")= —;IT—ImR (@E'+i0")

one finds the temperature-dependent mass enhancement

m*(T) »F © , ., |1 .BE'
m* D _ a0 2n€p§ J, " dagq [, dEmR (gE"Re iy |2 +iE% (12)
T
when expressed in terms of the first derivative of the frequency- and temperature-dependent self-energy
digamma function ¥(z). In the T—0 limit this sim- on it. There is a simple and natural way to derive
plifies into an expression for AC, by observing that Im3(w)
m*(0) 1 25 only introduces corrections of the order E'/D in the
=1—-g’N(0)—5 f o, 949R(g,0) expression for m* /m, provided that T << Ty, where
m 2pi TF is the Fermi temperature. This must also be the
(13) case when considering the specific heat or the entro-
with the use of the asymptotic relation ¢'(z)—z~! py- Hence neglecting Im2(«) the electronic entropy
for z— 0. Notice that m* only depends on the stat- is determined by the statlstilcal behavior of fermions
ic part of the boson propagator at T =0. Next we with an excitation energy given by
want to discuss the behavior _of the c?lectronic excess E.—¢€.+ReS(E~,T).
specific heat AC,(T) due to interactions of the elec- PP P
trons with the bosons. Experimentally it is, of Therefore
course, not possible to separate the total excess -
speciﬁc_heat AC due to those interactions into an S =2kp f _dPLS[ In[1+exp(—BE )]
electronic part AC, and a boson part AC,,. There- ) P
fore, if one is interested in AC itself one should start
out from an expansion of the thermodynamic poten- +BE+f(E3)} . (14)
tial to second order in the coupling constant g and
calculate AC from it. Here, instead, we want to con- With this expression for the entropy the electronic
sider AC,(T) only, in order to study the effect of theI specific heat is
= dE -,
C, =T£=2 f _‘iLE_’ of  of "%
oT (2mw)} P | T BEF oT
°° df dReX 9f dReZ
=Co+2N(0) [ dow |35 = — 22 = (15)
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where Cy=7,T plus corrections of the order (T /TF)’.

The result for AC,=C, —C, is the same as obtained by Grimvall’ and corresponds to the excess electronic

entropy
_ 1 = of
AS =2N(0) T f_wdwco % Re3(w) .

(16)

The term proportional to coth(BE’/2) in the total expression for 2(w), Eq. (7), can still be neglected, as the
contribution of this term to AS is of the order E’'/D. Neglecting terms of this order of magnitude, ReZ(w,T)

given by Eq. (11) can be used, and we finally obtain

2p © ’ ’
AC,=—2kB[gN(0)]22—12— J, daq [ aE |mR (@ EVEE L/ gE ) - TR IEED 1 (g /2
PF o

with
L (y)=yRe[iy¢'(iy)—1] . (170b)

We shall now specify the boson propagator. We
remind the reader that for phonons

R(E]',w)=a)3q+/(w2—w2a») R (18)

where g describes the phonon dispersion. Here we
have adopted the definition of the phonon propaga-
tor as given in Ref. 1 which has the advantage that
the electron-phonon coupling constant is frequency
independent. For paramagnons®

—2N(0)

R(a,ﬂ))= . 1 2 ’
1-Nowy - , - 9

2 qufr 12 PFZ
(19)

where V is the electronic exchange interaction and
N(0)V is less than but close to 1 (v is the Fermi
velocity). The factor g2 has to be identified with the
square of the electron-phonon coupling constant and
with V2, respectively (in the latter case there is a
correction factor of fi- in the expression for
m*/m —1).

In the case of rare-earth systems the interaction
Hamiltonian for the conduction electrons interacting
with the localized rare-earth moments may be writ-
ten

Hyy=—I g -1 3 &R,)T,, (20)
n

where Iy is_an exchange integral, g; is the
Landé factor, J, is the total angular momentum of
a rare-earth ion at site R,, and & are the Pauli ma-
trices. With this Hamiltonian we can make the fol-
lowing identifications:

g=—(g— Dy,
R (a,w)= _TrXaa(a’w) ’

21

oT
(17a)

|
where Tr indicates the trace of the susceptibility ten-
sor X qp.

