
PHYSICAL REVIEW B 83, 064420 (2011)

Self-consistent theory for the paramagnetic properties of TlCuCl3 to first order
in the high-density 1/z expansion
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The Cu spins in TlCuCl3 constitute a well-defined dimer system, where the interaction between the dimers is
just at the threshold for inducing magnetic order. The leading order effects of the fluctuations on the paramagnetic
properties are analyzed in terms of the systematic high-density 1/z expansion. The predictions agree with those
derived from the self-consistent RPA theory published in Phys. Rev. B 80, 224419 (2009). Linewidth effects were
neglected in the previous theory, whereas the present one accounts for both the energies and the linewidths of the
singlet-triplet excitations. These results are found to be in good agreement with experimental observations
at zero field. Experimentally, the renormalization effects are enhanced at fields close to the critical one.
This is in accord with the predictions, but both theories overestimate the enhancement.
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I. INTRODUCTION

The S = 1/2 spins of the Cu2+ ions in TlCuCl3 are strongly
coupled pairwise. The coupling is antiferromagnetic and the
ground state of the isolated dimers is the S = 0 ground
state with a gap � ≈ 5.2–5.7 meV up to the S = 1 triplet.
The dimer system is close to a quantum critical point, and
a zero-temperature phase transition may be achieved either
by the application of a modest magnetic field of 54 kOe1

or hydrostatic pressure of 1.1 kbar.2,3 These circumstances
make the present dimer system unique, as it clearly exhibits
the importance of quantum and thermal fluctuations (see, for
instance, the review by Giamarchi et al.4).

The system has been analyzed several times in the past
using different theoretical methods. Matsumoto et al.5 applied
the random-phase approximation (RPA) to calculate all zero-
temperature properties of TlCuCl3. Nikuni et al.6 utilized the
parallel between the present spin system and a system of
massive bosons for mapping the field-induced phase transition
on the transition to a Bose-Einstein condensate (BEC).7 Later
on, a more realistic BEC description of the system was
presented by Misguich and Oshikawa,8 and Sirker et al.9 used
a bond-operator approach to map the spin system onto a model
of interacting bosons with an infinite on-site repulsion between
the triplet excitations. Although the BEC analog offers a
way for determining the influences of the fluctuations, these
theories are not entirely satisfactory. The BEC mapping does
not specify the v0 interaction between the bosons. The assump-
tion made by Nikuni and coworkers, that only the lowest
of the local triplet levels is important for determining the
condensate, is an oversimplification. The ad hoc assumption,
that the prevention of double occupancy of a local level is
accounted for by a simple repulsive potential, might be too
imprecise.

In a previous paper, Ref. 10, the influences of the spin
fluctuations in TlCuCl3 were analyzed in the neighborhood of
the field-induced phase transition in a direct fashion with no use
of the BEC analogy. This self-consistent RPA (ScRPA) theory
handled the problem of double occupancy of the local dimer
levels by including the corrections appearing in the hierarchy
of decoupled equations of motion in the next order beyond the
RPA. The theory did not rely on any adjustable parameters, as

all results were expressed in terms of the exchange parameters
in the spin Hamiltonian. These parameters were then derived
from the zero-field and zero-temperature excitation spectrum
measured in inelastic neutron-scattering experiments.11,12

In the present paper the effects due to fluctuations are
included by utilizing the high-density 1/z expansion13 within
the effective-medium approach.14,15 The expansion parameter
is defined by the property that every �q summation over
reciprocal space effectively supplies a factor 1/z, where z is the
coordination number of interacting neighbors.13 To zero order,
the fluctuations are neglected and the theory is identical with
the mean-field RPA theory. To first order the theory includes
the effects of the fluctuations in the surroundings of each
site. These single-site fluctuations may be accounted for in
a self-consistent manner, since the fluctuating surroundings,
to first order in 1/z, constitute an “effective medium” that
is common for all sites.14,15 This 1/z-expansion theory has
previously been applied to the singlet-ground state systems Pr
and HoF3 and to the Ising ferromagnet LiHoF4.14–17 Here we
shall consider the case of paramagnetic TlCuCl3 in a magnetic
field at ambient pressure.

