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The selection rules for the linear couplings between magnons and phonons propagating in the ¢
direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations.
The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been
explained by Liu as originating from the mixing of the spin states of the conduction electrons due to
the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the
selection rules for a simple ferromagnet. The interactions between the magnons and phonons )
propagating in the c¢ direction of Tb have been studied experimentally by means of inelastic neutron
scatttering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By
studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced
coupling as proposed by Liu. The coupled magnon-transverse-phonon system for the ¢ direction of Tb
is analyzed in detail, and the strengths of the couplings are deduced as a function of wave vector by

combining the experimental studies with the theory.

I. INTRODUCTION

The large coupling between the lattice and the
spin system which has been observed in many of
the heavy-rare-earth metals is due to the large
values of the orbital momentum I, of the ions (with
the exception of Gd). The spin-lattice coupling
may be considered as a special type of magnetic
anisotropy, and the present paper is closely con-
nected with the preceding and the subsequent
papers, to be referred to as I and III, where other
aspects of magnetic anisotropy in Tb are consid-
ered (I: two-ion magnetic anisotropy, III: mag-
netic anisotropy at zero wave vector).

If the magnetic moments are ordered, the cou-
pling between the lattice and the spin system may
manifest itself as a distortion of the lattice, and
as couplings between the lattice vibrations and the
magnetic excitations. We begin connecting the
static and dynamic phenomena by a generalization
of the static Hamiltonian' to the dynamic case.
Through this approach, we may utilize the detailed
knowledge of the static Hamiltonian (III) in a dis-
cussion of the dynamic behavior of the coupled
systems. The frozen-lattice model for the energy
gap in the spin-wave spectrum at zero wave vec-
tor, which is considered in detail in III, is found
to be correct within the harmonic approximation.
In continuation of the discussion in I, we argue
that higher-order magnetoelastic contributions to
the d-dependent magnetic anisotropy in Tb are of
minor importance.

From a general spin-lattice Hamiltonian linear
in the ionic displacements, we deduce the selection
rules for the direct couplings between magnons
and phonons propagating in the ¢ direction of a
basal-plane ferromagnet. The magnons interact
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both with the acoustic and optical transverse pho-
nons. The acoustic-optical coupling has been ex-
plained by Liu® as being due to the spin-orbit cou-
pling of the conduction electrons. The selection
rules deduced for the interactions arising from
the mechanism proposed by Liu are found to differ
from those valid for the coupling in a simple fer-
romagnet. By studying the transverse phonon
spectrum in the ¢ direction of Tb by inelastic neu-
tron scattering we found that the acoustic-optical
magnon-phonon interaction is entirely dominated
by the spin-mixed-induced coupling, in accordance
with the proposal of Liu.

The Hamiltonian for the coupled magnon-trans-
verse-phonon system of a basal-plane ferromagnet
is derived. The equations of motion for the six
(different) modes propagating in the ¢ direction
are deduced. Because of the coupling, the normal
modes are no longer pure magnon or phonon states,
and energy gaps occur at the crossing points of
the unperturbed magnon and phonon dispersion
relations. From the magnitudes of these energy
gaps, which were measured by inelastic neutron
scattering, and from the expected behavior of
these couplings we deduce the d-dependent strength
of the magnon-phonon interactions in the ¢ direc-
tion of Tb.

II. MAGNETOELASTIC COUPLING

In III we establish the general single-ion mag-
neto-elastic Hamiltonian linear in the strains,
Eq. (6), which transforms in accordance with the
point symmetry of I" in the Brillouin zone of the
hexagonal lattice.! If the magnetic moments are
ordered, a coupling between the lattice and the
spin system may be manifested through deforma-
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tions of the lattice which minimize the total mag-
neto-elastic energy. From the degree to which
the lattice is deformed, the strength of the cou-
pling may be deduced if the corresponding change
in the elastic energy (the elastic constants) are
known [Eqs. (8)—(10) of III] . Without a detailed
consideration of their origin, which may be two
as well as single ion, mediated by the Coulomb
or exchange interaction, the phenomenological
coupling parameters obtained in this way may
serve as an adequate basis for a treatment of the
dynamics of the coupled systems. Neglecting two-
ion anisotropy, the magnetoelastic Hamiltonian
was generalized to take into account the interac-
tions between elastic waves and the spin waves in
a basal-plane ferromagnet by Jensen,** and this
treatment was later extended to the cases of con-
ical and helical ordering by Nayyar and Sherring-
ton.> Here we shall restrict ourselves to the case
of a ferromagnet which has only one atom per unit
cell. The tensor spin operators are expanded in
magnon operators as considered in I [Eqs. (16)-
(17)] and the deviations from the homogeneous
strains may be written in terms of normal phonon
coordinates by using the local strain theory of
Evenson and Liu.® Proceeding in this way we may
write the total Hamiltonian for the spin-lattice
system?®

se=3e, +3e P +30(?), . (1)

The unperturbed Hamiltonian
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includes the terms arising from the homogeneous
part of the strains which contribute to the energies
of the magnons, e(d), with the “frozen-lattice”
contributions” which are deduced in ITII. 3C, is
diagonal in the magnon operators a3 and in the
phonon operators B, %, where s denotes one of the
three phonon branches. The interaction term
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involves one-magnon-one-phonon scattering pro-
cesses, whereas the other interaction term rep-
resents interactions between two magnons and one
phonon, '
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The derivation of the interaction amplitudes? is
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tedious but straightforward, and for the present
purpose we shall only quote the amplitude of the
direct coupling between the magnons and the trans-
verse phonons propagating in the ¢ direction of a
basal-plane ferromagnet. The assumption of one
atom per unit cell then corresponds to the use of
the double-zone representation in the case of an
hep lattice. When this coupling is introduced, the
double degeneracy of the transverse phonons is
lifted because only the phonons with the polariza-
tion vector parallel to the magnetization may in-
teract, and the strength of the coupling is given
by

