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Abstract. The magnetic Green functions in the paramagnetic phase of a dilute or a binary 
alloy system are calculated for arbitrary concentrations of magnetic ions. The calculation 
employs a diagrammatic perturbation formalism based on the use of semi-invariants. Spe- 
cifically, the theory is applied to S = 1 systems in both the easy-axis and the easy-planar 
cases. The approximation made in the theory is basically to consider the ions as separate 
entities embedded in an effective medium, which is established in a self-consistent fashion. 
The calculated self-energy of the Green functions contains both the CPA contributions, due 
to the inhomogeneities, and the contributions from the fourth-order semi-invariants of the 
single spins appearing in order 1/Z in the high-density expansion. The behaviour of the 
effective single-site Green function is analysed in detail. The spurious divergence of this 
quantity in the order (l/Z)", which leads to unphysical results in the dilute limit, is found to 
be much suppressed. 

1. Introduction 

The coherent-potential approximation (CPA) for a disordered crystalline system has 
been applied successfully to a wide range of problems (for a review see Elliott eta1 1974). 
Here, we shall consider spin systems in the paramagnetic phase. The coupling between 
the spins is an isotropic Heisenberg interaction, and the single-spin states are split by the 
crystalline field, which is assumed to be independent of environmental spin disorder. In 
the homogeneous case these systems support boson-like excitations which are reason- 
ably well defined at low temperatures. A CPA approach which has been utilised in 
previous works is the cumulant expansion of the averaged Green functions, developed 
by Yonezawa (1968). The method has been applied to dilute spin systems by Schmidt 
(1974) and by Lage and Stinchcombe (1977), whose theory has been extended to the 
case of a binary alloy system by Whitelaw (1981). In their theory Lage and Stinchcombe 
included a single-site term depending on the environmental disorder. If this inhomo- 
geneous term is neglected their CPA result reduces to that obtained by Schmidt (1974), 
and the Green function of the non-dilute system becomes the one obtained in the 
random-phase approximation (RPA). With the use of the RPA Green function for the 
paramagnetic spin system the effect of dilution is the same, within CPA, as obtained for 
a phonon system when introducing diagonal disorder with E--, -m (&is the mass defect 
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factor: see for instance Elliott er a1 1974). The CPA result is well behaved in the case of 
phonons but for a paramagnetic spin system the combined RPA-CPA approach leads to 
an unphysical behaviour in the dilute limit. For instance if the ground state of the single 
spins is degenerate. the static susceptibility is predicted to diverge at a temperature 
which stays finite in the limit c + 0: see also the discussion by Wang (1973). This spurious 
divergence indicates the need for a more accurate treatment of the spin system than is 
offered by the RPA; in contrast to a system of coupled harmonic oscillators, each of the 
single spins can only be excited into a few different states. Fluctuations between these 
states have direct consequences for the Green functions which are neglected in RPA. 

Lage and Stinchcombe (1977) succeeded in removing the unacceptable behaviour of 
the theory in the dilute limit by the introduction of a conditional inhomogeneous term 
in the Hamiltonian, which in the comparison with a phonon system corresponds to the 
introduction of off-diagonal disorder. The magnitude of the inhomogeneous term was 
determined such that the Green function in the concentrated limit of c = 1 coincided 
with the result of the correlated-effective-field theory of Lines (1974,1975). The inhomo- 
geneous single-site term in the non-dilute case was introduced by Lines in a phenom- 
enological way. in order to account for the effects of spin fluctuations on the Green 
function. In this theory the thermal spin fluctuations give rise to a renormalisation of the 
coupling parameters, but they do not contribute directly to the lifetime of the excitations. 
However, in paramagnetic spin systems the lifetime effects of thermal and static disorder 
might easily be comparable (see for instance Jensen 1979). Besides avoiding the use of 
a phenomenological procedure we shall here include thermal lifetime effects by con- 
sidering instead the leading-order perturbative correction to the RPA Green function. 

The perturbative procedure we use is a linked-cluster expansion of the time-ordered 
Green functions. In this the unperturbed averages of spin operators occur grouped into 
cumulant averages or semi-invariants in a systematic expansion of the Green functions 
in powers of 1/Z, the inverse coordination number. The method was applied to an 
isotropic ferromagnet by Vaks er a1 (1968), and has now been applied to a number of 
systems; by Stinchcombe (1973) to the S = 4 Ising model, by Yang and Wang (1975) and 
Psaltakis and Cottam (1982) to the S = 1 easy-axis magnet, while Bak (1975) has 
considered lifetime effects in the S = 1 easy-planar paramagnet. In principle, the 
semi-invariants are straightforwardly calculated using the Wick-like theorem established 
by Care and Tucker (1977), but in practice the method becomes quite cumbersome if 
the number of single-spin states or spin-operators is not small. The theory we shall 
present is valid for an arbitrary value of S ,  but the actual calculation of the semi-invariants 
is carried through only for S = 1. 

