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Commensurable spin structures and their
excitations

A. R. Mackintosh and J. Jensen

15.1. Introduction

The standard model of rare-earth magnetism was constructed during  the
1950s and early 1960s,  and Roger Elliott was one of its major architects.
One of the first coherent  descriptions  of the theory is to be found in his
classic discussion of the magnetic structures of the heavy rare-earth metals
by means of the molecular-field  approximation (Elliott 1961). With his
colleagues, he also gave in the following year an account of the magnetic
excitations (Cooper et al. 1962). In these, as in other early theoretical
treatments of rare-earth magnetism, most of the results were obtained
by analytical  means, and the problems caused by the incommensurability
of the lattice and magnetic periodicities were either ignored or treated
by perturbation theory. In this chapter we shall adopt a mean-field
method which is closely related to those used earlier, but differing from
them in two important respects.  There is convincing experimental
evidence that the periodicity  of magnetic structures such as the helix in
the rare earths (and particularly  in holmium which we shall be considering
in some detail) tends to ‘lock in’ to some rational multiple of the lattice
periodicity.  We have therefore studied such commensurable periodic
structures, which have translational symmetry even though the period
may be very long. This symmetry is utilized in numerical self-consistent
mean-field calculations of the structures and, by a time-dependent
extension of the method (the random-phase approximation), of the
excitations. This procedure has allowed us to obtain detailed solutions
under a variety of physical conditions, and has revealed features in both
the structures and excitations which were not suspected until recently.

In the next section, we shall briefly describe the standard model and
the way in which the mean-field calculations are performed. The method
is applied to a discussion of spin-slip structures, whose salient features
are described and related to the form of the magnetic interactions.
A comparison is made between the calculated structures and those
deduced from neutron diffraction measurements. The decisive role of the
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hexagonal anisotropy is emphasized, and its decreasing importance with
increasing temperatures illustrated. We then turn to a consideration of
the dependence of the magnetic structure of holmium on magnetic field.
We find that the puzzling ‘extra’ phases which have been observed in
magnetization, magnetoresistance, and neutron-diffraction measurements
can be explained by a new type of intermediate structure which we call
a helifan. Comparison is made between the calculated structures and
magnetization curves and those determined experimentally, and it is
shown that the particular  helifan which is observed depends on the way
in which the experiment is performed. It is demonstrated that the
occurrence of helifan structures depends on the form of the exchange,
and that they tend to be suppressed by the hexagonal anisotropy. The
excitations of commensurable periodic  structures are finally considered
and various effects  due to the large hexagonal anisotropy in holmium
are described. The excitations of structures with zero and increasing
numbers of spin slips are discussed, and the experimental results  which
have so far been obtained on such structures are briefly summarized.

15.2. Spin-slip structures

We have calculated the magnetic structures of holmium as a function of
temperature and magnetic field by means of the numerical self-consistent
mean-field method developed by Jensen (1976). The measurements of
Gibbs et al. (1985) have demonstrated that the periodicity  of the helix
in holmium tends to lock into the lattice period, and we have therefore
performed our calculations on such commensurable structures, allowing
for the distortions produced by the large hexagonal anisotropy and a
possible field. Our starting point is the model used earlier by Larsen et
al. (1987) to describe the structure and excitations in holmium at low
temperatures. The Hamiltonian is

ilm

The first term is the single-ion crystal-field  contribution, involving the
Stevens operators 0y. The crystal-field  parameters By were determined
primarily from the magnetic structures and magnetization curves at low
temperatures and remain unchanged throughout the calculation,
although the effective anisotropy decreases with increasing temperature,
roughly as a”’ + ‘If’, due to the temperature-dependence of (Oy). The
second term, the two-ion coupling, comprises an isotropic Heisenberg
exhange and the dipolar interaction.  The initial values for the former
were taken from an earlier analysis of the spin waves in holmium (Jensen
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FIG. 15.1. The Fourier transforms, for wave vectors along the c-axis, of the exchange
functions used in the calculations at different temperatures. It is noteworthy that the
maximum increases in magnitude and moves to larger wave vector with increasing
temperature. These functions, together with the crystal-field parameters Sr and the
dipolar coupling,  determine the calculated magnetic structures and excitations for
holmium.