In order to illustrate the above results we shall
consider the simplest possible case, namely, a
crystal-field level scheme consisting of two singlets
only, separated by an energy 8, which are coupled
through a matrix element M. Neglecting any disper-
sion effects one can write (see, for example, Ref. 8)

2
TrXaa(?]',a))=ML8—tanh B . (22)
8 —w? 2

T T T T
3,__ -
2._

Reduced specific heat
o

2

-3 1 1 1 1
0 02 04 06 08
Reduced temperature (kgl/5)
FIG. 2. Reduced specific-heat contribution which ar-
ises due to the coupling of the conduction electrons with a
singlet-singlet system, i.e., K given by Eq. (24) as a func-
tion of the reduced temperature k3T /8. The straight line
shows the asymptotic behavior in the low-temperature
limit. The dashed line indicates the “pure” electronic part
obtained when the derivative of the magnetic population
factor in Eq. (24) is neglected.
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At T =0 one finds from Eq. (13)

* 2
2 g N0 o)

This shows that for small excitation energy 6 we can
|

expect large effects in m*. In the low-temperature
limit, AC,=(m*/m —1)y,T. An analysis of Eq.
(17) shows that this holds true approximately as
long as kpT <0.158, at which temperature AC,(T)
starts to decrease rapidly. In Fig. 2 the reduced
specific heat

K(l/BS)=AC,7(1—[(gL —DIN(0)| M | 17*=4ny [tanh(my)L"(y) +7 cosh~X(mp)L (9], — ps 2 (24)
B

is shown in the singlet-singlet case; L (y) is the func-
tion given by (17b). The dashed line in the figure
shows the result if the second term proportional to
cosh~*(my) is neglected. The difference between the
solid and the dashed lines gives rise to a minor scal-
ing of the magnetic specific heat, as L (y)=~ —y for
kgT >0.45, in which case this term is simply
—(m*/m —1)1_¢2N(0)d times the magnetic heat
capacity. The behavior of the electronic specific
heat is going to be masked completely by the mag-
netic contributions for kzT >0.28. There should,
however, be ihe chance that the maximum at
kpT =0.158 might show up as a minute anomaly in
an accurate measurement of 3C/3T. AC, and
m*/m —1 are both zero for k3T >>8, which means
that elastic scattering processes due to degenerate
crystal-field levels do not contribute to AC, and
to be subtracted from R (g,0) in Eq. (13).

Next we consider a system in an external magnet-
ic field or in a magnetically ordered state. In that
case the self-energy can become spin dependent.

When a magnetic field is applied we must calculate
I

1
1

P;T"*‘Pp{ © © 1
_ 272 ' - '
ReZ(w)=(g, — VIEN(0)—— [ daqP f_wdE f_wdE LImx+~(g,E")

|pt—p}

2pipF

and the similar expression for ReZ;(w) in which
X~ *(q,E’) replaces X+ ~(g,E’). The symmetry rela-
tion

ImX*~(¢,—E')=—ImX~*(q,E’)
implies
NT(O)RCEf(—w)z"‘Nl(O)RCEJ(w) . (27)

This equation shows that (m*/m); and (m*/m),
might differ from each other but only if the density
of states at the spin-up and spin-down Fermi sur-
faces, N,(0) and N,(0), are different. This corrects
a statement made in Ref. 4 where it was erroneously

suggested that in an external magnetic field along
1

ﬂz my m}
TkgT N1(0)—=+N,(0)—

C=

R(q,0)=—TrX,,(q,o)

[see Eq. (21)] in the presence of the field. The crys-
talline electric field levels are then Zeeman split by
the effective field, which consists of the external
field and the molecular field from the neighboring
sites. For a detailed discussion we refer to Refs. 4
and 9. As far as magnetically ordered materials are
concerned there have been earlier attempts by
Kasuya'® and in particular by Nakajima'® to treat
the influence of magnons on the electronic low-
temperature specific heat. We want to improve on
those studies and also simplify them. We restrict
ourselves to the ferromagnetic case, where the mo-
ment (J,) produces a splitting between the spin-up
(majority spins) and spin-down electron bands. This
means that p}- differs from p} as determined by

A=ep}—ep}=2(gL—l)Isf(Jz)—ZT(O)-i»El(O) .

(25)

When (J,) =J, then ImX,(q,») can be neglected,
and instead of Eq. (11) we obtain

1

fE)—+

E+E—o| 2¢

Ithe ¢ axis Pr should have a spin-dependent mSj.
3,(0) is not necessarily zero, as is the case for 2(0)
in the unpolarized case, although it is presumably
small in comparison with A in Eq. (25). However,
the actual value of 2,(0) depends on the electronic
properties also far away from the Fermi surface,
which means that Eq. (26) is not sufficiently accu-
rate for calculating this quantity. We also remark
that the perturbation of the electronic bands, which
is due to 2 (w), does not affect (at least to leading
order) the relation which exists between I,;(J, ) and
the degree of polarization of the conduction elec-
trons when the unperturbed density of states is used.