N n(Jo 1/2 e(k) 1/2 L
W(k)=%cH, z (ﬁ) (m> sinzkc ,

(5)

where c¢ is the lattice parameter and M the mass
of the ions. c¢.H, is the magnetoelastic coupling
parameter connected with the e-strain deforma-
tions of the lattice as considered in III [Egs. (5)
and (24)], which depends implicitly on the rela-
tive magnetization 0. A(%) +B(k) is the magnon-
energy parameter defined in I [Eq. (21)]. Two-
ion contributions to the coupling are effectively
included to first order in kc and may only intro-
duce deviations of the order of (kc)®, from the
relation W(-Kk) = - W(k), which justifies use of an
effective single-ion Hamiltonian for the magneto-
elastic couplings in at least the region of the Bril-
louin zone near I

If C‘C(j)p is neglected, the Hamiltonian (1) can be
diagonalized exactly by means of a canonical trans-
formation of the magnon and phonon operators.
The normal modes are then no longer pure mag-
non or phonon states, and energy gaps®*

AR =2[w, (&) (6)

may occur at the crossing points of the unperturbed
magnon and phonon dispersion relations. In the
long-wavelength limit, the velocity of the sound
waves is changed according to

wl(K)/wg (k) =[1-4W2(K)/w, (k) e(0)] /2, k~0,
(7

which is independent of K in this limit. The mag-
non energy gap €(0) at zero wave vector is always
finite if magnetoelastic couplings are present be-
cause of the frozen-lattice contributions. €(0)
finite and the condition W2(k) « |k| at small wave
vectors imply that the one-magnon-one-phonon
interaction 3{” does not contribute to the mag-
non energy gap at £=0. This result has been ob-
tained by several authors (Jensen,* Chow and
Keffer,® and Liu®), and it supports the validity of
the frozen-lattice model for the energy gap &(0),
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in which model the presence of phonons is neglec-
ted. Apart from the possible contributions from
3¢ to €(0) the frozen-lattice model proposed by
Turov and Sharov’ is found to be correct. The
two-magnon-one phonon interactions may be taken
into account by second-order perturbation theory
and may, for instance, contribute (at finite tem-
peratures) to the energy of the long-wavelength
phonons.*** Here we are mostly concerned with
the magnons, and, by summing over all virtual
phonon states in (4), we transform the phonon
operators into two magnon operators, which im-
plies that the interactions in 5{?) are equivalent
to magnon-magnon interactions and as such con-
tribute to the energy renormalization and the life-
time of the magnons. At zero temperature JCff_)p
will introduce a zero-point correction of the mag-
non energies, analogous with magnon-magnon in-
teractions,'® which is deduced® to be
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However, this change of the magnon energies
should be accompanied by a similar zero-point
adjustment of the homogeneous strains which are
present in the unperturbed magnon energies (the
frozen-lattice contributions). The use of the phe-
nomenological coupling parameters, which are
determined by minimizing the free energy [Eqs.
(8)-(10) of III], turns the question of a possible
deviation of €(0) from the frozen-lattice energy
gap into the question of a possible existence of
differences between static and dynamic energy-
gap parameters, due to magnon-magnon inter-
actions. These features of the dynamics of the
coupled spin-lattice system may be elucidated
by the following formal treatment, which also
shows that phonon-induced multipole interactions
[mechanism (viii) in I] are identical to magnon-
phonon interactions. A simplified version of the
magnetoelastic Hamiltonian may be written

1 -
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where we consider only one strain variable e;, which
depends on the position of the ithion. ¢’is a reduced
elastic constant, and the Racah operators O 1,ms
are introduced in I. Without introducing explicitly
the magnon operators, this expression may be
treated as above. The free energy is minimized,
and the inhomogeneous part of the strain is trans-
formed to the spin space by summing over all vir-
tual phonon states appearing in a second-order

perturbation calculation. Equation (9) then takes
the form
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where we have assumed ferromagnetic ordering
[(O;,m(J;) is constant]. The first part of (10) is
the frozen-lattice contribution, whereas the sec-
ond part describes the dynamic interaction be-
tween the lattice and the spin system correspond-
ing to 3", +3¢{?, in (1), which implies a coupling
between the moments on different sites mediated
through the phonons. If we neglect higher-order
terms than those linear or quadratic in magnon
operators in the expansion of the Racah operators
[Eqs. (16) and (17) of I], it follows immediately
that the quadratic terms in the second part of (10),
corresponding to CfCﬁ?_)p, do not contribute to the
magnon energies, whereas the linear terms cor-
responding to SC,("{),, may give rise to dispersion.
However, the linear terms do not contribute to the
energy at zero wave vector because the Fourier
transform of K,";"’"(ﬁi —ﬁj) vanishes at ¢=0, as
the sum of the displacements of the ions from
their equilibrium positions, e; — €, is zero. The
last formulation of the dynamic problem, (10),
shows in a transparent way that the frozen-lattice
model for the magnon energy gap is correct, when
higher-order effects such as magnon-magnon in-
teractions are neglected. The correction obtained
above, Eq. (8), is more fictitious than real and is
compensated at ¢ =0 by a corresponding change of
the ground state, which is included in € in (10).
This conclusion is supported by the comparison in
IIT between the static and dynamic energy-gap pa-
rameters obtained experimentally in Tb, where
the best agreement is found for the parameter
P,(-), which is entirely dominated by magneto-
elastic contributions. In (10) the terms corre-
sponding to 3C{?), disappear if magnon-magnon
interactions are neglected, whereas (8) represents
a d dependence of the frozen-lattice contributions,
as Ae(@) depends on . These contributions to the
d-dependent anisotropy in Tb (I) are presumably
unimportant and cannot be distinguished from the
equivalent contributions arising from the single-
ion anisotropy by magnon-magnon interaction.
The unimportance of these higher-order contribu-
tions is confirmed by a comparison of the aniso-
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tropy in the easy and the hard directions of Tb.
When the direction of magnetization is changed
from an easy to a hard axis the effective aniso-
tropy at zero wave vector is only modified slightly,
but the large d-dependent anisotropy present at

4.2 K in Tb at zero field almost disappears when
the direction of magnetization is changed (Fig. 4

of I).