The zero-order approximation in 1/Z is identical with the RPA. In order 1/Z the 
four-spin-operator semi-invariants are introduced, and they contribute to the real and 
imaginary parts of the self-energy. In this order the spins are treated as separate entities 
placed in an effective medium. This way of characterising the approximation shows it to 
be equivalent to the CPA in the inhomogeneous case. In order to combine the 1/Z Green 
function with the CPA we utilise directly this equivalence. Instead of following the 
procedure developed by Yonezawa (1968) we arrange the diagrams in the cumulant 
expansion in a way which allows us to consider separately the single sites interacting 
with the configurationally averaged effective medium. Because of this arrangement it 
turns out to be a straightforward matter to include the l/Z contributions in the CPA 
Green functions, both in the dilute case and in the case of an arbitrary binary alloy 
system. 

In 0 2 we develop the CPA theory in the general case, and the results are expressed in 
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terms of the single-site Green function. In 9 3 we calculate this Green function when 
S = 1. and compare the static behaviour predicted by the various approximation 
schemes. In the last section we discuss the results of our calculation. 

2. General theory 

We shall be concerned with systems in which two kinds of atoms are distributed on a 
lattice in a random fashion. To start with we shall assume that only the one kind of atom 
with concentration c has a non-zero spin S. The single-spin properties are given by the 
Hamiltonian XO, which is assumed to be independent of the various environments 
occurring in the lattice. The spins are coupled by the perturbative Hamiltonian: 

X~ = -+ 2 c f c j / ( i j > s f  * S, (1) 

where c, = 1 if the ith site is occupied by a magnetic atom, otherwise c, = 0. In order to 
simplify the notation we shall consider only one spin components and we suppress the 
corresponding indices in the following. 

The two-site Green functions are defined as the r-ordered ensemble averages 

G(ij ,  71 - 72) = (T&St(rl)cjSj(72)) (2) 
where S,(r) is the spin operator of the ith site in the interaction representation, and 
-/3 < rl - r2 < /3 with /3 = l / k ~ T .  The Fourier transforms are defined in terms of the 
Matsubara frequencies U, = 2m/P ( n  is an integer) 

This definition includes the configurational averaging (the sum over i)  as indicated by 
( ), and (G(q, U)) is obtained from (G(q, iun)) by analytic continuation. 

The Green function G(ij ,  r) can be expanded with respect to the perturbation X , ( r )  
in a systematic way (see for instance Abrikosov et a1 1963). This expansion involves the 
calculation of terms like ~ ~ ~ S ~ ( r ) S l ( 0 ) ~ ~ ( r l ) X l ( r ~ ) .  . . )o,  where the average is with 
respect to  the non-interacting X O  as denoted by the suffix 0. This averaging leaves only 
the products in which all the spin operators belong to the same site, and we define 
( p  = 2,4.  . . .) thepth order semi-invariant 

The spin cumulants or the (reduced) semi-invariants are then defined as 

rp ( io , , l , .  . ., io,,p = S ( P )  - C rplrpz . I . rpm (46) 

where the sum is over all possible products of two or more semi-invariants for which 
p1 + p~ . . . + p m  = p. The most important reason for considering rp rather than S@) is 
that it makes it possible to reduce the expansion of G(ij, 7) so that it only contains 
linked diagrams. We notice that because of time-invariance S@) vanishes unless 

= - ( u , ~  + . . . + u ~ . ~ -  1), so rp only depends on p - 1 frequency variables. Fur- 
thermore, if the spin operators were Bose operators then all the cumulants except 
rz(iu,)  would vanish. We shall first consider this case, for which the diagrammatic 
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expansion reduces to the one analysed by Schmidt (1974), and Lage and Stinchcombe 
(1977), using the method of Yonezawa (1968). We shall not discuss this procedure here, 
but refer to the original papers. Instead we shall consider an alternative way leading to 
the CPA result. 