1988), and depend explicitly on the temperature, as shown in Fig. 15.1.
They were adjusted slightly during the calculation, to reproduce correctly
the transition fields from the helical phase, but remained consistent with
the spin-wave data, within the experimental error.

Holmium crystallizes in the hcp structure and the atomic moments in
any hexagonal plane are all aligned. The first  step in the calculation is
to assume a distribution (Ji) of the moments at a given temperature.
The structure is assumed commensurable with a repeat distance, deduced
from experimental data, which may be as high as 50-100 atomic  layers
for the more complex configurations. The assumed values of (Ji) are
inserted into the Hamiltonian and a new set of moments calculated, using
the mean-field method to reduce the two-ion term to the single-ion form.
This procedure is repeated until self-consistency is attained. The free
energy and the net moment in the field  direction can then readily be
calculated for the self-consistent structure.

The results of such self-consistent calculations for different temperatures
and commensurable periodicities are shown in Fig. 15.2. At 4 K the large
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FIG. 15.2. The self-consistent periodic structures calculated at different temperatures.
Each circle represents the magnitude and direction of the ordered moment in a specific
plane, relative to the size of the moment at absolute zero (10~,), indicated by the
length of the horizontal lines. The orientation of moments in adjacent planes is
depicted by the positions of neighbouring circles. (a) The 12-layer zero-spin-slip
structure at 4 K. The open circle in the centre indicates the ferromagnetic component
in the cone structure. (b) The 11-layer one-spin-slip structure at 25 K. The bunched
pairs of moments are disposed unsymmetrically with respect  to the easy axis in the
vicinity of the spin-slip. (c) The 19-layer structure at 50 K. The orientation of the
moments in successive layers is determined by following first the filled circles in an
anticlockwise direction, as indicated, and then the open circles. (d) The 9-layer  trigonal
structure at 75 K. This may be Iooked upon as a three-spin-slip structure, but the
bunching is so slight that it is more appropriate to regard it as an almost regular
helix in which every third plane aligns its moments close to an easy axis in order to
reduce the anisotropy energy.

hexagonal anisotropy causes the moments to bunch around the easy
directions  of magnetization so that the angle 4 between any moment
and the nearest b-axis is only 5.8 degrees, compared with the 15 degrees
which corresponds to a uniform helix. As the temperature is increased
the expectation value (05)  decreases with the relative magnetization
roughly like 0” and 4 increases correspondingly. Simultaneously Q tends
to increase so that the structure at 25 K has reduced its periodicity  to
11 layers by introducing a regularly-spaced series of spin-slips, at which
one plane of a bunched doublet is omitted while the remaining member
orients its moments along the adjacent easy axis. The configuration of
Fig. 15.2(b), in which one spin-slip is introduced for each repeat distance
of the perfect commensurable  structure, is the primordial spin-slip
structure and has a number of interesting features. It is particularly  stable,
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existing over a range of temperature (Gibbs et al. 1985),  possesses a net
moment, and the bunching angle is still rather small. Although the angle
24 between two bunched planes is almost constant, the exchange
interaction  distorts the structure near the spin-slips so that the moments
are not symmetrically disposed around the easy axis. As the temperature
is increased further, the bunching decreases and the concept  of spin-slips
becomes less useful. Thus the configuration of Fig. 15.2(d) can be
considered as a three spin-slip structure, but it is simpler to regard it as
a commensurable,  almost regular helix in which every third plane aligns
its moments close to an easy axis in order to reduce the anisotropy energy.