II. THEORY

The effective spin Hamiltonian for paramagnetic TlCuCl3,
in the presence of a magnetic field, is established in Ref. 10
and is

H=
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in terms of the standard basis operators ai
νμ = (|ν〉〈μ|)i . |ν〉,

ν = 0, . . . ,3, denote the mean-field eigenstates of the ith
dimer, and the corresponding eigenenergies are

�1 = � − h, �2 = �, �3 = � + h. (2)

� is the zero-field splitting between the singlet and the triplet
states of a noninteracting dimer, and h = gμBH .
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The two-site Green’s functions are defined as the τ -ordered
ensemble averages

Gξη,ξ ′η′(ij,τ ) = −〈
Tτa

i
ξη(τ )aj

ξ ′η′(0)
〉
. (3)

The Green’s functions involved in the effective coupling matrix
[Eq. (2.13) in Ref. 16] are

G2 = G02,20 + G02,02 + G20,02 + G20,20 ,

G31= G03,30 + G10,01 − G03,01 − G10,30 , (4)

G13= G30,03 + G01,10 − G30,10 − G01,03.

Performing a Fourier transformation in τ and space, all the
Green’s functions attain the common argument iωn, where
ωn is the discrete Matsubara frequency 2πn/β (where β =
1/kBT ), and it is straightforward to show that G13(�q,iωn) =
G31(�q,−iωn).

To first order in 1/z, the self-consistent, effective-medium
result for the final Green’s functions is16

Gp(�q,iωn) = Gp(iωn)

1 + [J (�q) − Kp(iωn)]Gp(iωn)
, (5)

where the index p = 2, 13, or 31. The effective-medium cou-
pling parameters are K2(iωn) = K2(−iωn) and K31(iωn) =
K13(−iωn), and they are determined by the condition that the
single-site Green’s functions, per definition, are

Gp(iωn) = 1

N

∑
�q

Gp(�q,iωn) (6)

or

Kp(iωn) =
∑

�q
J (�q)Gp(�q,iωn)

/∑
�q

Gp(�q,iωn). (7)

Hence the final Green’s functions in Eq. (5) are determined
by the interaction J (�q), when knowing the single-site ones,
Gp(iωn). The terms in the cumulant expansion of the single-site
Green’s functions [Eq. (2.15) in Ref. 16] may be calculated by
utilizing the generalized Wick’s theorem derived by Care and
Tucker,18 which involves the propagators

gξη(iωn) = 1

(�η − �ξ ) − iωn

(8)

(�0 = 0). Assuming a “Dyson-like” behavior of the cumulant
expansion,16 the propagators are found to be renormalized
according to

g̃ξη(iωn) = 1

(�̃η − �̃ξ ) − iωn

, �̃ξ = �ξ + δξ (iωn) (9)

[δ0(iωn) = 0]. Introducing the mean-field population factors

nξ = e−β�ξ

/
3∑

η=0

e−β�η and nξη = nξ − nη, (10)

the longitudinal component of the single-site Green’s functions
is determined as

G2(iωn) = G0
2 (iωn)

1 + [K2(iωn) − γ2(iωn)]G0
2 (iωn)

, (11)

where

G0
2 (iωn) = − n02

1 + α2
[̃g02(iωn) − g̃20(iωn)]. (12)

Similarly, the two transverse components, G31(iωn) and
G13(iωn) = G31(−iωn), are determined from

G31(iωn) = G0
31(iωn)

1 + [K31(iωn) − γ31(iωn)]G0
31(iωn)

, (13)

where

G0
31(iωn) = − n03

1 + α3
g̃03(iωn) + n01

1 + α1
g̃10(iωn). (14)

The different parameters introduced above are determined in
terms of a number of frequency sums. The longitudinal ones
are

λL
s = 1

2β

∑
n

K2(iωn)([n02g02(iωn)]s + [−n02g20(iωn)]s),

(15)

where s is either 1 or 2. The transverse sums are

λT 1
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β

∑
n

K31(iωn)[−n01g10(iωn)]s ,

(16)
λT 3

s = 1

β

∑
n

K31(iωn)[n03g03(iωn)]s .