The single sites are considered to possess different properties depending on whether 
cj = 1 or 0, but they are assumed to interact with a medium which is the same for all the 
sites, and this configurationally averaged medium is established in a self-consistent 
fashion. This means that G(ij, t), in the case i = j ,  is approximated by 

G(j j ,  t) I: Cfg( t) = Cjg( t) 

g( r) = (T,Sj( t)Sj(O))(effectivemedium) 

(5a) 

(5b) 

where 

is independent of the local disorder, i.e. the site index. In figure 1 we present the CPA 
diagrams arranged in a way which allows us to consider the single sites. In these diagrams 
we operate with two kinds of renormalised, frequency-dependent , interaction lines (the 
wavy double lines) defined in terms of j ( i j ,  io,). This interaction is a sum of the infinite 
series of interaction-chain diagrams connecting the sites i and j .  In order to prevent the 
different interaction-chain diagrams from contributing more than once in the final result, 
we include in j ( i j ,  icon) only those diagrams where the ith site appears at the beginning 
and the jth site at the end of the interaction chains, but nowhere in between. The wavy 
double line without the cross is the interaction K(io,,) = S t i ( j ( i j ,  icc),)). This connects 
the site j with itself once via the effective medium established as the configurational 
average of j ( i j ,  io,). In terms of K(ion)  the single-site Green function, (9, can be 
expressed in a simple series of diagrams where the jth site appears once, twice etc, or 

J c, g,(lw,l = - 

Figure 1. The diagrammatic representation of the CPA Green function, G(ij, icon), in co- 
ordinate space for a dilute system. The internal site index i' implies a summation over all 
sites averaged over all configurations (c, is replaced by the average value c). 
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referring to figure 1: 

where go(iw,) is the non-interacting Green function. Corresponding to (5) the sites i and 
j are considered to be coupled via the effective medium, and G(ij, io,), i # j ,  is deter- 
minedbyK(zj, ion)  = (1 - Sij ) ( . f ( i j ,  ion)),  denotedbyacrossonthewavyline, asshown 
in figure 1. Note that the occurrence of cig(iwn) and c,g(iw,) in the diagram determining 
G(ij, iw,) accounts for the interaction-chain diagrams where the ith or jth sites appear 
more than once. ( . f( i j ,  iw,)) is determined self-consistently in terms of the bare inter- 
action and the single-site Green function as shown in the lower part of figure 1. The 
third diagram of (.f(ij, iw,)) has to be subtracted because the site i appears between the 
sites i‘ and j in the second diagram. Here we utilise directly equation ( 5 )  as ci8g(ion), 
appearing when the chains involving the intermediate site i’ are summed, is considered 
to be determined by the effective medium without special reference to the actual 
neighbours i or j .  The equations corresponding to the diagrams are straightforwardly 
solved after transforming to q-space, and defining 

1 

K (iofl) is then determined by the condition that 

which may be written 

(1,”) X q  K ( q ,  io,) = 0 is the T-matrix for the effective single-site Green function, 
which vanishes in accordance with an alternative formulation of the CPA (see Elliott et 
a1 1974). Finally, we get 

(G(c;  4,  io,)) = cg(iwfl) D ( q ,  ion) (9) 

which, within the RPA, equation (6), may be written in the closed form 

[(G(c; q,  iofl))]-’ = [G(c = 1; q, ion)]-’ + (1 - c) [-c (G(c;  q ’ ,  io,))]-’. 

This expression is the same as that derived from the self-contained CPA cumulant 
expansion of Yonezawa (1968); thus the two procedures are equivalent. 

In the concentrated limit, c = 1, the result above reduces to the RPA 

(10) 
1 
n q  

In the systematic expansion in powers of 1/Z the chain diagrams are classified according 
to the number of independent momentum labels which appear and which are eventually 
summed over (see e.g. Stinchcombe 1973). The RPA Green function is the result obtained 
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to zeroth order of 1/Z. If the fourth-order semi-invariants r4 are non-zero, they introduce 
two extra interaction lines in the chains. To first order in 1/Z, only the diagrams in which 
the two extra lines merge into one are included. These diagrams contain one extra 
interaction line which starts and terminates at the same site. Therefore in order 1/Z the 
single sites can be considered separately, allowing the diagrams to be arranged in the 
same way as in figure 1. The only modification is the inclusion of the fourth-order 
cumulant in the single-site Green function as illustrated in figure 2(a): 

gl(iu,) = r2(iw,) + C r4(iw,, iwnl, iwn2) K(iun3) (12a) 
n l  .n2.n3 

and 

where the unrestricted interaction is 

K( ion)  = K(iw,) ( I  + g(io,) K(iu,J). (12c) 

The remaining diagrams in figure 1 are unaltered and the result is the same as above 
with g(ion) determined by equation (12) instead of equation (6). When c = 1 these 
equations reduce to equation (11) withgo(iun) replaced bygl(iun) and 

which is the usual way of presenting the 1/Z result. The considerations above are equally 
valid when c is less than 1,  and equations (7)-(9) together with equation (12) determine 
the average two-site Green function, when the CPA is combined with the 1/Z expansion 
to first order in 1/Z. 

