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Abtmci It is demonstrated that the collapse of the 
wavefunction in the quantum measurement process is 
reflected in the two-particle correlation function for the 
electron spin, which can in principle be studied by a 
triple Stern-Gerlach experiment. The change in momen- 
tum of a Stern-Gerlach  magnet is  itself  sufficient to 
allow the determination of the electron spin, subject to 
the uncertainty principle, if the coherence of the two 
components of the spin is destroyed by the magnetic 
field.  Similar considerations apply to the two-particle 
correlation function for the photon polarisation, and 
two-photon atomic  cascades  can be used in practice to 
investigate the measurement process  and determine the 
extension of a photon wavepacket. The irreversibility 
of quantum mechanical measurements and its relation 
to the uncertainty principle is  briefly considered. 

1. Introduction 
More  than half a century  after  the  formulation of 
quantum  mechanics,  two  fundamental  problems 
remain  the  subject of debate  and  controversy. The 
incompleteness of the  quantum  description  and  the 
acausality  implied by the  uncertainty  principle  have 
led  to  attempts  to  construct  more  complete  and 
causal  theories  based on hidden  variables.  Further- 
more  the  process of measurement,  which  plays a 
very  special  role  in  the  epistemology of the  quan- 
tum  theory,  remains in some  respects  obscure.  Both 
of these  questions  can in principle  be  elucidated by 
studying  the  two-particle  correlations of electron 
spin  or  photon  polarisation. 

In  an  earlier  article  in  this  journal,  devoted 
primarily to  electron  spin,  one of us (Mackintosh 
1983, referred  to  hereafter  as I) discussed  hidden- 
variable  theories  and Bell’s inequalities.  Since  the 
pioneering  experiments of Freedman  and  Clauser 
(1972) there  has  been  great  interest  in  using  meas- 
urements of the  correlations  between  the  polarisa- 
tions of the  two  photons  emitted in atomic  cascade 
processes  to  test  such  theories. The overwhelming 
majority of such  experiments  give  results  in  agree- 

R e d  Det vises at bdlgefunktionens kollaps  ved den 
kvantemekaniske mileproces i princippet kan studeres i 
et tredobbelt Stern-Gerlach eksperiment gennem en 
unders~jgelse af to-partikel-korrelationsfunktionen for 
elektronernes spin. 0delaegger det magnetiske  felt 
kohmensen mellem en elektrons to spintilstande, vil 
Stern-Gerlach-magnetens impulandring, under hensyn- 
tagen  til usikkerhedspricippet, i sig  selv tillade en be- 
stemmelse af elektronens spin. Lignende forhold g0r  sig 
gsldende for to-partikel-korrelationsfunktionen for 
fotoners polarisering, og et atomart to-foton kaskade- 
henfald  kan udnyttes i praksis  til et studie af 
mlleprocessen og  til en bestemmelse af foton- 
bglgepakkens udstrzkning. Irreversibiliteten af den 
kvantemekaniske mileproces og dens relation til  usik- 
kerhedsprincippet diskuteres kort. 

ment  with  the  predictions of quantum  mechanics, 
violating Bell’s inequalities  and  hence  contradicting 
local  hidden-variable  theories.  Most  recently 
Aspect et al(1982)  have  shown  that Bell’s inequalities 
are also  violated  when  the  directions of the  meas- 
ured  polarisations are determined  during  the flight 
of the  photons. The primary  purpose of this  paper 
is t o  show  that a straightforward  extension of these 
two-photon  correlation  experiments  can  cast light 
on the  quantum  mechanical  measurement  process 
and  the  associated  collapse of the  wavefunction, 
providing  incidentally  an  alternative way of 
measuring  directly  the  spatial  extent of a photon 
wavepacket. 