The spin-slip structures of holmium  have been subjected to careful
neutron-diffraction study by Cowley and Bates (1988). They interpreted
their results in terms of three parameters:

b,     the number of lattice planes between spin-slips;

2fX, the average angle between the moments in a bunched pair;

0, a Gaussian-broadening parameter for K

In a perfect, undistorted structure, o! = 4 and c = 0. The parameter 0
takes into account two effects; the distortions which occur  in perfect
periodic structures such as that illustrated in Fig. 15.2(b)  and possible
irregularities in the positions of the spin-slip planes. The former is in
principle included in our calculations whereas the latter is not. From the
calculated magnetic structures, such as those illustrated in Fig. 15.2, we
could readily deduce the corresponding neutron-diffraction patterns  and
hence, by fitting the peak intensities, determine the values for a and a
which are shown as a function of  b in Fig. 15.3. The parametrization
suggested by Cowley and Bates is in practice rather satisfactory; it allows
a fit of all the calculated neutron-diffraction intensities, which vary over
about five orders of magnitude. with a relative error of in all cases of less
than 20 per cent. Furthermore, as illustrated in Fig. 15.3, the parameter
a is close to the average values of the angle 4 determined directly from
the calculated structures.

The measured and calculated values  of CI are in general agreement,
taking into account the experimental uncertainties. but there are
substantial discrepancies in 0. It is noteworthy that the agreement
between the predicted and observed neutron-diffraction intensities is very
good for the b =11, one-spin-slip structure, and that the experimental
values  of o otherwise lie consistently above the theoretical. This may
indicate that the perfect periodicity of the less stable spin-slip structures
is more effectively disturbed by imperfections.
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FIG . 15.3. The comparison between the neutron-diffraction measurements on
spin-slip structures by Cowley and Bates (1988) (closed circles) and the calculations
(open circles). In the lower figure, the parameter r which, in an undistorted structure,
is half the mean angle between the moments in a bunched pair, is plotted against b,
the number of lattice planes between spin-slips. The open circles show the values of
Q deduced from the calculated neutron-diffraction patterns, using an analysis similar
to that of Cowley and Bates, while the crosses are the average bunching angles
determined directly from the structures. In the upper figure, the experimental and
calculated distortion parameters o are compared. They agree for the stable
one-spin-slip structure, but the experimental G is greater for the others, indicating
that they may not be perfectly periodic.

15.3. The magnetization process in holmium

The effect  of a magnetic  field applied in the plane of a helical structure
was first discussed in detail by Nagamiya et al. (1962) on the basis of a
mean-field model. As the field is increased, the helix first distorts to
provide a moment along H, and then undergoes a first-order transition
to a fan structure, in which the moments oscillate about the field direction.
A further increase in the field reduces the opening angle of the fan which,
in the absence of magnetic anisotropy, goes continuously to zero .,
establishing a ferromagnetic phase at a second-order transition.
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Hexagonal anisotropy may modify this process into a first-order
transition or, if it is large enough, eliminate the fan phase entirely.

The magnetization curves of holmium measured by Strandburg et al.
(1962) and Feron (1969) behaved in accordance with this description  at
low temperatures but, above about 40 K when the fan phase was first
observed, a further phase also appeared, manifested by a plateau
corresponding to a moment about one-half of that attained in the fan
phase. This extra phase was clearly apparent in the magnetoresistance
measurements of Mackintosh and Spanel  (1964),  and later experiments
by Akhavan and Blackstead (1976), in which the field was changed
continuously, revealed as many as five different phases at some
temperatures. The structures in a magnetic  field were investigated with
n e u t r o n  diffraction by Koehler et al. (1967),  who identified two
intermediate phases which they called fans and characterized by the
intensity distribution of the Bragg peaks.

In order to elucidate these phenomena we have calculated the effect
of a magnetic  field on the commensurable structures of Fig. 15.2. At low
temperatures the hexagonal anisotropy has a decisive influence on the
magnetic  structures, ensuring that a first-order transition occurs from
the helix or cone to the ferromagnet, without any intermediate phases.
Below about 20 K, where the cone is the stable structure in zero field,
the cone angle is almost independent of the applied field but, at the
transition to the ferromagnet, the c-axis moment disappears. When the
field is applied in the hard direction  at these temperatures, the moments
just above the ferromagnetic transition do not point along the field
direction  but are aligned very closely with the nearest easy axis. As the
field is further increased they turn towards it, becoming fully aligned
through a second-order phase transition at a critical field which is
estimated from Bz to be about 460 kOe at absolute zero. At low
temperatures, the hexagonal anisotropy also hinders the smooth
distortion of the helix in a field. The moments jump discontinuously past
the hard directions  as the field is increased, giving first-order transitions
which may have been observed, for example, as low-field phase
boundaries below 20 K in the measurements of Akhavan and Blackstead
(1976).