Figure 2. The single-site Green function, g(iw,,), to first order in 1/Z. The circles represent 
the fourth-order cumulant TJ. ( a )  shows gl(io,) and g(iw,,) = g(iwn). which includes effects 
of Tz and r3 to infinite order, equation (12). ( b )  gives g(iwn) in the approximation where 
(most) terms in l/g(iun) of higher order than 1/Z are neglected, equation (14). 
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The single-site Green function g(iw,) does. however, contain terms of higher order 
than 1/Z. In order to include these terms one makes implicitly the assumption that r, = 0 
for p > 4, corresponding to a decoupling of S @ )  into products of the lower-order semi- 
invariants (see equation (4)). In the next section we consider specifically S = 1, and we 
find that this decoupling is not a good approximation. In the cumulant expansion of 
g(iw,) the semi-invariant rb is multiplied by a factor of the order (l/Z)’ and is therefore 
of minor importance, but the inaccuracies are present in every term of the infinite series 
and might sum to be of decisive importance. In the next section we consider situations 
where the approximate expression for g(ion) given by equation (12) is unreliable or even 
useless. In order to circumvent this difficulty we shall consider instead the single-site 
Green function shown in figure 2( b ) ,  which we may express formally as 

g(iw,) = rz(iwn) + r2(iw,) K(io,)g(iw,) 

where m might be equal to n or n3 depending on the term considered. Although this 
seems to introduce some arbitrariness, it turns out to be possible to give a unique 
prescription for the choice of m in the S = 1 case. The two expressions for the single-site 
Green function, (12) and (14), agree within the accuracy with which the calculation is 
actually performed, namely to first order in 1/Z, and they both lead to the RPA if r4 
vanishes. However, the replacement of g(io,), equation (12), with g(iw,), equation 
(14), implies that second and higher-order changes due to r4 in the position of the poles 
of the Green functions are neglected. 

In the next section we discuss the results above in the case S = 1, but before doing 
that we want to extend the CPA-calculation to the case where both the two kinds of 
atoms, type 1 and 2,  have non-zero spins, S1 and S2. The interaction in equation (1) is 
replaced by a 2 x 2 matrix, Jab( i j ) ,  where e.g. JI2( i j )  describes the coupling of C , S ~ . ~  with 
(1 - c,) S2,, . The effective single-site approach is straightforwardly generalised to this 
case as shown by the diagrams in figure 3. The two single-site Green functions, g(l)(iofl) 
and g(21(io,,), are determined as before in terms of the restricted self-interactions 
Kll(io,) and K22(io,) respectively. We define 

Icrp(ql  ion) = J a p ( q )  - K,p(iwfl) (15) 

and the determinants of the 2 X 2 matrices like, for instance, 

Furthermore we define 
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Figure 3. The CPA Green function for a binary alloy system. aand  0 denote the two kinds of 
sites, 1 or 2 .  The site indices which are suppressed appear in the same way as in figure 1. 

The only problem left is the determination of closed expressions for K,p(iw,). In order 
to obtain these it is more convenient to use the conditions (1/N) X4 K,p(q, ion) 0, 
rather than directly using the expressions given by the diagram in figure 3, and we find 

In a comparison with the CPA result obtained in the dilute case we notice that 
B(ion) # 1 represents a non-trivial modification. In cases where the geometrical-mean 
approximation is valid, i.e. J 1 2 ( q )  = y J l l ( q )  and J 2 2 ( q )  = -$JI1(q), all the determinants 
vanish, implying B(iw,) = 1. This approximation might be useful for analysing binary 
rare-earth systems (Jensen 1979). If, further, the single-site Green functions are rep- 
resented by their RPA values, the result becomes equivalent to the CPA in the case of a 
phonon system with diagonal disorder (in which case l/go(iwn) = 4 - where 
WE, the Einstein oscillator frequency, is the same for the two kinds of atom). 
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3. The anisotropic S = 1 paramagnet 

The theory developed in the preceding section is general. In order to apply it to a 
particular system, the only quantity which is needed is the Green function for a single 
site interacting with an effective medium described by K(iw,). Here we shall discuss the 
case S = 1, and the single-site Hamiltonian is assumed to be 

Xo = AS:. (20) 

We shall mainly be interested in the case where A is positive, but the calculation is 
equally valid if A is negative. In the easy-planar case of A > 0, the ground state is the 
singlet IO) and the excited doublet 1 f 1) is separated from the singlet by the energy A .  
The single-site Green function has three components, of which two are degenerate. In 
the non-interacting case these are 