W e  begin  in  the  next  section  by discussing two- 
electron  spin  correlations,  showing  that  these  are 
modified by the  measurement  process,  and  how  this 
modification  can in principle be  studied  by a triple 
Stern-Gerlach  experiment. The conditions  for a 
measurement  to  occur  are  considered,  and it is 
shown  that  the  change in momentum of the  Stern- 
Gerlach  magnet is in itself sufficient to  allow the 
determination of the  electron  spin,  subject  to  the 
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uncertainty principle, if the coherence of the two 
components of the spinor is destroyed by the 
magnetic field. Practical methods are then de- 
scribed for studying the measurement process 
through  two-photon  correlations, by introducing a 
further polariser into  the  standard experimental 
arrangement.  The connection  between the  coher- 
ence of the wavefunction, the uncertainty principle 
and  the measurement process in such an experi- 
ment is considered. In the final section we summar- 
ise the results of our analysis and discuss the 
irreversibility inherent in quantum mechanical 
measurements. 

2. The Stern-Gerlach  experiment 
To illustrate the principles involved, we  will  first 
consider the triple Stern-Gerlach experiment 
depicted in figure 1, which is an extension of the 
hypothetical  experiment of Bohm (1951), discussed 
in I. Two  electrons, initially in a singlet state,  are 
ejected  from a  source in opposite  directions. The 
magnet  designated M is used to measure the spin of 
electron 1, and hence collapse the two-electron 
spin  function, and  the effect of this measurement is 
observed  through the correlations  between the 
components of the spins of the two electrons in 
different directions,  determined by means of the 
two magnets C, and Cz. A similar arrangement has 
recently been suggested by Hartmann (1983) in 
connection with a discussion of Bell’s inequalities. 

We  suppose that  the magnetic field of M is 
initially turned off and  the spin function is there- 
fore, in the conventional notation of I 

p)i=2-1’z(~l+)12-)- \ l - ) \2+)) .  (1) 
The components of the spins of the two electrons 

are measured with C, and Cz, rotated through 
angles 0,  and Oz respectively relative to  the z 
direction and in the plane  normal to  the electron 
velocity. For each  electron two possible results 
a = *l (spin up  or down) may be obtained. The 
expectation value of the product ala2 may be 
obtained by elementary  transformation  theory,  as 
in I, and is 

~,~,,(a,c+,) = -cos(el - e,) 
= -COS e, COS o2 - sin e, sin e2. (2) 

The magnetic field of M is  now increased and  the 
spin of electron 1 in the z direction thereby  meas- 
ured, so that  the two-electron  spin  function 
collapses to 

lS),=11+)(2-) or l1-)12+). (3) 

The expectation value of ala2 is the same in both 
these cases, and may be similarly calculated to  be 

E , ~ , , ( ~ , ~ , )  = -COS e, COS ez. (4) 
This is the mean of the correlation  function (2) for 

M 

Figure 1 Schematic  arrangement of the triple  Stern- 
Gerlach  experiment.  Two  electrons in a singlet state are 
emitted  from  the source S. The spin of one of them 
may be measured by means of the inhomogeneous field 
in the magnet  M, and  the consequences of this  meas- 
urement investigated through  correlations  between  the 
spins determined by the magnets C, and C,, which may 
be rotated in the plane  normal to  the  paths of the 
electrons. 

a  total spin S = 0 and  that  for S = 1; S, = 0, illus- 
trating that  the total  angular  momentum of the 
electron system is changed by the measurement. 
The effect of the measurement on  the spin correla- 
tion function is to eliminate the sine term, specify- 
ing a  reference axis by the direction of the magnetic 
field. We note  that, ignoring possible spatial 
separations of the different spin states,  the measure- 
ment process cannot be registered by using either 
C, or C, separately,  since  each will record an equal 
number of up-  and down-spin electrons in all orien- 
tations, irrespective of whether the wavefunction 
has collapsed or  not. However,  a study of the spin 
correlations can reveal whether or not a  measure- 
ment  has  been  made. The collapse of the spin 
wavefunction in the measurement process can also 
in principle be observed by passing a single particle 
through three successive rotatable Stern-Gerlach 
magnets.  It may readily be shown that a  measure- 
ment of the spin in the second  magnet changes the 
correlations  between  measurements in the first and 
third magnets. 