Above about 40 K, when the hexagonal anisotropy is not so dominant.
intermediate stable phases appear between the helix and the ferromagnet.
The nature of these phases may be appreciated by noting that the helix
can be considered as blocks of moments with components alternately
parallel and antiparallel to the field, as is apparent from the structures
illustrated in Fig.15.2. If we write this pattern schematically  as ( + - + - ). 
then the fan structure may be described as (+ + + + )_ The new phases,
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Helix Helifan (4) Helifan (3) Helifan (3/2) Helifan (2)   Fan

+ + + + +            +
- - - - - +
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+ + + - + +
- + - + + +
+ +                      + + + +
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- - +               +               +              +
+ + + - + +

-- - - + +
+ + + +                 +               +
- + - - + +
+ + + + + +
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+ + + -         + +
- - - + + +
+ + + + +   +
- - - - - +
+ +       + +                  + +
- + + + + +
+ + + -         +  +

FIG. 15.4. The arrangement of blocks of spins in the helifan structures. The notation
helifan(p) is used to designate a structure whose fundamental period is p times that
of the helix.

which we call helifans, then correspond to intermediate patterns of the
type specified in Fig. 15.4. We use the notation helifan(p) to designate a
structure whose fundamental period is p times that of the helix. There
are an infinite number  of helifan structures; we have considered those
which seem most relevant for holmium. It is clear that these structures
represent compromises between the demands of the exchange for a
periodic  structure, and the field for a complete alignment of the moments.
They are not due to the hexagonal anisotropy, which, on the contrary,
tends to suppress them, and occur both when the field is applied along
the easy and hard direction in the plane. The energies of the various
magnetic phases were calculated as a function of magnetic field and the
results for the easy direction at 50 K are shown in Fig. 15.5. The wave
vector Q was allowed to vary in small, discrete steps, by changing the
repeat distance, and the absolute minimum in the free energy for the
structure thereby determined, as illustrated in the insert to Fig.15.5.
These calculations lead to  the prediction that the stable magnetic
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FIG. 15.5. The magnetic free energy for different magnetic structures in holmium at
50 K, as a function of the magnetic field along an easy b-axis. The free energy is in
each case minimized with respect to the wave vector which characterizes the structure,
as illustrated for the fan phase in the insert.

structures follow the sequence helix + helifan(3/2) + fan --+ ferromagnet
as the field is increased. The helifan(3/2) is depicted in Fig. 15.6. The
various structures are associated with characteristic neutron-diffraction
patterns, illustrated in Fig. 15.7. An examination of the neutron-
diffraction intensities which Koehler et al. (1967) associate with the phase
which they designate as ‘Fan I’ reveals a striking correspondence with
the helifan(3/2) pattern, as shown by Jensen and Mackintosh (1990),
with a very weak fundamental at Q0/3, where Q0 is approximately the
wave vector of the helix, strong second and third harmonics, and a weak
fourth harmonic. The basic periodicities of this structure are 2Q0/3  for
the component of the moments parallel to the field, and Q0 for the
perpendicular component: the weak Q0/3 peak arises as the result of
interference between them. Similar but more detailed neutron-diffraction
results have recently been obtained by J. D. Axe, J. Bohr, and D. Gibbs
(private communication). As may be seen from Fig 15.7, the changes in 
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Helifan  (312)

FIG. 15.6. The helifan(3/2)  structure in holmium at 50 K. The moments lie in planes
normal to the c-axis and their relative orientations are indicated by arrows. A magnetic
field of 11 kOe is applied in the basal plane and moments with components
respectively parallel and antiparallel to the field are designated by filled and open
arrow-heads.  This component of the moments has a periodicity  which is 3/2 that of
the corresponding helix and the helicity of the structure changes regularly.