The renormalization parameters αξ are independent of fre-
quency, and for the case of the longitudinal Green’s function
the result is

α2 = 1

n02

[
2

n02
λL

2 + 1

n01
λT 1

2 + 1

n03
λT 3

2

]
− β

[(
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(
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n03n02
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)
λT 3

1

]
. (17)

The interaction is renormalized by

γ2(iωn) = 1

n2
02

[
2λL

1 − (
n0 + n2 − n2

02

)
K2(iωn)

]
, (18)

and the renormalized energy gap becomes frequency dependent:

δ2(iωn) = 1

n02

[
λT 1

1 + λT 3
1 − 1

β

∑
n′

K31(iωn′ ){n12g12(iωn′ − iωn) + n23g23(iωn′ + iωn)}
]

. (19)
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The transverse Green’s functions are determined in terms of the following renormalization parameters:

α1 = 1

n01

[
1

n02
λL

2 + 2

n01
λT 1

2 + 1

n03
λT 3

2

]
− β

[(
n0

n01n02
− 1

)
λL

1 +
(

n0 + n1

n2
01

− 1

)
λT 1

1 +
(

n0

n01n03
− 1

)
λT 3

1

]
,

α3 = 1

n03

[
1

n02
λL

2 + 1

n01
λT 1

2 + 2

n03
λT 3

2

]
− β

[(
n0

n03n02
− 1

)
λL

1 +
(

n0

n01n03
− 1

)
λT 1

1 +
(

n0 + n3

n2
03

− 1

)
λT 3

1

]
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and, introducing a new frequency-dependent parameter ζ (iωn),

ζ (iωn) = λT 1
1 + λT 3

1 − n0K31(iωn) − 1

β

∑
n′

K31(iωn′)n13g13(iωn′ + iωn) , γ31(iωn) = 1

n01n03
ζ (iωn) + K31(iωn). (21)

Finally, the renormalization of the two energy gaps �1 and �3 are

δ1(iωn) = 1

n01

[
λT 1

1 + λL
1 − n1K31(iωn) + n13

n03
ζ (iωn) − 1

β

∑
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K2(iωn′ )n12g12(iωn′ + iωn)

]
,

(22)

δ3(iωn) = 1

n03

[
λT 3

1 + λL
1 − n3K31(iωn) − n13

n01
ζ (iωn) − 1

β

∑
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K2(iωn′ )n23g23(iωn′ + iωn)

]
.

The renormalization parameters derived above account for all
first-order terms appearing in the cumulant expansion of the lo-
cal Green’s functions. The small frequency-dependent sums, as
for instance the last term in the expression for δ2(iωn), may to a
good approximation be replaced by their values derived in the
limit of h → 0; i.e., (1/β)

∑
n′ Kp(iωn′)n12g12(iωn − iωn′ ) ≈

Kp(iωn)(n1 + n2)/2. The coupling parameters Kp(iωn) deter-
mining the effective medium are calculated by using Eq. (7),
which calculation has to be carried out in a self-consistent way.

Defining the thermal expectation values 〈aξξ 〉 ≡ nξ , the def-
inition Eq. (3) implies that, for instance, (1/β)

∑
n G2(iωn) =

−n0 − n2. An analysis of the separate components of the
Green’s functions in Eq. (4) shows that

n0 − nξ = n0ξ = n0ξ

1 + αξ

(ξ = 1,2,3). (23)

The exact relation n0 + n1 + n2 + n3 = 1 implies that the
“sum rule” (2/β)

∑
n G2(iωn) = −1 − n02/(1 + α2) should be

fulfilled at h = 0. As discussed in Ref. 16 the sum rules are, in
principle, satisfied to the order considered in the cumulant
expansion, but the generalization of the first-order results
introduced by Eqs. (11)–(14) may introduce small violations
of the sum rules. The simplest and most reliable results for nξ

are obtained from Eq. (23) in combination with
∑

ξ nξ = 1,
which results have been used for calculating the moment per
Cu2+ ion parallel to the applied field:

mz = 1

N

∑
i

gμB〈Sz〉 = 1

2
gμbn13. (24)