2Anol gF(iw,) = gJ-Y(iw,) = go(iw,) = 
A* - 

and 

gaZ(iwn) = Wn1&0 

where we have introduced the population factors 

and nol E no - n1. In this section we shall be concerned with crystals where only the one 
type of atoms has a non-zero spin. The Green functions are then diagonal with respect 
to the Cartesian components, with three components for the interaction, Kx(iw,) = 
K ,  (iw,), and Kz(iwn). In order to include the interaction to leading order we need to 
calculate the fourth-order semi-invariants multiplied by these interaction components. 
This can be carried out in a straightforward manner with the use of the Wick-like theorem 
derived by Care and Tucker (1977). Applying this and introducing the modifications 
indicated by equation (14) we get 

with n3 = no + n l  - nil and we define 

and 
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Furthermore we have introduced the frequency sums ( a  = x ,  y ) :  

1 "  
n o  

= (no + nJRe[K,(A)] + -! go(w)Im[Kdw+ iO)]coth(Pu/2) d w  

(Re and Im denote the real and imaginary parts) 

and 
Q Z - 1 2  2 - zg '(iO)KZ(iO). 

To first order in 1/Z there is a minor inelastic contribution to KZ(iw,), which we have 
disregarded in equation (22) as it only affects g""(iu,) in the order (l/Z)'. g"(iw,) is 
determined by the same expression with x and y interchanged, whereas 

g"(i0) = 2nlP + 2n@g2*(iO)K,(iO) 

+ [gzz(iO){:P(l - 6nl)K,(iO) - QP(Qf + a:)} 

As mentioned above, the interactions K,(iw,) introduce an inelastic term in gZz(iw,) 
which we shall not be concerned with here. 

According to equation (14) we have replaced one non-interacting Green function in 
every term arising from the fourth-order semi-invariants, collected in the square brackets 
of equations (22a) and (25), with a final single-site Green function. The most important 
substitution performed in equation (22a) is that wherever or go(iw,)uO(iw,) 
occur in the original expression for r4, one factor go(iw,) has been replaced by 
g""(iw,). The substitution, in the few minor terms left, has been performed so that the 
final g*"(iw,) behaves properly in both the limits P+ 0 and P+ =, which demands that 
the term @'n3 is subtracted from uO(iw,,) in (23b). g"(i0) is established using the same 
procedure or by a consideration of the limit A --$ 0. If these substitutions were not 
performed, as for instance in g(iw,) based on equation (12), theQf terms would lead to 
an improper response for iw, close to A because of the singular behaviour ofgi(iw,). 
The modifications introduced by (14) mean that we only include the contributions from 
r4 which are linear in K,(iw,) or 1/Z in an expansion of the inverse Green functions. 
This statement is strictly obeyed only in the limit A -+ 0; in other cases the terms still 
give rise to higher-order terms in l/g(iw,). Apart from these minor terms we only include 
the leading-order shifts of the poles in the Green functions, but the procedure accounts 
simultaneously for the corresponding modifications of the oscillator strengths, which 
allows the maintenance of self-consistency. 

The systematic procedure above leaves one improper term, namely the first term in 
ul(iw,l), equation (23), which is still proportional to gi(iw,). This term cannot be 
neglected at zero frequency, as ul(iO) would then diverge in the limit A + 0, but it has 
to be modified at finite frequencies. We shall not try to guess the kind of modifications 
expected in higher order, but we simply replace ul(iu,) occurring in (22a) and (25) with 
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We have analysed the final two-site Green function, which is obtained by inserting 
equations (22) or (25) in (9), in the case of an FCC lattice, considering various values of 
c, A and P. The response functions, Im[g"(w + io)] and Im[(G(c; q ,  o + io))], 
are found to behave properly (being positive for w > 0). At low temperatures, PA b 2, 
the Green function is similar to the one obtained in the RPA-CPA case, except that the 
RPA parameters are replaced by effective ones. In this limit K,(iO) can be neglected in 
equation (22), and G(c = 1; q,  U) is found to be nearly the same as deduced from the 
equations of motion and applied to Pr metal (Jensen 1982). For instance at T = 0 the 
factor E = (1 - S25 -4SlJ) is equal to the self-consistent value of nol, appearing in the 
equations of motion, except for higher-order corrections. In the present context this 
factor corresponds to the presence of non-magnetic impurities with concentration 1 - 
E (in the FCC case 0.95 < E < l), and it leads to a finite linewidth of the excitations. This 
prediction is consistent with the observation that spin fluctuations are present in the 
paramagnetic case at T = 0, because the product of the single-site states, IO), is not the 
true many-body ground state. The most important contributions to the temperature 
dependence of the linewidth, when PA b 2, is the first term in the square bracket of 
equation (220). This has been discussed in detail by Bak (1975) in an application to Pr 
metal. The present result does not modify this discussion very much, but we may add 
that, if the system is diluted, the effect of the static disorder on the linewidth is equivalent 
to an increase in temperature, with the linewidth being proportional to approximately 
(1 - cn&). The consequences of the theory at non-zero frequencies will be discussed in 
more detail elsewhere, in connection with its application to the Pr-Nd alloy system. 
Here we shall examine more closely the predictions of the ground-state properties. 