the basic wave vector are substantial, even though the underlying
exchange function  is constant, and they agree very well with those
observed by neutron diffraction. For the helix, fan, and helifan(3/2)
structures the experimental (theoretical) values of Q are respectively 0.208
(0.211), 0.170 (0.168), and 0.063 (0.066), relative to the reciprocal lattice
vector b3. The period of the fan phase increases relative to that of the
helix because of the resulting increase in the opening angle of the fan.
This allows a decrease in the exchange energy which is greater than the
concomitant increase of the Zeeman energy. The change in Q in the
various helifan phases is therefore, to a very good approximation,
proportional to their magnetization.

Examples of the isothermal magnetization curves measured in holmium
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FIG. 15.7. The neutron diffraction patterns predicted for the different periodic
structures at 50 K. The scattering vector is assumed to lie along the c-axis. The
structures are calculated with a field of 11 kOe along the b-axis.

are shown in Fig. 15.8 and compared with the calculated results. A
consideration  of all the available magnetization data (Strandburg et al.
1962; Feron 1969) clearly reveals the presence of a plateau in the ordered
moment between the helix and the fan phase, and the value of the
intermediate moment is generally larger than that corresponding to the
helifan(3/2) structure. This indicates that the metastable helifan(2) phase
m a y  replace or c o e x i s t  w i t h  t h e  stable (3/2)-structure in such
magnetization measurements. The occurrence of phases which are not
thermodynamically stable may be explained by a closer examination of
the structures of Fig. 15.4. The helifan(n = integer) configurations may
all be derived from the helix by transforming one in n (-) blocks into
(+) blocks. Since there are only odd numbers of adjacent (+) blocks,
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FIG. 15.8. The calculated magnetization of holmium (Ho) (given by g&(Jii ) per
ion), compared with the experimental results of Feron (1969). In the upper figure
the field is applied along the easy b-axis. At 50 K and 75 K the thermodynamically
stable intermediate phase between the helix and the fan is the helifan(3/2). However
the predicted moment for this structure is too small compared with the experimental
value, and the metastabil helifan(2) phase, whose magnetization is indicated by
dashed lines, accounts at least as well for the magnitude of the moment measured
over a range of temperatures in this intermediate phase. The difference in free energy
between the fan and the ferromagnetic phase at 75 K is predicted to be very small
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conserved. On the other hand,the helicity of the helical regions is 

generating the helifan(3/2) structure from the helix requires the
metamorphosis of regularly spaced (- + -) blocks into (+ - +), and the
helicities of neighbouring helical regions are reversed. We should expect
that the energy barrier for such a complex process would be relatively
high and therefore suggest that experiments such as neutron diffraction,
which are performed at a fixed field over a long time-scale, detect the pure
thermodynamically stable (3/2)  phase, while a rapidly increasing field
may induce metastable (n) domains. The helifan(2) structure has
apparently been observed in the magnetization measurements, and other
metastable helifans may be involved in the five phases observed by
Akhavan and Blackstead (1976). In addition, the very pronounced
hysteresis which they observed is consistent with the fact that the
helifan(3/2) phase is readily formed from the fan in decreasing fields.

The stability of the helifan structures is determined by the form of the
two-ion coupling,  especially the long-range component.  If the exchange
is sufficiently short-range, the helix, helifans, and fan are almost
degenerate  at the critical field; it is the interaction between the blocks
which differentiates between these structures. Helifans may also occur in
other rare-earth systems, for example, dysprosium and erbium, where
helical ordering is observed. It would clearly be of interest to explore the
boundaries of the helifan region when the exchange is altered by
temperature or alloying, and to examine the metastable helifan structures
by neutron diffraction in a changing magnetic  fleld.