It is therefore natural to  enquire how large the 
magnetic field-gradient in M must be  before  a 
measurement can be said to have  occurred.  When 
passing through the inhomogeneous  magnetic field, 
the electron is subjected to a  force *kBaB/&, for 
a, =&l respectively, and if it spends  a  time T in 
the magnet it acquires a  momentum fkBT dB/& in 
the z direction. The magnet acquires an equal  and 
opposite  momentum and this can in principle be 
measured, and  the electron spin thereby specified, 
provided that such a  measurement does not conflict 
with the uncertainty principle. A measurement can 
therefore  be made if the change in the magnet’s 
momentum is greater  than the uncertainty in this 
momentum or, by the uncertainty  relation, if 
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where Az is the uncertainty in the position of the 
magnet in the z direction.  This  uncertainty in the 
magnet's position gives rise to an uncertainty AB in 
the field, which in turn leads to  an uncertainty 
pBABT/h in the phases of the components of the 
spinor,  due  to  the passage of the electron  through 
the field. The inequality (5) is thus also the condi- 
tion that this phase uncertainty is greater  than 27r, 
and hence that  the  coherence between the two 
components of the spinor is destroyed by the field. 

The spin is not, of course, normally measured by 
observing the change of momentum of the magnet, 
but rather by recording the  separated beams of 
spin-up  and spin-down electrons on a  screen, or by 
counters. The condition that  the angular  separation 
of the two beams is greater  than the angular width 
of either  due  to diffraction by the magnet aperture 
may then be  shown (Baym 1969) to be the same as 
equation ( 9 ,  except that  the uncertainty in the 
magnet position Az is replaced by the width d of its 
aperture.  The splitting of the beams is not in itself a 
sufficient condition  for  a  measurement of the spin 
and, when equation (5) is not satisfied, as is nor- 
mally the case, the beams will maintain their phase 
coherence, even though  they are split. The magnet 
then imposes a  linear  variation in phase on  the 
wavefront, of opposite sign for  the two spins,  but 
this phase difference may in principle be cancelled 
by a further magnet,  restoring the original phase 
relation  between the two components of the spinor. 

The phase of the wavefunction could be investi- 
gated by a  variant of the experiment discussed in I, 
in which a neutron beam is split into two and  later 
recombined, while maintaining its coherence, in a 
Bonse-Hart spectrometer. If one of the beams 
were  passed  through an inhomogeneous  magnetic 
field, the resulting interference fringes would be 
modified in a manner reflecting the relative  phases 
of the spinor  components. 

3. Photon correlations 
Although the possibility of performing the Stern- 
Gerlach  experiment  illustrated in figure 1 is re- 
mote,  that of figure 2,  which is an extension of the 
method of Aspect et a2 (1982), is in principle very 
similar and in practice quite feasible. An atomic 
cascade is used to  produce two photons with corre- 
lated  polarisations,  a  measurement of one of them 
is made by means of the polarising cube M and 
suitably disposed mirrors, and  the consequent 
collapse of the wavefunction is registered by the 
polarising cubes C, and G, which can be rotated in 
the plane  normal to  the  photon paths, and as- 
sociated electronics. For  example, the Ca  4pz 'So + 
4s4p 'P1 + 4s' 'So cascade, in which a yellow and a 
blue photon  are successively emitted, is particularly 

suitable for such experiments. 
When the  photons  are emitted in opposite direc- 

tions, the symmetry of the atomic wavefunctions 
ensures that  their polarisations,  although un- 
specified, must be  the same. The two-photon 
wavefunction may therefore  be  written 

IP)i=2-1'2(11x)12x)+Il~)12~)) (6) 
and a  measurement of the polarisation collapses 
this to 

IP),=Ilx) 12x) or I l Y )  PY). (7) 

We define pl,  to  be *l if the measurement on 
photon 1 with the polarimeter Cl, oriented at an 
angle el, registers x1 and y1 polarisation respec- 
tively, and similarly for  photon 2. The  photon 
wavefunction transforms like a vector and it  may 
hence  be readily shown that  the expectation values 
of p1p2 are 

Elpx(plpz) = COS 2(e1 - e,) 
= cos 2e1 cos 20, + sin 28, sin 2e2 (8) 

~ , , , , (p ,p~)  =COS 2e1 COS 2e2. (9) 
and 

The measurement of the polarisation of the  photon 
and  the associated collapse of the wavefunction 
therefore again eliminates the sine  term. 