In the low-temperature limit we obtain, in gen-
eralization of Eq. (4),

2
=%k§T[N,(O)+N,(O)+2(gL—1)21,2,-N,(0)N,(0)(X)] . (28)
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Here we have made use of the expression (26) and
the equivalent form for ReZ,(w) from which,
through Eq. (3), m} and m7 are obtained. For
T—0 those expressions can be integrated which
respect to dE and dE’ as demonstrated before for

Eq. (11). The average value of the trace of the sus-
ceptibility is given by
pi+pp 2J4,
O=—— """ dgg——% . 9
pppp |P}E‘_P}'l A —B

Remember that X,,(q,0) does not contribute to the
trace in the low-temperature limit. The form of Eq.
(29) is obtained by using the conventional form for
Xxx(q,0)+X,,(q,0) for ferromagnets in an applied
field. Itis

A5=J[FO0) - (@] +4 +gusH .  (30)

(Aza. —B?)'/? is the dispersion relation for an aniso-
tropic ferromagnet in a field H, applied along the
direction of magnetization. £(q) is the Fourier
transform of the Heisenberg interaction between the
angular momentum of the rare-earth ions, and A4
and B are single-ion anisotropy constants (see, for
instance, Ref. 11).

III. MASS RENORMALIZATION IN
RARE-EARTH METALS

The importance of mass renormalization in rare-
earth metals due to the interaction of the conduction
electrons with the localized 4/ moments has recently
been discovered experimentally by Forgan.’ He
found that the effective density of states N*(0), in
Pr metal, as deduced from heat-capacity measure-
ments between 1 and 6 K, was about a factor of 4
larger than predicted by band calculations.!> More
significantly, he observed that this enhancement fac-
tor was reduced by as much as ~25% in an applied
field of 4 T, which shows that the effect must be of
magnetic origin. White and Fulde* subsequently
showed that the exchange interaction between the
conduction electrons and the 4f electrons modifies
the effective mass in Pr in a way which agrees in or-
der of magnitude with the experiment. Their esti-
mate can be improved quantitatively when utilizing
the fact that the dispersion of the magnetic excita-
tions in Pr (Ref. 9) only introduces minor correla-
tion effects between 1 and 6 K.!* Within an es-
timated error of less than 10% we can use the fol-
lowing approximation in Eq. (17):

1 %F
—2——2: fo dq qR (q,0)
dQ_.

2

z—TrXo(a)) ’ (31D

&
T
|

Y (mJ/mole K?)
3
T
|

Pr

©
T
|

0 | l | |
0 1 2 3 4 )

Magnetic Field (T)

FIG. 3. Specific-heat coefficient ¥ of Pr metal as a
function of a magnetic field applied in the basal plane.
The solid circles are the experimental results of Forgan
(Ref. 5). The solid line shows the behavior predicted by
Eq. (33) when the molecular-field model of Houmann
et al. (Ref. 9) is being used.

where Xo(w) is the noninteracting susceptibility ap-
pearing in the random-phase expression

X(q,0)=Xo(w)/[1—£(GXo(®)] . (32)

With this simplification we find that the Sommer-
feld constant y is

r="o{1+ (gL —1I¥N(0)
X 5 Tr[XE™(0)+X§*(0)]} (33)

when we make the plausible assumption that the ef-
fective exchange coupling between the conduction
electrons and the Pr ions is independent of whether
an ion is situated at a “hexagonal” or a “cubic” site.’