The present theory is valid in the paramagnetic phase, i.e.,
as long as the field is smaller than the critical one, h < hc.
Introducing the effective interaction parameters

� = J ( �Q) − γ31(0), � = � + δ1(0) + δ3(0)

2
, (25)

where �Q is the ordering wave vector, the critical field is

hc = 1
2 [δ1(0) − δ3(0) + n13�]

+ {
�[� − (n01 + n03)�] + [

1
2n13�

]2}1/2
. (26)

III. THEORY IN COMPARISON WITH EXPERIMENTS

In the zero-temperature limit the present theory, to first
order in 1/z, predicts perfectly well-defined excitations in the
paramagnetic phase, and, at zero field, the dispersion relation
E�q for the dimer excitations is simplified into

E2
�q = (�+ 2λ1)

(
�+ 2λ1 − 2

1 + 4λ2
[J (�q) − 2λ1]

)
, (27)

where λν = λL
ν = λT 1

ν = λT 3
ν calculated from Eq. (15) or (16)

at zero field and temperature. The combined results of Cavadini
et al.11 and Oosawa et al.12 for the energies of the singlet-triplet
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FIG. 1. (Color online) The dispersion relations for the singlet-
triplet excitations in TlCuCl3 at 1.5 K. The experimental results of
Cavadini et al.11 and Oosawa et al.12 are shown by, respectively, black
circles and red symbols (the precise values for the wave vectors in
the different cases may be found by consulting the two papers). The
solid lines are produced by the effective interaction parameters given
by Eq. (28).
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FIG. 2. (Color online) (a) The temperature dependencies of the
energies of different dimer excitations at zero field. The experimental
results are determined by Rüegg et al.19 The solid lines are the predic-
tions of the present theory. The dashed lines show for comparison the
ScRPA results obtained, when using the model defined by Eq. (28).
(b) The linewidth (FWHM) of the lowest excitation mode at zero field
as a function of temperature. The circles are the experimental results
obtained by Rüegg et al.19 at (0 0 1) and (0 4 0). The solid line is the
calculated result, and the dashed line shows the width predicted for
the excitation at (0 0 0.96).

excitations in TlCuCl3 at zero field and in the zero temperature
limit are fitted by (in units of meV)

Jeff(�q) = 0.45 cos(�q · �a) − 0.03 cos(2�q · �a)

+ 1.56 cos[�q · (2�a + �c)] − 0.08 cos[�q · (�a + �c)]

∓ {
1.03 cos

[�q · (�a + 1
2 �c)] − 0.13 cos

(
1
2 �q · �c)}

× cos
(

1
2 �q · �b)

(28)

and �eff = 5.67 meV, where E2
�q = �eff[�eff − 2Jeff(�q)]. The

fit is shown in Fig. 1 and is the one used for determining �

and J (�q) in Eq. (27).
The zero-field temperature dependencies of the energies

and linewidths of a number of triplet excitations have been
measured by Rüegg et al.19 Their results for the excitation
energies are compared with theory in Fig. 2(a). The experi-
mental temperature dependence of the linewidth (FWHM) for
the lowest-energy mode is shown in Fig. 2(b) in comparison
with the calculated results for the excitation at (0 0 1) and
the one lying nearby at (0 0 0.96). The rapid change of the
linewidth shown by the modes close to the lower edge of the
excitation band indicates that experimental resolution effects
are important for this comparison. Furthermore, the calculated
scattering intensities from the excitations are not symmetric
around the intensity maxima, which leads to some arbitrariness
in the assignments made for the calculated energies and
linewidths. This uncertainty becomes important above 10 K,
and, most pronouncedly, for the excitations belonging to the
two upper modes in Fig. 2(a). This figure includes also the
results obtained from the ScRPA theory. In order to enable a
comparison of the two theories, the ScRPA results presented
here are based on the model defined by Eq. (28) and not on
the simplified one specified by Eq. (36) in Ref. 10. In addition
to this, the high-temperature ScRPA results have been slightly
improved by changing the power of the scale factor from 3
to 5 in the approximate expressions for bxy(ω) and bz(ω) in
Eqs. (29) and (31) in Ref. 10.