15.4.  Magnetic excitations

The magnetic  excitations of commensurable  periodic structures display
a number of interesting features. If Be is positive and the other crystal-field
parameters, including Bg, are negligible, and x(q) is isotropic and has
a maximum at some non-zero value Q in the c-direction. the stable
structure is a generally incommensurable  planar helix. The excitations
of this structure have been discussed, for example, by Mackintosh and
Bjerrum Møller (1972) and the dispersion relation in the c-direction is

by 20 kOe (where  it corresponds to a field of less than 2 kOe) and dipolar forces 
may smear out the predicted first-order transition between the two phases. as is
indicated by the experimental results. The non-zero moment at 25 K in low fields is
due to the net moment carried by the 11-layer one-spin-slip structure, which is stable
at this temperature. In the lower figure the field is along the hard a-axis. The calculated
magnetization curves at 25 K are for the helix and the ferromagnet, while at 50 and
75 K they are for the helix, the helifan(3/2), the helifan(2) (dashed), and the fan phase, 
which is stable to very high fields at these temperatures.
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given by

@q)  = J{ V(Q) - hf(q + Q) - i$Tq - Qll  l CAQ) - 2%) + 6@1)‘/2,
measuring q in a coordinate system which rotates  about the c-axis with
the helix. The invariance of the helix under such a rotation gives rise to
a Goldstone mode, so that the excitation energy goes to zero with q.
Furthermore, the energy at q = Q vanishes with the axial anisotropy,
resulting in a soft mode which drives a second-order phase transition to
a helical structure which is tilted out of the hexagonal plane (Elliott 1971;
Sherrington 1972).

A large B6 changes this picture drastically.  If a commensurable or
quasi-commensurable structure is formed,  the excitations may readily be
calculated by the random-phase approximation (Jensen 1988). From the
self-consistent mean-field energies and eigenfunctions, the frequency-
dependent susceptibility tensor &(i, co) is calculated for an ion in each
layer of the periodic  structure. The random-phase approximation (RPA)
susceptibility tensor is then determined by

z(ij, co) = &(i, o)Sij + C jo(i, w)jQij’)X( jJ, co).

These equations are transformed into a coordinate system rotating with
the moments, and a subsequent Fourier transformation gives t(q, co).
The imaginary part of this function is proportional to the inelastic neutron
scattering  cross-section, whose peaks define the excitation energies.

Experimental studies of these excitations are so far relatively sparse.
The zero-spin-slip structure of Fig. 15.2(a) has been examined in some
detail by neutron scattering by Larsen et al. (1987), who used a crystal
of holmium containing 10 per cent of terbium (Tb) in order to stabilize
the commensurable 12-layer  helix. Their results for both the ferromagnetic
and helical phases are shown in Fig. 15.9. In contrast to the
incommensurable case, the commensurable helix has translational
symmetry along the c-axis, and an energy gap occurs at long wavelengths,
reflecting the force necessary to turn the bunched moments away from
the easy directions of magnetization. The difference in the magnitude of
this gap between the ferromagnetic and helical phases is an indication
of an anisotropic two-ion coupling.  The discontinuities in the dispersion
relations at q = 0 are due to the dipolar interaction which, though weak,
is of long range and highly anisotropic.  These characteristics allow it to
stabilize the cone structure, rather than the tilted helix, in holmium at
Iow temperatures. Correspondingly,  the soft mode of the helix is not that
at Q, but rather the lower of the dipolar-split modes at the origin, which
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FIG. 15.9. Dispersion relations for the magnetic excitations propagating in the   c-direction of HoJb  I o. The upper branch is for the ferromagnetic phase. The
calculated long-wavelength energies in the basal plane are shown to the left of the
ordinate axis, and the discontinuity due to the dipolar interaction is clearly manifested
in the experimental measurements, shown in the insert. The lower curve is for the
commensurable helical structure. The calculated small energy gap at the centre of
this branch, which is due to the bunching, is not resolved experimentally.

gives rise to the ferromagnetic component of the cone when its energy
falls to zero.