As in I, we conclude that the effects of two-mag-
non-one-phonon interactions on the dispersion of
the magnons are negligible at zero temperature.
At finite temperatures, these effects can hardly
be distinguished from those arising from normal
magnon-magnon interaction. The contributions
from JC,(,,I_)p to the dispersion of the magnon energies
are much more important, and we shall concen-
trate on these direct couplings between magnons
and phonons in the following sections. Although
the generalization of the static Hamiltonian to the
dynamic case accounts for most of the couplings
found experimentally in Tbh,*** it fails to predict the
observed coupling between acoustic magnons and
optical phonons propagating in the ¢ direction.

The presence of this additional magnon-phonon
interaction does not affect the discussion above
concerning JC(nffp, but the derivation of a more
complete expression for JCfn‘_)p demands a reformu-
lation of the problem.

III. MAGNON-PHONON INTERACTION

The general spin interaction term introduced

in I by Eq. (4), describing a coupling between the
total angular moments on the sites ﬁi and R , de-
pends on the relative positions of t_}le ions, R; —ﬁ,.
A virtual change of this distance 6R(7j) will modify
the strength of the coupling. To first order in the
Cartesian components of the displacement, 0 R (Zj),
the coupling between the spin system and the lat-
tice may be written

o =303 03 OR) Diol#)
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Dfi,,"";(ij) is a phenomenological coupling param-
eter which is only nonzero if / +1’ is even, owing
to time-reversal symmetry. We have neglected

a possible polarization dependence of the general
spin interaction, appearing as{0,,,) in Eq. (4) of
I, because it is inessential in this context. The
selection rules for the magnon-phonon interactions
which are introduced by ¥, may be determined
by a group-theoretical analysis. This has recently
been performed by Cracknell'! on ferromagnetic
hcp metals. For the same purpose we shall here
utilize a knowledge of the transformation prop-
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erties of the Racah operators, and we restrict
ourselves to the case of magnons propagating in
the ¢ direction of a basal-plane ferromagnet (Tb
and Dy).

In the ¢ direction of an hep lattice, the eigen-
vectors of the phonons are purely longitudinal or
transverse, and the transverse modes are doubly
degenerate. The phonons are either purely acous-
tic or optical excitations (corresponding to the
double-zone representation), which we shall as-
sume to be the case also for the magnons (this
assumption has no influence on the results de-
duced). When we consider excitations propagating
in the ¢ direction, the Hamiltonian (11) may be
reduced by the symmetry operations which leave
the hexagonal layers unchanged. The Cartesian
1, 2, and 3axes are chosen to be along @, b, and
¢ directions, respectively, and we define the
components of the displacement vector 8R(éj) to
be real quantities. Referring to a coordinate sys-
tem of the spin system whose axes coincide with
the Cartesian axes, the general spin-lattice Ham-
iltonian is reduced according to the following
rules: The interaction between the magnons and
the longitudinal phonons is determined by

m+m'=3p,
Dim (i) =Dhm (i) =(= 1) DL, (i),

and the interaction with the transverse phonons by

(12a)

m+m’'+1=3p,
DL (4) = D}, (4) = = i Do, (i) = (= 1Y Doy (6)*
(12b)

where p is equal to 0,+1,+2,.... The Hamilton-
ian (11) is invariant under lattice translations
when

Dy™ (i§") == (- 1) DL (3)) (13a)

where (2j) =~ (¢j’) by a reflection in the hexagonal
plane which includes the ith ion (the index s stands
for either / or £). The transformation of one sub-
lattice (A) into the other sublattice (B) by which
(247) = (¢5 j) implies that

DY (igj) =(= 1Y Di (i) . (13b)

Like the conditions of I for the spin-wave Hamil-
tonian, conditions (12) and (13) require that the
ordered moments be parallel and of equal magni-
tude within any particular hexagcnal layer.

The expansion of the Racah operators, as de-
duced in I [Egs. (16) and (17)] for a basal-plane
ferromagnet, is introduced in (11). The presence
of two ions per unit cell is accounted for by de-
fining two systems of spin deviation operators,
each associated with one of the two sublattices.'?
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The relative displacement 8R (Zj) is expressed in
terms of phonon operators. Introducing the con-
ditions (12) into the spin-lattice Hamiltonian, we
deduce the selection rules for the linear coupling
between magnons and phonons propagating in the
¢ direction of a basal-plane ferromagnet. Defin-
ing ¢, as the angle between the magnetization vec-
tor and the polarization vector of the phonon mode
s under consideration, the magnon-phonon inter-
action at a certain wavelength is proportional to

Z DZ;[1+(-1Y0, ;] cos(38p¢ +¥s) , (14)
»

where ¢ is the angle the magnetization makes
with the 1 axis. The index f defines the magnon
mode to be either acoustic or optical, and 0, is

1 if the modes are both acoustic or optical, other-
wise 0, ; is — 1.

The selection rules become more comprehen-
sible if we distinguish between the two cases:

(a) p even. In this case the longitudinal phonons
(,=%7) may only interact with the magnons if the
magnetization is not along a symmetry direction
and if Df,; #0 when p #0 [corresponding to BS in
Eq. (6) of III]. If 3p¢ is a multiple of 7 (the mag-
netization is then along an a or a b axis), only the
transverse phonons for which the polarization vec-
tor is parallel to the magnetization interact with
the magnons. These terms only give rise to mag-
non-phonon interaction if the modes are both
acoustic or optical, and the interaction amplitude
is proportional to & in the long-wavelength limit.
These couplings are the same as those obtained
by the generalization of the static Hamiltonian,
Eq. (6) of III, and are effectively included in the
interaction Hamiltonian (3).

(b) p odd. The coupling introduced by these
terms is only nonzero if one of the modes is an
acoustic and the other an optical mode. We point
out that the conditions (13) imply that the terms
for which 7 and j in (11) belong to the same sub-
lattice are antisymmetric in spin space [see mech-
anism (ii) in I], whereas all other couplings are
symmetric. In an a-axis magnet only the trans-
verse phonons which are polarized parallel to the
magnetization are coupled to the magnons. When
the magnetization is along a b axis (3p¢ = +5T
+2nm), then the polarization vector of the phonons
which are coupled to the magnons is perpendicular
to the magnetization. The coupling for which p
is odd is proportional to %? in the long-wavelength
limit, and this coupling does not appear in the
static Hamiltonian or in the interaction Hamil-
tonian (3).