The application of a field removes the degeneracy of the
S = 1 triplet states of the dimers, and the collective singlet-
triplet excitations split up into a longitudinal and a lower and an
upper transverse mode, as shown in Fig. 3(a). The transition to
the ordered phase takes place at the critical field Hc, where the
energy of the lowest transverse mode vanishes. The calculated
critical field as a function of temperature is compared with
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FIG. 3. (Color online) (a) The minimum energies of the three different dimer excitations as functions of a b-axis field. The solid circles are
the experimental results obtained by Rüegg et al.20,21 at 1.5 K. The thick lines show the predictions of the present 1/z theory at fields smaller
than the critical field at the temperatures 1.5 K (solid) and 4.0 K (dashed). The thin lines are the results derived from the ScRPA theory in the
ordered phase above Hc at 1.5 K. (b) The critical b-axis field in TlCuCl3 as a function of temperature. The black circles show the experimental
results obtained by Oosawa et al.22 and Shindo and Tanaka.23 The solid line is the behavior predicted to first order in 1/z. Using the model
defined by Eq. (28), the ScRPA theory produces the results shown by the dashed line. The diamonds are the experimental results of Rüegg
et al.19 for the zero-field energy of the soft mode divided by gμB (assuming g = 2.06). This would be the critical field (the dot-dashed line),
if the renormalization effects were independent of field. (c) The parallel magnetic moment per Cu ion, mz, as a function of temperature at
various values of the field applied along the b direction. The system is predicted to stay disordered at all temperatures, when H = 53 kOe. The
experimental points are a selection of those obtained by Oosawa et al.1,6 The solid lines show the predictions of the present 1/z theory within
the paramagnetic phase.
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experiments in Fig. 3(b). The minute moment mz induced
by a constant field along the b axis has been calculated as
a function of temperatures within the paramagnetic phase.
The comparison of the calculated moment with experiments
is shown in Fig. 3(c). The two Figs. 3(a) and 3(b) include the
results obtained from the ScRPA theory presented above. In
the case of Fig. 3(c), the ScRPA theory predicts a moment that
at 6 K is about 10% larger than the 1/z results shown in the
figure.

IV. CONCLUSION

The result in Sec. II forG2(�q,iωn) simplifies into the Green’s
function for the singlet-singlet system derived in Ref. 16, if
K31(iωn) is assumed to be identical to zero. The present results
are also consistent with those obtained in the singlet-doublet
case.14 The splitting of the triplet level caused by the field
has here allowed a unique identification of all first-order terms
in the expansion of the single-site Green’s functions, and the
present renormalization scheme is therefore more trustworthy
than the one applied in Ref. 14.

The two theories, the ScRPA theory developed in Ref. 10
and the present diagrammatic expansion of the Green’s
functions to first order in 1/z, are closely related, and their
predictions for the paramagnetic properties of TlCuCl3 show
only minor differences between each other. In both cases, the
final results are, in principle, determined alone by the model
parameters. In reality, some approximations are required in
order to carry out the numerical analyses. Those made in the
present theory have no consequences for the results (as long
as h 
 �), whereas the approximations made for bxy(ω) and
bz(ω) in Ref. 10 are less transparent. One consequence of the
approximations made in Ref. 10 is that all linewidth effects are
neglected. This may be a fair approximation below 10 K, but
the linewidths are important for characterizing the excitation
spectra above 10 K, and it is encouraging that the 1/z theory

accounts reasonably well for the temperature dependence of
the linewidths observed experimentally20 at zero field.

The model used in the present calculations is in complete
accord with the experimental dispersion relations obtained at
zero field and temperature (1.5 K), whereas the simplified
model used in Ref. 10 leads to a smaller density of states just
above the lower threshold energy. The calculated values of the
critical field and the magnetization close to the critical field,
Figs. 3(b) and 3(c), react extremely sensitively to this minor
change of the model, as indicated by the comparison of the
ScRPA results shown here and those presented in Ref. 10.
This strong sensitivity may just reflect the breakdown of any
perturbation theory close to the singular point of a phase tran-
sition. However, it is apparent that both theories overestimate
the self-consistent enhancement of the renormalization effects,
when the critical field is approached, and that this critical
enhancement needs to be moderated by contributions of higher
order. It is worth noting that this shortcoming of the theory
increases with temperature—that it is the thermal rather than
the quantum critical fluctuations which are the cause of the
discrepancies.