In the limit A + 0, the frequency sums, equation (24), can be performed at once as 
they only contain the terms at zero frequency, and we obtain from equation (22), with 
iw, replaced by w, 

which is the same as given by g"(O), equation (25 ) ,  whenx and z are interchanged. In 
the three different models where one, two, or the three components of K ( 0 )  are non- 
zero and equal, the inverse susceptibilities are 

-bK(O) Ising 

+tK(O)  Heisenberg 
g(0) 2P 

determined by equations (22) or (26) to first order in 112. Now in this limit the spin 
operators in the interaction representation no longer depend on t. Furthermore, in the 
Ising model the only spin operator which occurs in the cumulant expansion is S,, which 
commutes with itself. This means that in the effective-medium approximation where 
the single site is perturbed by 

%ae,(r1, r2) = -1K(r1 - r2)S,(tl)Sz(t2) (28a) 

the cumulant expansion for gr(0) can be summed exactly, as the perturbation becomes 
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the equivalent to a static anisotropy 

Xa = -bK(O)Si 

in the Hamiltonian. or 

when S = 1. The use of gl(0),, instead of the other approximate expressions for gI(0) 
gives the most accurate effective-medium theory for the Ising model. The results 
obtained in this fashion coincide with that of Lines’ somewhat less rigorous 
correlated-effective-field theory (1974, 1975). In his theory the interaction (28a) is in 
general considered as simulated by an effective anisotropy like (28b). However, because 
of the r-ordering this does not hold true when other non-commuting spin operators, S, 
or S,, are added to the interaction Hamiltonian, or if e.g. the 1 rl) level is split so that 
the interaction becomes retarded, as described by the t dependence in (28a),  which 
effect is not included in (28b). In the X Y  and Heisenberg models the presence of non- 
commuting operators in the spin-traces introduces essential complications but. by util- 
ising the r independence of the operators, it is rather straightforward to extend the 
expansion of g(0) to second (or higher) order in  K ( 0 )  or 1/Z, and we get 

1 i- ( 2 / 3 ! ! ) x  + ( 3 / 5 ! ! ) x 2  + ( 4 / 7 ! ! ) x 3  + . . . 
gxv(0)  = j P  1 + # ( x  + (1 /3! ! )x2  + (1 /5! ! )x3  + . . .) 

with x = PK(0)  and 

(30b)
(3! ! /2! )  + 2(5!! /4!)x  + 3(7!!/6!)x’ + . . . )  

gH(o) = ” 1 + 3(3! ! /2! )x  + (5!!/4!)x2 + ( 5 ! ! / 6 ! ! ) x 3  + . . . j ’ 
These expressions. (30a) and (30b),  are calculated under the assumption of a static 
effective medium, K(iw,) = K(i0) 13 , ,~ .  Nevertheless, g H ( t )  is going to depend on ?: 

to the order 1/Z, which result is consistent with the sum rule 

2 g w a ( r =  0) = S ( S  + 1) = 2 
1% = x .  y . I 

and with g H ( W  = 0) as given by (30b) or (27) .  Equation (30c) indicates the presence of 
a diffusive peak in the response function of width -2[2K(O)/PI1”. The t-dependent 
terms in (30c) are going to generate inelastic contributions to K(iw,) which will modify 
(30b) in the order (1/Zl2. These contributions may be of some importance, quantita- 
tively, when PK(0)  > 1. But they should not change the qualitative behaviour indicated 
by (30b) ,  and we shall not consider this modification in any further detail. Similar 
remarks apply to the X Y  model, equation (30a), whereas there are no modifications of 
gI(0) in equation (29) as only the transverse components of the susceptibility tensor are 
going to depend on r in the case of the Ising model. 