It is interesting to consider under which 
circumstances we can expect to measure the 
correlation functions (8) and (9) which, for con- 
venience, we  will denote interfering and non- 
interfering respectively. If the coherence of the x 
and y polarised waves is maintained  through the 
various reflections and transmissions, which can 
readily be accomplished in practice,  then  they can 
interfere  coherently when recombined at the trans- 
mitting mirror  m3  and we expect to observe the 
interfering  correlation  function. On  the  other  hand, 
if either  path is blocked then  the polarisation is 
specified and  the noninterfering  correlation  func- 
tion will result. The polarisation can also in princi- 
ple be measured without absorbing  either of the 
photons, since the path which a  particular  photon 
has  taken can be determined by detecting the trans- 
fer of momentum,  for  example to mirror m,, when 
it is reflected. It is straightforward to show (Baym 
1969)  that  the condition that this momentum  trans- 
fer  be  greater  than the uncertainty in the mirror 
momentum,  and hence  measurable, implies that the 
uncertainty in the position of the mirror is greater 
than a wavelength. The coherence  between the two 
polarisations is therefore destroyed by such a  meas- 
urement  and  the noninterfering  correlation 
function must be observed. 

Even if this coherence is maintained, however, it 
might be argued  that the polarisation can be meas- 
ured, by making use of coincidences between the 
two photons. Because of the extra  pathlength AI 
which a y polarised photon must travel in M, it  is 
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*' l i  t 
Figure 2 Schematic arrangement for measuring photon polarisations. Two photons with the same  polarisation are 
emitted from the source S. The polarisation of one of them may be measured by the combination M of a cube 
polarimeter and mirrors, and the consequences of this measurement investigated through correlations between the 
wlarisations determined bv the cube oolarimeters C, and C,, which  may be rotated in the plane normal to the 
paths of the photons. 

delayed by a time Al/c and  this  delay  can  be 
registered  in a coincidence  measurement,  thereby 
implicitly determining  the  polarisation.  We  are 
therefore  faced  with  the  apparent  paradox  that, 
even  though  the  two  waves  can  interfere  coher- 
ently,  the  delay allows the  measurement of the 
polarisation of photon 1 when  it  leaves M, and  the 
noninterfering  correlation  function  corresponding 
to  the  collapsed  wavefunction  must  then  be  ob- 
served.  This  paradox  may  be  resolved by recalling 
that  the  4s4p 'P1 intermediate  level  has a lifetime T.  
If, for example,  we  assume  that a blue  photon 
passes  through  the  polarimeter  system M (which 
may  be  accomplished in practice  with a filter), the 
polarisation  can  only  be  measured  by  the coinci- 
dence  method if the  delay Al/c >T. However,  the 
energy-time  uncertainty  principle  implies  that  the 
photon  wavepacket  has  an  extension CT, and  the 
condition  for  the  measurement is just  that  this 
extension is less than AL. If therefore a measure- 
ment  can  be  made in this  way,  the  wavepackets 
corresponding  to  the  two  polarisations  do  not  over- 
lap,  because of their  finite  extensions  and,  since 
they  cannot  then  interfere,  the  noninterfering  cor- 
relation  function  results.  It is therefore  possible  to 
change  the  form of the  measured  correlation  func- 
tion  by  mounting  the  mirrors  ml  and m, on slides 
and  changing Al. For  small  values,  the  interfering 
correlation  function will be  observed  but,  as A /  
becomes  comparable  with CT, the  sine  term will 
gradually  vanish, so that  the  noninterfering  correla- 
tion function is observed  when AI is large.  Since 
T is approximately  4.5 X lo-' S (Wiese et a2 1969), 
CT is about   1 .4m so that  this  experiment, 