The molecular-field model for Pr developed by
Houmann et al.® predicts TrX5(0)=11.4 meV~!

and Trx§"™0)=4.8 meV~! at zero field and tem-
perature. TrX§(0) is strongly dependent on the
field applied in the basal plane, and the solid line in
Fig. 3 shows the behavior predlcted by E‘l (33)
when the field dependence of X5%(0) and X§™°(0) is
calculated according to Refs. 9 and 13. Thereby
¥0=15.0 mJ/moleK?, corresponding to N(0)=1.06
eV~! per atom and spin, and I;=0.092 eV is used.
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TABLE 1. The electronic specific-heat coefficients of the heavy rare-earth metals in units
of mJ/mole K2 The first row, Yexpr» are the experimental values. y, are the noninteracting
values predicted by band-structure calculations (Ref. 18) according to the results shown in Fig.
4 when the band splittings given in the caption are used. With these values of ¥, the theory
predicts the modified coefficients ¥, when the mass enhancement due to the spin waves is in-

troduced.
Gd Tb Dy Ho Er
Yexpt 3.7 4.35° <4.5° 6+1°¢ <9.5°
Yo 2.1 2.8 3.7 42 42
Veale 3.7 5.0 7.0 8.4 8.4

aAfter Ref. 15.
bAfter Ref. 16.
cAfter Ref. 17.

The calculated field dependence of y agrees reason-
ably well with the experimental results of Forgan.
The minor, but systematic, deviations may be only
partly due to our approximation in Eq. (31). The
temperature interval 1—6 K corresponds to k3T /8
lying between 0.025—0.15 and 0.01—0.06 for the
hexagonal and cubic ions, respectively. Referring to
Fig. 2 we expect the hexagonal contribution to be ef-
fectively ~25% larger than that given by Eq. (33).
This effect does not change the field dependence of
7, but suggests that I,;=0.085 eV instead of the
value given above. At 4 T the uniform band split-
ting is about 0.08 eV, which might produce a reduc-
tion of the density of states by ~2% (see later) com-
pared with the zero-field value. This small shift
would reduce the calculated value of y at 4 T by 0.5

12 T T T T T

o
~

o
N
T
|

Density of states [N4(0)N*(o)]m(eV")

o

0 1 L L 1 1
00 02 04 06 08 10 12
Band splitting (eV)
FIG. 4. Mean value of the densities of states at the
spin-up and spin-down Fermi surfaces, [N,(0)N,(0)]'7,
in Gd metal determined by band-structure calculations
(Ref. 18) as a function of the rigid band splitting A. The
solid circles show the densities of states in the different
heavy rare-earth metals predicted by Vs in Table I as
discussed in the text. The zero-temperature band split-
tings in the different metals are assumed to be proportion-
al to (g, —1)J with A=0.82 eV in the case of Gd metal.

mJ/moleK?, and would improve systematically the
comparison with the experimental behavior.

In the heavy rare-earth metals both the experi-
mental results and the theoretical predictions are
more uncertain. At low temperatures Gd, Tb, and
Dy are ferromagnets, and Ho and Er are ordered in
conical structures. Owing to the contributions of
the low-frequency part of the spin-wave spectrum
and the nuclear hyperfine interaction it is difficult
to isolate the linear electronic term in the experi-
mental heat capacity. Furthermore, the y value de-
pends critically on the purity of the sample.!* In
Table I the experimental results obtained in recent
years on highly purified samples of the heavy rare
earths are given.>~17

Band-structure calculations performed on fer-
romagnetic Gd (see the review of Harmon'?) indi-
cate quite a strong dependence of N,(0) and N,(0)
on the band splitting A. The solid line in Fig. 4
shows the variation of [N,(0)N,(0)]'/? with A ob-
tained in the case of Gd.!® These results are deter-
mined by rigid shifts of the energy bands from those
of paramagnetic Gd. The polarization of the band
electrons in Gd gives rise to a moment of 0.63
pp/atom. Depending on whether the s-p electrons
do not participate or whether they are polarized just
as much as the d electrons, this moment corresponds
to A equal to 0.97 or 0.72 eV, respectively. de
Haas—van Alphen experiments'® indicate an inter-
mediate value of 0.82—0.88 eV. Here we use
A=0.82 eV, which, according to Fig. 4, predicts

[N,(0)N,(0)]'/2=0.44 eV~!

per atom and spin in Gd. This value is less than
half the density of states at the Fermi surface in
paramagnetic Gd and agrees with the value given by
Harmon.!? For the densities of states in the other
heavy rare earths we shall use the results obtained
for Gd and shown in Fig. 4 but with a band splitting
A scaled according to Eq. (25) (neglecting the self-
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energy correction). This is a reasonable procedure in
the case of Tb and Dy, but it is somewhat question-
able in the case of the conically ordered metals Ho
and Er (to a lesser degree in Er where the ferromag-
netic component is large). On the other hand, the
superzone gaps in the electron bands produced by
the periodic modulation of the magnetic moments
are going to reduce the effective N(0), and one
might consider the present procedure to give an esti-
mate of this reduction.