This coupling scheme, expressed through the
relation (14), is identical to the one obtained by
Cracknell' by a group-theoretical analysis, and it

is summarized in Table I. The coupling for which
p is odd introduces interactions between acoustic
and optical modes which could account for the ap-
pearance of the energy gap A, in the magnon dis-
persion relation inthe ¢ direction of Tb shown in
Fig. 1. However, the experimental studies of the
magnon-phonon interactions in Th, which are pre-
sented later, showed no indications of such a &
coupling. The acoustic-optical magnon-phonon
interaction in Tb cannot be described as a & cou-
pling, which shows that Tb is not an ideal basal-
plane ferromagnet. The ionic angular moments in
Tb seem to constitute a well-defined spin-wave
system at low temperatures. The presence of
magnetic anisotropy affects the ground state, and
Lindgdrd and Danielsen'® found that the moments
are reduced by 0.6%. A deviation of the ground
state from the fully aligned spin-wave state does
not introduce new selection rules if the magnetic
excitations are pure dipole transitions (AM;=+1),
as in the case considered by Lindgdrd and Daniel-
sen. If the magnetic excitations in Tb are mixed
excitations for which AM; is both +1 and +2 then
the selection rules above are no longer valid. The
presence of such a mixing presupposes a canting
of the ionic moments in the ground state; the ac-
tual value of ¢ should deviate somewhat from the
one obtained in a spin-wave approach. The effect
of a canting of the ionic moments is simply ac-
counted for by introducing the actual value of ¢

in Eq. (14). The magnetization measurements™
and the neutron-cross-section calculations in I
show that the canted moment is at least one order
of magnitude smaller than the total moment, which

TABLE I. Selection rules for the linear coupling be-
tween acoustic and optical magnons (MA, MO) and pho-
nons propagating in the ¢ direction of a ferromagnetic
hep metal. The moments are ordered along either an
a axis or a b axis. TA; and TA, label the transverse
(acoustic) phonons which have their polarization vector
parallel or perpendicular to the magnetization, respec-
tively. a and b classify the different couplings which
may occur, as described in the text. The spin-mixed-
induced couplings introduced by Eq. (15) may appear in
all those places which are not classified as ana or a
b coupling.

a-axis b-axis
magnet magnet
MA MO MA MO

LA coo b
TA; a b a
TAL e coe cee b
LO cee ) b cee
TO, b a .. a
TOL eeo “eo b oee
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FIG. 1. Acoustic- and optical-magnon (MA, MO) and
transverse-phonon (TA, TO) dispersion relations in the
¢ direction of Tb in zero magnetic field at 53 K (solid
lines). The magnon dispersion relation is deduced from
the observed energies of the normal modes, connected
by the dashed lines, as described in the text (the scat-
tering vector of the neutrons is along the ¢ axis). The
normal modes are mixed states of magnons and phonons
and the energy gaps A; and A, occur at the crossing
points of the unperturbed dispersion relations.

implies that the AM;=+2 transitions can be ne-
glected. The deviation of the ground state of the
ionic moments in Tb from an aligned spin-wave
state is so small that it offers no possibilities for
explaining the behavior of the strong acoustic-
optical magnon-phonon interaction.

Until now we have considered the system of the
phonons and the ionic angular moments to be an
isolated one. However, the conduction electrons
are known to be a very impdrtant part of the mag-
netic system in the rare-earth metals since they
are responsible for the strong coupling between
the ionic moments on different sites (I). The
transformation of the s-f exchange Hamiltonian to
an effective f-f Hamiltonian, by which the angular-
moment space is uncoupled from the spin space of
the conduction electrons, is in general a fair ap-
proximation. When making this transformation it
is normally assumed that the conduction electrons
are polarized parallel to the ionic moments and
hence contribute to the total magnetization (4% in
Tb). This condition is not necessarily fulfilled if
the conduction electrons are spin-orbit coupled,
in which case the spin-up and the spin-down states
may be mixed. A mixing of the spin states is
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equivalent to a deviation between the direction in
which the conduction electrons are polarized and
the direction of the magnetization. The spin com-
ponent perpendicular to the magnetization is found
to be proportional to a spin-orbit coupling param-
eter (A,,), the s-f exchange matrix element, and
the susceptibility of the conduction electrons.

The microscopic mechanism proposed by Liu® for
explaining the acoustic-optical magnon-phonon in-
teraction involves a perpendicular spin component
created by the spin-orbit coupling. The magnon-
phonon interaction considered by Liu is established
via intermeidate states in which electron-hole
pairs are excited virtually by the phonons. These
pairs subsequently recombine into magnons, and
this interaction becomes possible only if the spin
states are mixed by the spin-orbit coupling. As
estimated by Liu? a spin mixing parameter (X )
of the order of 0.03 is sufficiently large to account
for the observed strengths of the acoustic-optical
magnon-phonon interactions in Tb and Dy.'* The
interactions due to this coupling mechanism do
not appear in the selection rules above, (14), be-
cause they are proportional to the spin mixing or
to the spin component of the conduction electrons
perpendicular to the magnetization.

The selection rules deduced are only valid if the
spin states of the conduction electrons are pure
spin-up or spin-down states. The occurence of a
perpendicular spin component (parallel or perpen-
dicular to the ¢ axis) introduces different selection
rules. From the spin-lattice Hamiltonian, (11)-
(13), we deduce the following expression deter-
mining the magnon-phonon interactions which may
be present in a basal plane ferromagnet to first
order in the spin mixing parameter:

(Aod DT D5s[1+(=1) 0, 4] sin(3pg +3) ,  (15)
»

where we have used the same notation as in (14).
The couplings introduced by the spin-mixing mech-
anism proposed by Liu® are all those which are
not allowed in a simple ferromagnet. The effects
of a perpendicular spin component on the spin
Hamiltonian [Egs. (7) and (8) of I] are in most
cases negligible. It gives rise to couplings pro-
portional to sin(u +m +m’)¢ which are zero when
the magnetization is along an a or a b axis, except
for the interaction between acoustic and optical
magnons (proportional to sin3¢).