The ScRPA theory may be considered to be less rigorous
than the present theory. On the other hand, the simplicity of the
ScRPA theory made it possible to extend it to the case of the
ordered phase appearing above the critical field.10 The good
agreement obtained here, between the predictions of the two
theories in the paramagnetic phase, indicates that the ScRPA
results obtained for the ordered phase may also be trusted.
This is a valuable conclusion, since the more stringent 1/z

expansion of the Green’s functions is going to be extremely
complicated to apply in the case of the ordered phase, where
the number of interaction terms in the Hamiltonian is doubled.
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Krämer, and H. Mutka, Phys. Rev. B 63, 172414 (2001).
12A. Oosawa, T. Kato, H. Tanaka, K. Kakurai, M. Müller, and H.-J.

Mikeska, Phys. Rev. B 65, 094426 (2002).
13R. B. Stinchcombe, J. Phys. C 6, 2459 (1973); 6, 2484 (1973).
14J. Jensen, J. Phys. C 17, 5367 (1984).
15J. Jensen and A. R. Mackintosh, Rare Earth Magnetism:

Structures and Excitations (Clarendon Press, Oxford, 1991);
[http://www.nbi.ku.dk/page40667.htm].

16J. Jensen, Phys. Rev. B 49, 11833 (1994).
17H. M. Rønnow, J. Jensen, R. Parthasarathy, G. Aeppli, T. F.

Rosenbaum, D. F. McMorrow, and C. Kraemer, Phys. Rev. B 75,
054426 (2007); H. M. Rønnow, R. Parthasarathy, J. Jensen, G.
Aeppli, T. F. Rosenbaum, and D. F. McMorrow, Science 308, 389
(2005).

18C. M. Care and J. W. Tucker, J. Phys. C 10, 2774 (1977).

064420-5

http://dx.doi.org/10.1088/0953-8984/11/1/021
http://dx.doi.org/10.1088/0953-8984/11/1/021
http://dx.doi.org/10.1103/PhysRevLett.93.257201
http://dx.doi.org/10.1103/PhysRevLett.93.257201
http://dx.doi.org/10.1103/PhysRevLett.100.205701
http://dx.doi.org/10.1103/PhysRevLett.100.205701
http://dx.doi.org/10.1038/nphys893
http://dx.doi.org/10.1038/nphys893
http://dx.doi.org/10.1103/PhysRevB.69.054423
http://dx.doi.org/10.1103/PhysRevLett.89.077203
http://dx.doi.org/10.1103/PhysRevLett.89.077203
http://dx.doi.org/10.1103/PhysRevLett.84.5868
http://dx.doi.org/10.1103/PhysRevLett.84.5868
http://dx.doi.org/10.1103/PhysRevB.43.3215
http://dx.doi.org/10.1143/JPSJ.73.3429
http://dx.doi.org/10.1143/JPSJ.73.3429
http://dx.doi.org/10.1103/PhysRevB.80.224419
http://dx.doi.org/10.1103/PhysRevB.63.172414
http://dx.doi.org/10.1103/PhysRevB.65.094426
http://dx.doi.org/10.1088/0022-3719/6/15/009
http://dx.doi.org/10.1088/0022-3719/17/30/011
http://www.nbi.ku.dk/page40667.htm
http://dx.doi.org/10.1103/PhysRevB.49.11833
http://dx.doi.org/10.1103/PhysRevB.75.054426
http://dx.doi.org/10.1103/PhysRevB.75.054426
http://dx.doi.org/10.1126/science.1108317
http://dx.doi.org/10.1126/science.1108317
http://dx.doi.org/10.1088/0022-3719/10/15/013


JENS JENSEN PHYSICAL REVIEW B 83, 064420 (2011)
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