In view of the approximations already made in
the theory and the experimental uncertainties, the
following simplifying description of the averaged
magnetic response in the heavy rare earths should be
sufficiently accurate. (X ) in Eq. (29) is being re-
placed by the molecular-field value (X,). It is ob-
tained by setting #(q)=0 in the equation, and we
use £ (0)=(g, —1)%4.8) meV corresponding to
T.=293 K in Gd. This is equivalent to a replace-
ment of the spin-wave spectrum in the different
metals by a flat level lying just above the energy of
the spin wave at g =27 /c in the ¢ direction.

In Table I a comparison is given of the experi-
mental specific-heat coefficients ¥y, with the un-
perturbed values 7y, and the results y,, obtained
from Eq. (28) when the above procedure is used. An
alternative comparison between theory and experi-
ment is given in Fig. 4 where we have plotted the ef-
fective densities of states predicted by Y., When in-
serted in Eq. (28). In both comparisons we have fit-
ted to the result of Gd, i.e., we have used I, =0.065
eV. .As in the case of Pr a crucial test of the theory
might be obtained by studying the field dependence
of y. The present estimate predicts a linear reduc-
tion of ¥, when a field is applied along the direction
of magnetization, which in the case of Tb should
amount to ~4% in a field of 10 T. Unfortunately,
this is on the borderline of the experimental capabil-
ity, although a test of this prediction would be very
valuable. The comparison between the experiments
and the results obtained from band-structure calcu-
lations, as given in Table I or in Fig. 4, is clearly im-
proved when the mass renormalization is taken into
account. The only exception seems to be the case of
Dy metal. This discrepancy might be due either to
the experimental uncertainties, or alternatively, to
the simple scaling of the results for Gd to the case
of, e.g., Dy, without considering other individual
properties.

The coupling constant I;; was found to be equal
to 0.085 and 0.065 eV in the respective cases of Pr
and the heavy rare earths. When trying to relate the
effective coupling constant I;s(y) to other properties
depending on the exchange interaction, the interac-
tion Hamiltonian, Eq. (20), is found to be too sim-
plified. Modifications result from the finite exten-

sion of the 4f-electron cloud, as well as from the de-
viations of the wave functions of the band electrons
from plane waves.? The band splitting A=0.82 eV
together with Eq. (25) indicates I,z =1I,,(A)=0.12
eV. If we consider only the effect of the nonzero 4f
radius, as determined by magnetic form-factor mea-
surements, then we find

Ip(7)~0.85L,4(A)=0.10 eV .

A more uncertain estimate of an effective coupling
constant is obtained from

F(0)=2N(0)g, — 1% .

This relation could be wrong by a factor of 2 or
more, but with £(0)=4.8 meV in Gd we have
I (#)~0.05 eV. The effects introduced when
modifying the wave functions of the conduction
electrons indicate that I;¢(y) is most strongly related
to the effective coupling constant appearing in the
linewidth of the magnetic excitations due to their in-
teraction with the electron-hole pair excitations.
This scattering effect has been detected experimen-
tally in Tb in the low-temperature limit2! A
theoretical account of these measurements?? is ob-
tained using I;;=0.08 eV (together with [N,(0)
XN ,(0)]'% =0.60 eV~'). Combining the different
estimates we conclude that I;;(y)=0.08+0.01 eV
seems to give a fair assessment of the effective cou-
pling constant. Again one should have in mind that
there might be individual differences, especially be-
tween Pr and the other heavy rare-earth metals.

IV. CONCLUSION

The mass enhancement of the conduction elec-
trons due to their interaction with the magnetic ex-
citons has been derived both in the paramagnetic
and in the spin-polarized ferromagnetic cases. The
modification of the electronic mass is found to be
proportional to the static susceptibility of the mag-
netic system. It becomes large if the magnetic exci-
tation energies are small. The theory accounts for
the leading-order contribution to m*, but neglects
terms of the order of 8/D, where § is the magnetic
excitation energy and D is the electronic bandwidth.
By this assessment we have also included the ap-
proximations made in, for instance, Egs. (3) or (8).
The most significant feature of the correction to the
temperature-dependent electronic specific heat, as
exemplified in Fig. 2, is the narrow peak around
kpT =0.156. The position of this maximum does
not depend very much on the actual population fac-
tor, that is, on tanh(88/2) in the singlet-singlet case.
The temperature dependence of ¥ is normally very
difficult to extract from experimental measurements
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because the deviation of AC, from the linear
behavior occurs at temperatures where other non-
linear contributions of the solid dominate. For this
purpose Pr metal might be one of the best qualified
systems, and we propose a careful examination of C
in Pr, which might, it is hoped, reveal a small
change of slope at about 6 K. Because of the field
dependence of the crystal-field splittings the position
of the maximum should be shifted upwards in tem-
perature with an amount of about 0.9 K in a field of
4T.