The acoustic-optical couplings (p odd) may only
be present if the spin and space variables are
directly mixed. This requirement is only met by
the normal & coupling, (14), to second order in
the spin-orbit parameter (A,.,>. The absence of
the b coupling in Tb is then consistent with the
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spin-mixing model. The violation of the selection
rules valid for a simple basal-plane ferromagnet,
(14), by the acoustic-optical magnon-phonon inter-
action in Tb proves that this coupling is due to

the spin-mixing mechanism proposed by Liu.?

The spin-mixed-induced magnon-phonon inter-
actions, (15), may be classified according to
whether p is even or odd, as in the case of the
normal couplings. Yafet's has shown that the ma-
trix element for the phonon-electron interaction
producing a spin reversal is proportional to k2 (or
k%) in the long-wavelength limit. This implies
that the couplings in (15) for which p is even are
proportional to £ rather than % in this limit, and
they do not then appear in the static Hamiltonian.
The couplings for which p is odd in (14) and (15)
introduce interactions between acoustic and optical
modes which are proportional to 4% in the long-
wavelength limit. This implies that they cannot
give rise to static (optical) deformations of the
crystal.

The selection rules (15) for the spin-mixed-in-
duced couplings do not depend on the direction of
the spin component perpendicular to the magnet-
ization. To introduce some simplification in the
following discussion we shall assume that this
component is perpendicular to the ¢ axis in Tb.
According to the model proposed by Liu and the
considerations above the spin-mixed-induced
couplings should depend on the s-f exchange inter-
action, J(k) [Eq. (1) of I], and we shall make use
of the following expression for the amplitude of the
acoustic-optical magnon-phonon interaction, which
probably includes the most important E-dependent
contributions:

Vi(k) = Vo[ 8,() x4(k)] 1/2<wg(k) [A;(R) = B(k

X[1 = cos(kc)] . (16)

The acoustic and optical branches are labeled by
1 and 2, respectively. Vg(k) is the amplitude of
the interaction between the magnons (f branch) and
the transverse phonons (g branch) propagating in
the ¢ direction of a basal-plane ferromagnet when
(f, 8) is either (1,2) or (2,1). V, is a constant in-
dependent of the wave vector, and X,(k) is the sus-
ceptibility of the conduction electrons.'®

Before finishing this section we shall consider
briefly other kinds of magnetically ordered sys-
tems. If the magnetization is along the ¢ axis then
the normal & coupling vanishes, but the a coupling
between the transverse phonons and the magnons
may still be present [m=-1 and m’=0 correspond-
ing to p=0 in (12b)]. If the spin states are mixed
there might also be a coupling between acoustic
and optical modes (m=m’=1) in this configuration.

i1 )})1/2

In a helically or conically ordered structure the
spin-lattice Hamiltonian (11) introduces (first-
order) couplings between a magnon at wave vector
d and a phonon at wave vector § £ (m +m’) Q +n7F,,
where (_5 is the wave vector of the magnetic struc-
ture, |T,|=2n/c, and # is an integer which is even/
odd when p is even/odd. These are the selection
rules obtained when using a double-zone repre-
sentation for the modes propagating in the ¢ direc-
tion, and they are valid both for the normal and
spin-mixed-~induced couplings. A coupling between
the transverse phonon modes at § =0.177, and the
magnon at d = - 0.357, for which m+m’=2 and p is
odd (corresponding to the acoustic-optical inter-
action in Tb) is presumably responsible for the
energy gap at { =-0.35%, observed in the spin-
wave spectrum of Er (Q=0.24%,) by Nicklow ef al.'

IV. EQUATIONS OF MOTION

In this section we shall consider the equations
of motion of the coupled magnon-phonon system,
and we shall neglect the couplings which seem to
be of no importance in Tbh. This means that we
restrict ourselves to the case where the magnons
and the transverse phonons propagating in the
¢ direction are coupled via the a coupling (see
Table I) and the acoustic-optical spin-mixed-in-
duced coupling, (15). The selection rules for the
acoustic-optical interaction make it necessary to
distinguish between the two cases in which the
magnetization is either along an a direction or
along a b direction. If we distinguish between the
transverse phonons polarized parallel (%) and
perpendicular (yf) to the magnetization by defining
two sets of phonon operators, St and yf, then the
unperturbed Hamiltonian for the magnon-trans-
verse-phonon system is

o =2 /Z les(®)af way 7 + w0 (R)B] 28s %
": =1,2

+ws &) 1y 1) (17)

When the magnetization is along an a axis these
modes are coupled as described by the Hamilton-
ian

50l =2 o [iW,@)a] 1 +ap DB, 5 + B %)

K f=1.2
+ VRN 7 =y )i + e, 0],
(18a)
which is changed into
K= 2o 2o LW,RNf 5+ 0 )8y 5+ B, 0)
= /T,
+ V&) ) 7 - s )87+ B 1)
(18b)
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when the magnetization is along a b axis. In
these equations g= 2 when f=1 and vice versa.
W,(k) and V,(k) are both real quantities. When k
is replaced by -k, then W,(k), Eq. (5), changes
sign, whereas V,(k), Eq. (16), is unchanged. By
expressing the Hamiltonian in terms of magnon
operators, we have performed the transformation
of the spin deviation operators into magnon opera-
tors [Eq. (19) of I]. This transformation affects
only the interaction amplitudes [as included in (5)
and (16)], not the equations of motion.

The Hamiltonian for the coupled magnon-trans-
verse-phonon system, (17) and (18), also des-
cribes the case where the two normal (¢ and b)
interactions are the only ones present. The only
difference is that the Hamiltonian for the a-axis

J
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magnet (18a) and the Hamiltonian for the b-axis
magnet (18b) are interchanged. By accounting for
this difference the following discussion of the
equations of motion is equally valid in the two
cases.

The normal modes of the system described by
(17) and (18) are certain linear combinations of
the magnon and phonon modes. By evaluating the
secular determinants, we obtain the following
eigenvalue equations which determine the energy
E(E) of the normal modes. The wave-vector argu-
ment is the same for all the quantities occuring
in the following equations, and we therefore sup-
press it. In the case where the magnetization is
along an a axis the equations of motion lead to

[(E? - e2)(E? - w3)(B? - w?) - 4e,0,W2(E? — w?) —4e,w,V(E? - w?)][(E? - €2)(E? - w2)(E? - w?)