In the theory of Lines, gxU(0) is determined by changing the sign of K ( 0 )  in equation 
(28b),  whereas gH(0) = 3P. The RPA values of g(O), equation (6), are the same in all 
three models, namely 

g R P A ( 0 )  = jP/( 1 - jpK(0)). (31) 

If we consider K ( 0 )  to be fixed by some external conditions, then gRpA(0) diverges at 
lip = 3K(O), which divergence is not present in the exact case of equation (29). This 
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Figure 4. Comparison of the various expressions for the inverse sin&-- -site susceptibility of 
the king model. The interaction with the surroundings, K ( 0 ) .  is considered to be a constant, 
and the broken line is the non-interacting inverse susceptibility. The horizontal line gives 
the critical value, l/g(O)K(O) = </A. in the FCC case when c = 1. 

behaviour is non-physical as the system should be stable as long as self-consistency is 
neglected. If we finally include the single-site Green function, calculated to first-order 
in (1/Z) as given by equation (12), in our comparison, then in the Ising case this is 
determined by 

gI(0) = [IP - fP2K(0)(l + g*(O)K(O))I 

x [l - @3K(O) +&p2KyO)(l + g * ( O ) K ( o ) ) ] - ' .  (32) 

g@) is closer to the exact value thangRpA(0) at high temperatures but becomes negative 
for 1/P < hK(0).  In figure 4 we compare the different approximations for g r ( 0 )  when 
K ( 0 )  is considered to be fixed. This comparison shows that the expressions gRpA(0) and 
g1(0) are hardly acceptable for 1/P < 2K(O) ,  whereas the first-order approximation of 
equation (27) closely reproduces the exact behaviour down to (l/@ = 0.5 K(O),  and the 
temperature at which this susceptibility diverges, 1/P = Q K(O),  is reduced by a factor of 
four in comparison with g R P A ( 0 ) .  The comparison shows consistently with equation (22) 
that the higher-order terms occurring in g(0) are unreliable. Not even the terms of 
second order in l/Z are of any use as they are a factor of k40-50 times the corresponding 
terms in the exact expressions, in all the three models. 

We cannot expect the assumption of an effective medium to be valid in the close 
neighbourhood of a second-order phase transition. Nevertheless, the critical tempera- 
tures predicted in this approximation are close to the values obtained by high-temper- 
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ature expansion techniques. At the transition to a ferromagnetic phase 
A 

K ( 0 )  = - J ( 0 )  
1 + A  

where we define 

and the critical temperature, T, = l/kBpO, is determined as the temperature at which 
G(0,O) diverges, i.e. by 

cg(O)J(O) = 1 + A. (34) 
We shall limit ourselves to the case of an FCC crystal with only nearest-neighbour coupling 
where A = 0.34466. In the Ising case, the use of the exact expression for g(O), (29), 
predicts l/pO = 0.5341(0) and c = 1, which is about 6% smaller than the value obtained 
from high-temperature expansions, (l/pO) (HTE) = 0.5681(0). The RPA value is 
(l/pO) (RPA) = 31(0) ,  whereas gr(0) does not produce a second-order transition in this 
system. The first-order result for g(O), given by (27)  when A = 0 and determined by 
equation (22) when A # 0, is estimated to be close to the exact value of the single-site 
Green function, and in figure 5 we show the critical temperature predicted in this 

Reduced c r y s t o i - f i e l d  s p l i t t i n g  AiZJiOJ 

Figure 5. The critical temperature for the S = 1 anisotropic Heisenberg model in the FCC 
case, as a function of the anisotropy parameter, A/U(O) .  The thin broken curve shows the 
RPA behaviour, and the thick brokencurveisthe estimate from high-temperatureexpansions. 
The full curve shows the prediction of the effective-medium theory with g(iw.) determined 
by equations (22)-(24). For comparisonwe alsoshowthe result obtainedwith anXYcoupling 
for A 3 0, the thin unbroken line which joins the thick one for b A  S 2.  The lines in the 
left side of the figure show the asymptotic behaviour when A -  - x (the RPA value is 
ksTJJ(0) = 1) corresponding to an S = 1 Ising model. 
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Figure 6 .  The critical temperature as a function of concentration in the FCC case. cp denotes 
the percolation concentration. The broken curve is the RPA-CPA result. The full curves show 
the predictions of the effective-medium theory for the king model (the upper ones) and the 
Heisenberg model (the lower ones) using the first-order (the straight lines) and the exact 
single-site Green functions of the static medium. 