In Sec. III the theory is applied to the cases of
paramagnetic Pr and the magnetically ordered heavy
rare-earth metals. Pr is quite an ideal system for
studying the enhancement effect, because it is a
singlet ground-state system in which the exchange
coupling has a value just below the one which would
force the system to order magnetically.® This means
that the coupling constant is of substantial magni-
tude, although the system stays paramagnetic, and
that the magnetic response is strongly influenced by
an applied magnetic field. Experimentally’ the
mass-enhancement factor was found to be around 4
at zero field, and it was reduced to about 3 in a field
of 4 T. Both these results are reproduced by the
theory with a value of the coupling constant which
compares well with other estimates. In the case of
the heavy rare-earth metals the situation is more un-
certain, both for experimental and theoretical
reasons. Band-structure calculations!>!? indicate a
substantial reduction in the density of states at the
Fermi surface when the spins of the conduction elec-
trons are being polarized. The experimental values
of ¥ in all the heavy rare earths are larger than the
noninteracting ¥, predicted by the band-structure
calculation. With the exception of Dy our compar-
ison indicates the presence of a mass-enhancement
factor lying between 1.5—2. This indication agrees
reasonably well with the effect expected due alone to
the interaction of the conduction electrons with the
spin waves. In these comparisons we have left out
the mass enhancement due to the electron-phonon
interaction. The experimental result of y=8.2
mJ/moleK? for both Lu (Ref. 23) and Y (Ref. 14)
might be used as an indication of A~0.8 in the
rare-earth metals, where A is the phonon contribu-
tion to m*/m. A phonon term of this magnitude
would only slightly affect our comparison in the
case of Pr, but it would account for most of the
differences between Y.y, and ¥, in the heavy rare-

earth metals given in Table I. Here we have taken
into consideration that A is reduced proportional to
N(0), i.e.,, A~0.4 in Gd. In the spin-polarized met-
als A might be reduced further because the band
splitting introduces a lower cutoff at |p}—p} |, see
Eq. (26), which diminishes the influence of the
long-wavelength part of the phonon spectrum. We
can add that there are indications?*""?? of such a cut-
off in the spin-wave spectrum of Tb lying around
0.3 A~!. However, this minor correction cannot
alter the indication that the above estimate of A
must be exaggerating the influence of the phonons.
Our modest estimate of the mass enhancement in
the heavy rare earths due to the spin waves is not
compatible with experiments unless the above pho-
non contribution is reduced at least by a factor of 2.
This claim is consistent with the result that A~0.3
in Lu metal, which has been deduced from the su-
perconducting transition temperature as a function
of an applied pressure.?*

In conclusion, we can say that the magnitude and
the field dependence of y in Pr clearly indicate a re-
normalization of the electronic mass due to the mag-
netic excitons, and that the effects agree with the
theory. The comparison between ¥, as derived from
band-structure calculations and the experimental
values of y in the heavy rare-earth metals (with the
exception of Dy) shows differences which compare
well with the mass enhancement due alone to the
electron-spin-wave interaction. This comparison in-
dicates that A due to the electron-phonon interaction
must be smaller than ~0.4 in the unpolarized met-
als. As in the case of Pr metal the most direct way
of referring a mass-enhancement effect to the mag-
netic excitons in a rare-earth system would be a
study of the field dependence of y. This dependence
is estimated to be small in the heavy rare-earth met-
als.

We do not consider Pr metal to be unique with
respect to the magnitude of the mass enhancement.
Nor do we consider the (isotropic) exchange interac-
tion as given by Eq. (20) as a necessary prerequisite
for it to occur. For example, PrCu, is known to be a
singlet ground-state system with an induced Jahn-
Teller phase transition.?> In that case the aspherical
Coulomb charge scattering is more important than
the isotropic exchange interaction. When PrCu, is
diluted with La such that the Jahn-Teller phase
transition is suppressed one would expect a large
electron-mass enhancement.
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