—4e,w,W2(E? — w?) - 4e,w,V3(E? - w?)] = 0, (19a)

and when 3C,,_,, = 35, + ¥} . we obtain

m-tp

(E? - W2)(E? - w3)[(E? - €2)(E? - e2)(E? - w?)(E? — w2) —4e,w,W2(E? - €2)(E? — w?) ~ de,w,W2(E? ~ e3)NE? — w?)

—4e,w, Vi(E® ~ e3)(E® - w}) - de,w, VE(E? — e2)(E? = w2) + 16w,w, (e, W2 + e, V2)(e,W? + &, V?)

The six positive roots E of these equations are
the energies of the six (different) normal modes
of the system. Putting V, and V, equal to zero in
(19a) or (19b) we may easily derive Egs. (6) and
(7) in Sec. II.

At point A on the Brillouin-zone boundary the
magnons and phonons are both doubly degenerate,
e, and e, equal to e and w, and w, equal to w. Eq.
(19a) immediately shows that the normal modes
remain doubly degenerate at A when the magnetiz-
ation is along an a axis. If the magnetization is
parallel to a b direction, then the energies of the
normal modes are determined by

(E? = w?P[(E? - €2)(E® - w?) - dew(W? + V2) - BWEW V]
X[(E? — ?)(E? - w?) ~ dew(W? + V2)+ BWEW V] = 0
(20)

at k= m/c. This equation will in general have

4 + 1 different positive roots, implying that the
double degeneracy of the coupled modes at A is
lifted (when W and V are both nonzero). This in-
direct coupling of the acoustic and the optical
magnons in a b-axis magnet, which is transmitted
by the combined acoustic and optical interaction
with the phonons, is a higher-order process. In

—16w,w,E*(W,V, + W,V,?]l=0. (19b)

r

a second-order perturbation calculation this
coupling will not appear, and thus it does not
violate the general symmetry arguments in I.

The energy gap at A obtained in the b-axis mag-
net, Eq. (20), is a result of the particular spin-
mixed-induced coupling which we consider. If
the spin component perpendicular to the magnetiza-
tion is parallel to the ¢ axis instead of lying in
the basal plane, as we have assumed, then the
equations above are modified in the following way.
In Eq. (16), the expression for the interaction
amplitude, A;(k)=-B;(k) should be replaced by
Ag(k)+ Bs(F). Inthe Hamiltonian (18), z'(oz,f.i
-y, 1) should be changed into a}'g +a; _%, which
modifies the eigenvalue equation (19b), so that
the last two terms are replaced by 16e.e,0,w,
X(W,W,+ V,V,)’. This change of the eigenvalue
equation (19b) implies that, if the spin component
giving rise to the spin-mixed-induced coupling is
parallel to the ¢ axis, then the magnons (and pho-
nons) also remain doubly degenerate at A when
the magnetization is along a b axis.

If W,(k) and V,4(k) are different from zero, then
the magnon and phonon states are mixed. From
the secular equations, the eigenvector describing
the normal mode with energy E(K) may be deduced.
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We shall reduce this problem by considering only
the cases where either Wf(E) or V,(E) may be
neglected. If unperturbed magnon and phonon
branches are sufficiently close to each other, then
the interaction U between these two branches
dominates the behavior of the corresponding nor-
mal modes. When the coupling to the other
branches is neglected the energies are determined
by

E, = [3(e® + w*) £ 3(e* - 0*)F |2,

E,=E, and E,=E_, 21)

where F is equal to 1 if the interaction vanishes,
F=[1+16ewl?/(e* - w?)?]V2, (22)

When e# w, the mode with the energy E¢ is most-
ly magnonlike and the other is mostly phononlike.
The inelastic neutron scattering cross section of
the transverse phonons vanishes if the scattering
vector k is along a ¢ direction, which is in dis-
tinction to the cross section of the magnons [Eq.
(43) of Il. The cross sections of the two normal
modes are then entirely connected to the magnon
part of their eigenvectors. By calculating these
eigenvectors we obtain the ratio between the neu-
tron intensities of the two modes, I and I, as

1/Te =K e E(F =1)/E¢ (F + 1), (23a)

where K , is a correction due to a different oc-
cupation n(E) of the two levels and to a change of
the ratio (k’/k,); between the wave vectors of the
incident and scattered neutrons,

_ (g + 1)k /Rg)y

Bue = G T 1) JRg)e -

(23b)
If we approximate we by E_E, then F may be ex-
pressed in terms of the observed energies

F=|E2 -E2|/[(E} - EL) - 16UE E.|* . (24)

Equations (23) and (24) may be used to obtain a
fair separation of overlapping neutron groups.

V. EXPERIMENTS

The interactions between magnons and phonons
propagating in the ¢ direction of Tb were studied
by inelastic neutron scattering. No coupling was
observed between the magnons and the longitudinal
phonons. The transverse phonons and the magnons
are coupled, as is revealed by the two energy
gaps A, and 4, in the magnon spectrum of Tbh in
zero field at 53 K, which is shown in Fig. 1. The
coupling between the acoustic magnons and the
acoustic transverse phonons A, may immediately
be explained by the normal a coupling (Table I).
The interaction between the acoustic magnons and
the optical phonons, A,, has been proposed by