approximation compared with the RPA and HTE values (Johnson and Wang 1981, Yang 
and Wang 1975 and references therein). The comparison of the X Y  and the Heisenberg 
models for A > 0 shows that the S, coupling is without importance for PA 3 2. Further- 
more we find that the system stays paramagnetic at T = 0 if the ratio A/W(O) is larger 
than the critical value r = 0.869 5 0.002 which is close to the value of 0.858 predicted by 
HTE (Johnson and Wang 1981). The inelastic 1/Z contribution to K,(iw,) neglected in 
the expression for g**(iw,) introduces a difference between the anisotropic Heisenberg 
and X Y  models in the T = 0 limit, as it reduces the critical ratio for the Heisenberg 
model, but only by about one tenth of a percent. This difference is proportional to 
( l /Z)z and cannot be trusted as long as other terms of this order are neglected. We 
remark that Yang and Wang (1975) have produced a result to first order in 1/Z which 
predicts a critical temperature in the easy-axis S = 1 case, in close agreement with HTE. 
However, we consider this to be a somewhat fortuitous coincidence, as they do not 
determine the effective medium in a fully self-consistent way but rely on an expansion 
in I .  The comparison in figure 5 shows the same trend as already found in the Ising 
model, that the effective-medium approximation suppresses the critical temperature by 
5-lo%, which discrepancy should be considered as a genuine effect of the approxi- 
mation. Comparing this number with the total modification of the MF/RPA behaviour 
induced by fluctuations, we can say that the effective-medium theory overestimates the 
renormalisation of the interactions by less than -25%. 

When the system is diluted, the critical temperature decreases roughly proportional 
to c. In figure 6 we compare the c dependences of the critical temperature of the Ising 
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and Heisenberg models obtained by using either (27) or the exact single-site Green 
functions of the static medium (29) or (30b). In the Heisenberg case we have utilised the 
systematic behaviour of the terms calculated and given in (30b) for an extrapolation to 
T = 0 (indicated by the broken line in the figure). In figure 7 we show the critical ratio 
r ,  as a function of c, in the presence of a Heisenberg or an XY coupling, obtained from 
equations (22) and (24). The l/Z contributions at T = 0, Sly and a?, both vanish in the 
limit c + 0, because the inelastic spectral density goes to zero. Therefore the CPA result 
approaches the result obtained in RPA, which is shown by the broken curve in the figure. 

0 

The first-order results used for g(0) at the lowest concentrations are unreliable, but this 
is the case also with the effective-medium approximation itself, which ceases to be valid 
because of percolation effects (Elliott et af 1974). In the present system the critical 
concentration cp below which no long-range ordering can occur is calculated to lie 
between 0.195 and 0.199 (Essam 1972). Nevertheless, the spurious divergence of g(0) 
occurring in the order 1/Z, which leads to the finite critical ratio in the limit c+ 0, is 
inconvenient, as the results are distorted somewhat in the regimes where the effective- 
medium approximation is reasonable. However, the situation is, in general, much 
improved in comparison with the RPA-CPA results. If, for instance, the non-magnetic 
matrix, in the case of figure 7 ,  is replaced by a paramagnetic, undercritical singlet 
ground-state matrix, then the effective cp becomes smaller, but, in contrast to RPA the 
same is true for the critical ratio predicted in the limit c + 0. 
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4. Conclusion 

We have developed a theory which simultaneously includes the effects of static inhomo- 
geneities and of thermal disorder. To first order in l/Z the single sites are treated 
separately and all interact with the same effective medium. The diagrammatic expansion 
of the z-ordered two-site Green function is performed in a way which takes direct 
advantage of this approximate condition. 

Our analysis shows that the usual procedure for performing the 1/Z expansion to 
first order adds higher-order contributions to the effective single-site Green function, 
which are inadequate. This is demonstrated in a direct way by a comparison with the 
exact value of this quantity obtained in the case of the Ising model. In order to remove 
these improper contributions the infinite series for g(iw,,) was truncated, so that the 
inverse Green function, l/g(ico,,), only included the terms to order 1/Z. The Green 
functions obtained in this way were found to offer a reasonable account of the phase 
diagram for S = 1 in the non-dilute case. At c = 1 the validity of the predictions are 
probably only limited by the effective-medium approximation itself. As the degree of 
dilution of the system is increased the accuracy with which the effective single-site Green 
function is determined becomes more and more important. However, the indications 
are that the first-order approximation for g(io,) is acceptable as long as the effective- 
medium approximation itself is reasonable, i.e. c 3 cp. In this regime we also expect the 
theory to give a fair account of the renormalisation of the energies and the lifetimes of 
the excitations, in a way which compares in quality with the CPA applied to phonon 
systems with diagonal disorder. 

The spurious divergence of the effective single-site Green function is still present to 
first order in 1/Z, but the importance, and thus the inconvenience caused by this 
divergence at low concentrations, is much reduced in comparison with the zero-order 
RPA results. An approximation which circumvents this problem is 

g ( 4  =go(” - { K ( 4  - K(O) lgo(4 l  (35)  
which in the non-dilute case coincides with the theory of Lines (1974, 1975) except for 
his introduction of an effective single-site anisotropy term. This expression neglects 
thermal contributions to the linewidth, but gives a reasonable estimate of the real part 
of the self-energy, and at zero frequency g(0) becomes equal to the non-interacting 
go(O), which behaves properly without giving rise to any spurious divergences. 
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