The calculated small energy gap at the centre of the branch in the
commensurable helix is due to the bunching of the moments illustrated
in Fig. 15.2(a), which doubles the periodicity in the rotating coordinate
system and thereby halves the Brillouin zone in the c direction. This gap
is considerably smaller than the experimental energy resolution, and it
is therefore not surprising that it was not observed. The equivalent gap
has however been measured in the one-spin-slip structure of Fig. 15.2(b)
by Patterson et al. (1990), as illustrated in Fig. 15.10. In this case the
11-layer structure causes an 11-fold reduction in the Brillouin zone, but
only the first-order gap at 5/11 of the original zone boundarv is calculated
to be observable. This gap, on the other hand, is considerabl y amplified, 
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FIG. 15.10. The dispersion relation for the excitations propagating in the c-direction
in the one-spin-slip structure of holmium at 20 K. The full curve is the calculation
of Jensen (1988). The crosses are the experimental results of Stringfellow et al. (1970),
and the squares those of Patterson et al. (1990). In these measurements the energy
gap at q = &(2x/c) ,  is resolved.

as compared to that in the structure without spin slips. As the number
of spin slips increases the corresponding excitation spectra, which have
been calculated by Jensen (1988), become more complex. The trigonal
structure of Fig. 15.2(d), for example, has three branches of excitations,
while the dispersion relation for the structure of Fig. 15.2(c) is broken
into short segments by a succession of energy gaps. Because of this
increasing complexity, together with the broadening of the excitations
and the decreasing stability of the spin-slip structures, the dispersion
relations become rapidly more difficult to study with increasing
temperature, and identifying those features which depend on the large
value of Bg becomes concomitantly uncertain.

Nevertheless, even at temperatures above about 50 K, when  (0:) in
holmium is small and the distortion of the helix correspondingly weak,
the exceptionally large Sz still plays an important role by mixing the
otherwise pure IL) molecular-field (MF) states. Indeed, as the
temperature is increased and the MF decreases this effect becomes
relatively more important so that, for example, the energy difference
between the  two lowest MF levels varies bv an order of magnitude as 
the moment on the site moves from an easy to a hard direction at elevated
temperatures. while this variation is much smaller in the low-temperature
limit. The large changes in the MF states from site to site tend to disrupt
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the coherent propagation of the collective modes, providing a mechanism
for the creation of energy gaps in the excitation spectrum.

When the moments are not along a direction of high symmetry, Bg
also mixes the transverse and longitudinal components of the single-site
susceptibility, so that the normal modes are no longer either pure
transverse spin waves or longitudinal excitations. At low temperatures,
where (J,) is close to its maximum value, this mixing is unimportant,
but it has significant effects on the excitations at higher temperatures. In
the RPA the longitudinal response contains an elastic component, and
the excitation spectrum in the long-wavelength limit therefore comprises
an elastic and an inelastic branch. The inelastic mode is calculated to lie
around 1 meV in the temperature interval 50-80 K. In the RPA this
feature is independent of whether the magnetic periodicity is
commensurable with the lattice. In the incommensurable case the
invariance of the helix under rotation about the c-axis is not reflected in
a conventional Goldstone mode, since the corresponding generator of
rotations does not commute with the 0: term in the Hamiltonian. This
symmetry is rather manifested in the elastic, zero-energy phason mode,
which coexists with an inelastic phason. This situation is entirely
equivalent to that found in the longitudinally ordered phase of
praseodymium (Jensen et al. 1987). Beyond the RPA the elastic response
is smeared out into a diffusive mode of non-zero width. As in
praseodymium this broadening may essentially eliminate the inelastic
phason mode, leaving only a diffusive peak centred at zero energy in the
long-wavelength limit. The width of this peak goes to zero at the magnetic
Bragg reflection, and true inelastic mode only appears some distance
away.

In the calculations of Jensen (1988) the elastic single-site response was
assumed to be broadened by about 6 meV, corresponding to the
spin-wave bandwidth. This assumption gives a reasonable account of the
excitations in the long-wavelength limit, suggesting that they become
overdamped if the wave vector is less than about one-tenth of the
extension of the zone. Although the inelastic phason mode is largely
eliminated, the calculations suggest that a residue may be observable.
The most favourable conditions for detecting it would occur in a
neutron-scattering scan with a large component of the scattering vector
in the basal plane at about 40 K.
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