Liu® as being due to the spin-mixing mechanism.
As we have seen this explanation can be verified
by a determination of the polarization vector of
the transverse phonon mode which takes part in
the interaction. When the magnetization is along
the b axis (as in Tb in zero field), then the polar-
ization vector of the optical transverse phonons,
which are coupled to acoustic magnons, should

be perpendicular to the magnetization in the case
of a simple ferromagnet (Table I); whereas the
spin mixing mechanism, (15), predicts the polar-
ization vector to be parallel to the magnetization.
In Fig. 2, we show the result of a neutron scan

at g= 0.6 A™' at 90 K. The reciprocal-lattice
vector defining this scan is (1,1, 0), in which case
the neutron cross sections are finite only for
optical modes when ¢ is larger than n/c = 0.55 A%,
To remove domain effects we applied an external
field along the b axis perpendicular to the scatter-
ing plane; these effects are small because the
magnetovibrational cross section dominates the
phonon creation through the nuclear interaction.
In this configuration we detect the optical magnon
(MO) and the optical phonon polarized perpen-
dicular to the magnetization (TO,) at g= 0.5 A~
As is apparent on Fig. 2, the TO, mode is not af-
fected by the acoustic magnon mode (MA). If the
coupling giving rise to the energy gap A, in the
magnon spectrum had been of the normal b type
then the neutron group of the TO, mode would
have split into two peaks appearing at the positions
marked by the two arrows in Fig. 2. We did not
observed any anomaly in the behavior of the neu-
tron intensity or linewidth of the TO, mode when ¢
was varied, implying that the b coupling in Tb is
entirely negligible. By the application of a field
along an a direction the ordered moments were
aligned along this direction perpendicular to the
scattering plane. In this configuration it should

in principle be possible to detect the spin-mixed-
induced coupling in the spectrum of the transverse
phonons polarized perpendicular to the magnetiza-
tion, see Eq. (15). The experimental resolution
was adequate for this purpose only around the
reciprocal lattice point (1, 0, 0), in which case the
neutron cross section is not purely acoustic or
optical, and it was not possible to separate

the neutrons scattered by the acoustic magnons
from those scattered by the optical phonons in

the neighborhood of the energy gap A,. However,
the energy gap appeared as two separate neutron
groups in this scan, and the ratio between the
neutron intensities of the optical transverse pho-
non and of the acoustic magnon was sufficiently
large for an uncoupled phonon mode to have
smeared out the two neutron groups completely.
From these experiments we conclude that the
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FIG. 2. Neutron groups obtained in Th at 90 K when a
field of 10 kOe is applied along a b axis perpendicular
to the scattering plane. The scattering vector of the
neutrons is the sum of the reciprocal lattice vector
(1, 1, 0) and the wave vector H along the ¢ axis
(¢=0.6 A™1). The two peaks observed are due to the
optical magnon mode (MO) and the optical transverse-
phonon mode polarized perpendicular to the magnetiza-
tion (TO,) at ¢ =0.5 A~1, If the energy gap A, in Fig. 1
were due to the normal b coupling appearing in Table I,
then the TO, neutron group should have split into two
peaks of equal magnitudes at the positions marked by
the arrows.

acoustic-optical magnon-phonon interaction in Th
which is manifested as the energy gap A, is a
spin-mixed-induced coupling, as proposed by Liu.?
If the spin component of the conduction elec-
trons, which is perpendicular to the magnetiza-
tion, is perpendicular to the ¢ axis, then the mag-
nons (and phonons) should exhibit an energy gap
at the Brillouin-zone boundary (A) when the mag-
netization is along a b axis, as determined by
Eq. (20). From the interaction amplitudes derived
below we calculate the energy gap at A to be ap-
proximately 0.28 meV at 4.2 K. This is relatively
small when compared with the natural linewidth
of the magnon'® at A, which is of the order of
0.6 meV. The intensity variation of the (perturbed)
magnons was studied in the vicinity of the Brillou-
in-zone boundary. The experimental resolution
was 0.5 meV, corresponding to an observed line-
width of the order 0.8 meV. The experiment sug-
gested an energy gap equal to 0.25£0.15 meV, but
this is too small to allow a direct verification of
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its existence. The uncertainty introduced in the
eigenvalue equation (19b) because the direction of
the perpendicular spin component is unknown is
of minor importance except at A, and we shall
continue to assume that this component lies in the
basal plane.

The magnitude of the energy gaps which occur
at the nominal crossing points of the magnon and
phonon dispersion relations is approximately
twice the amplitude of the magnon-phonon coupling,
Eq. (6). The use of the exact expression (19) pro-
duces only a small correction. By measuring the
energy gaps we may determine the strength of the
couplings at the wave vectors at which the energy
gaps appear. From the energy gaps A,(K,) and
A,(k,), which are shown in Fig. 1, we deduce the
coupling amplitudes W,(k,) and V,(k,). By the ap-
plication of an external magnetic field the ordered
moments were aligned along a hard direction (a
axis). From the magnitudes of the energy gaps
observed in the two different configurations the
coupling parameters H, and V,, Egs. (5) and (16),
were found to be independent of ¢. Away from an
energy gap the intensity ratio (23) decreases
rapidly and may serve only as an order-of-magni-
tude estimate of the coupling strength. The inter-
action between acoustic magnons and optical pho-
nons at zero wave vector, V,(0), does not neces-
sarily vanish as suggested by Eq. (16). The in-
tensity of the optical transverse phonon mode at
q=0, I, in Eq. (23), was found to be vanishingly
small when the scattering vector of the neutrons
was parallel to the ¢ axis. From this measurement
an upper limit of 0.1 meV could be deduced for
| V,(0)], which is consistent with the factor
1 - cos(kc) in (186).

We did not find any indications in Tb of a spin-
mixed-induced coupling for which p in (15) is
even. The presence of such a coupling might be
of importance only close to A because it is pro-
portional to (kc)® rather than kc. Neglecting this
coupling and a possible deviation of the order of
(kc)® which may occur in the expression for W,(k),
Eq. (5), we calculated the intensity ratio (23) be-
tween the neutrons scattered by the transverse
phonon and the magnon at A. The experimental
value was found to be close to the calculated one,
supporting the use of these approximations. Within
these approximations the result for W,(k,) at 53 K
determines H, as 17.0x107% at 0 = 0.971 by the
use of Eq. (5). The velocity of acoustic sound
waves depends on an applied field, Eq. (7), be-
cause of the field dependence of the magnon energy
gap at zero wave vector (III). The acoustic-optical
coupling does not contribute in this long-wavelength
limit. Moran and Liithi’® have measured the field
dependence of the velocity of transverse sound
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waves propagating in the ¢ direction of Th at 140 K
from which H, at 0 = 0.82 is deduced?® to be 14.6
x107% [this number has been corrected for the
effect of the field dependence of the relative mag-
netization (III)]. The magnetostriction parameter
A€ = $H, has been measured®**?! only in the para-
magnetic region of Tb (¢<0.2). The combination
of these measurements with the two results de-
duced from the magnon-phonon interaction indicates
(Fig. 3) a simple power-law dependence on o of
H, instead of the 75,2 (0) dependence obtained from
the theory of Callen and Callen' when H, is assumed
to be of lowest-order single-ion origin. By fitting
a power-law o dependence to A° measured by
DeSavage and Clark®® and to the two results de-
duced at low temperatures we obtain H,= 2)A° = 18.5
x107%xg!*"®, as shown in Fig. 3.

This value for H, has been used in (5) to calcu-
late W,(k). Defining

W(k)= Wl(k ); V(k)= Vl(k);
when 0<k<m/c,
W(k) = W,21/c - k),

when 7/c<k<2m/c,

V)=V @n/c—k), )

corresponding to the double-zone representation,
we show in Fig. 4 W(k) as a function of # in Tb at
4.2 K. The magnetization is along an easy axis.
The experimental result shown at ;= 0.3 A™!
was obtained from the measurements at 53 K (the
phonon and magnon branches do not cross at 4.2
K). To obtain W(k,) at 0 = 1 we have modified the
result at 0 = 0.971 according to Eq. (5), where
H, depends on ¢ as given above and where ¢, im-
plicitly includes a factor 1/0 (see III). Determin-
ing V, from the energy gap at 4.2 K, 4,=1.30
meV at k, = 0.45 A™', we have deduced V(¥) shown
in Fig. 4 from the predicted wave-vector depen-
dence, Eq. (16). Jg(k) was replaced by J g(0)
— g(k), where g(k) is defined in I [Egs. (39)-(42)]
and JY(0)= 8.0 meV. Further we have used the
susceptibility x (%) calculated by Liu et al.'®
Besides a knowledge of the interaction amplitudes
W,(k) and V,(k), a determination of €,(k) from the
perturbed magnon energy Ef(E), Eq. (19), also re-
quires a knowledge of the positions of the other
magnon and phonon branches. The dispersion re-
lation of the unperturbed transverse phonons, as
measured at room temperature by Houmann and
Nicklow,?? is shown in Fig. 1, and in the double
zone it is quite well described by the sinusoidal
k dependence, w(k)= w,ysin(kc/4). The constant
w, depends slightly on the temperature, corres-
ponding to the temperature dependence of the
elastic constant c,,. With e,(k) as the only unknown
quantity Eq. (19) may easily be solved, and by
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FIG. 3. €-strain magnetostriction parameter A= $H 0
in Tb as a function of the relative magnetization ¢. The
experimental results for ¢ smaller than 0.2 are obtained
from magnetostriction experiments (O, Ref. 20, and [,
Ref. 21). The two results at low temperatures are de-
duced from the amplitude of the magnon-phonon inter-
action as described in the text. The solid line displays
a simple power-law fit to the low-temperature results
and to the results from Ref. 20. The dashed line shows
the extrapolated behavior of the magnetostriction re-
sults (Ref. 20) based on the theory of Callen and Callen
(Ref. 1), assuming A¢ to be of lowest-order single-ion
origin.

doing this we have obtained the dispersion relation
of the unperturbed magnons propagating in the ¢
direction of Tb at 53 K, as shown in Fig. 1.

In the interpretation of the dependence of the
magnon energies in Tb on magnetic field and tem-
perature in I, the magnon energies were corrected
for the effect of magnon-phonon interaction. The
corrections were performed using the values for
H, and V, determined in the present paper together
with Eqgs. (5), (16), and (19). V, was assumed to
be independent of temperature, in accordance with
the discussion by Liu.? If W,(k) and V,(k) are as-
sumed to be smooth functions of k, the knowledge
of the functions at a single k value, combined with
the symmetry restrictions imposed on the func-
tions, is sufficient to obtain a satisfactory account
of the effect of the magnon-phonon interaction.
The k dependences of W,(k) and V,(k) are deter-
mined only roughly by Egs. (5) and (16), but the
most important effects of these couplings occur at
k values close to k, and k,, where the strength of
the couplings are well known. This is also the
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FIG. 4. Amplitudes of the magnon-phonon interactions
as a function of wave vector in the ¢ direction of Tb at
4.2 K (the magnetization is along an easy axis). The ex-
perimental results are deduced from the energy gaps A,
and A, shown in Fig. 1. The solid lines show the wave-
vector dependences predicted by Eqgs. (5) and (16),
where we have used a double-zone representation, as
defined by Eq. (25).

argument through which the possible contributions
of other couplings can be neglected.

V1. CONCLUSION

From general symmetry considerations, we have
deduced the selection rules for the linear coupling
between magnons and phonons propagating in the
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¢ direction of a simple ferromagnetic hcp metal
in which the ordered moments lie in the basal
plane. The interaction mechanism proposed by
Liu® for explaining the acoustic-optical magnon-
phonon interaction in the rare-earth metals is
found to introduce couplings which violate the
selection rules valid for a simple ferromagnet.
The different selection rules applicable to thése
couplings are a result of their dependence on a
spin mixing of the conduction electrons due to the
spin-orbit coupling. The interaction V,(E)between
acoustic (optical) magnons and optical (acoustic)
transverse phonons propagating in the ¢ direction of
Tb was observed to be a spin-mixed-induced
coupling, as proposed by Liu.? This coupling ap-
pears to be about twice as big as the normal
coupling W,(E) between acoustic (optical) magnons
and acoustic (optical) transverse phonons. V,(E)
and W,(E) are the only magnon-phonon interactions
observed in the ¢ direction of Tb, and the mea-
sured energy splittings of the unperturbed magnon
and phonon dispersion relations yield sufficient
information for correcting the measured magnon
energies for the effect of these couplings.

The spin-mixed-induced coupling V,(k), is the
largest coupling between magnons and phonons
which has been observed in Tb.** The origin of
a similar coupling in Dy ' and in Er is presumably
the same as in Tb. Magnon-phonon interactions
are closely connected to the anisotropy of the spin
system itself, and the presence of large spin-
mixed-induced magnon=phonon interactions in the
heavy-rare-earth metals indicates the importance
of the spin-orbit coupling of the conduction elec-
trons for the two-ion anisotropy observed in these
metals (I).
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