which directly  measures  the  extension of the 
photon  wavepacket,  should  be  feasible.  We  note 
that  the  extension of the yellow photon  wavepac- 
kets is slightly  less than  that of the  blue,  because 
the  finite  lifetime of the 4p' 'S, initial state, which 
is about lO-'s, also  contributes  to  the  uncertainty 
in  their  energy. If yellow photons  are  passed 
through  the  polarimeter  system M, the  decay of the 
sine  term  with A /  will therefore  be  somewhat  faster, 
even  though  the  condition  for a polarisation 
measurement  by  the  coincidence  method, which 
only  depends on the  lifetime of the  intermediate 
state, is unchanged.  Hence  the  noninterfering  cor- 
relation  function  may  be  observed  even  though no 
measurement of the  polarisation  has  been  made; 
such a measurement is  a  sufficient but  not a neces- 
sary  condition  for  observing  the  noninterfering  cor- 
relation  function  (9).  However  the  wavefunction is 
only  irreversibly  collapsed  when  the  photons  are 
registered  in  the  detectors,  since  the  overlap  and 
interference of the  two  polarisation  waves  can, 
previous  to  this  detection,  be  restored  by a suitable 
arrangement of polarisers  and  mirrors. 

The  above discussion is closely related  to 
Schrodinger's  cat  paradox. The passage of a photon 
through a specified arm of the  polarisation  meas- 
urement  system M is supposed  to  trigger a gun 
which shoots  an  unfortunate  cat.  For  an  arbitrary 
polarisation,  the  wavefunction of the  system of cat 
plus  photon is a linear  combination of states in 
which  the  cat is alive  and  dead, which Schrodinger 
regarded  as  paradoxical.  The  analysis of this  exper- 
iment  causes no difficulties when  we  realise  that, in 
order  to  trigger  the  gun, a measurement  must  be 
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made of the  photon polarisation. If no measure- 
ment is made,  the cat is safe. If a  measurement is 
made in M, the cat may be lucky or unlucky, but is 
always unambiguously either alive or  dead. 

4. Measurements 
We have  thus seen  that  the  quantum mechanical 
measurement process is very similar in the cases of 
electron  spin and  photon polarisation. The initial 
state of the  quantum system is a  coherent  superpos- 
ition of the eigenstates of the dynamical variable 
which is to be  measured. The classical measuring 
apparatus destroys the coherence  between  these 
eigenstates,  selecting one of them  and determining 
which it  is  by a  simultaneous  registration of a 
macroscopic change in the  apparatus.  The condi- 
tions that  the coherence is destroyed and  that  the 
change in the  apparatus can be  measured,  subject 
to  the uncertainty  principle, are  the  same. 

The concept of a macroscopic change in a classi- 
cal measuring apparatus is frequently used in dis- 
cussions of the measurement  process, without any 
very precise definition. Our analysis indicates that a 
macroscopic change  of, for example, the momen- 
tum in this context is one which is much greater 
than the uncertainty in the momentum of the ap- 
paratus, which is therefore classical in the sense 
that it is not limited by the uncertainty principle. 
The congruence of the conditions  for collapsing the 
wavefunction and  for making an observable  change 
in the  apparatus is presumably quite general  for 
quantum measurements, and is another example of 
the internal consistency of the  quantum theory. 

The measurement process can be studied  experi- 
mentally,  and we have shown how this might be 
done in practice. The experimental possibilities for 
the spin are at  present severely limited,  but  a 
searching investigation can be made of the meas- 
urement of the photon polarisation and  the as- 
sociated collapse of the wavefunction by studying 
the two-photon  correlation  functions. These experi- 
ments, which involve standard optical  techniques 
with polarisers,  mirrors and filters, appear  to be 
quite feasible. 

It is interesting to consider the connection be- 
tween measurements and irreversibility in the 
quantum  theory.  The orthodox viewpoint, de- 
veloped primarily by von Neumann (1932), and 
expounded  for  example by Wigner (1963), asserts 
that the change of a system with time may take two 
forms. The  state vector evolves continuously with 
time according to Schrodinger’s equation, as for 
example when an electron  beam passes through  a 
Stern-Gerlach magnet  without the fulfillment of 
the inequality (5). This  time-dependence is reversi- 
ble in the  same sense as the time-development of a 

classical system is reversible. The  state vector may 
also change discontinuously, irreversibly and  acaus- 
ally, subject to  the laws of probability, when a 
measurement is made on the system. Such an 
irreversible  change occurs for  example in a  Stern- 
Gerlach  magnet if equation (5) is satisfied. This 
irreversiblity is  in contrast to classical mechanics 
and establishes a direction for  time. The basic 
conundrum of measurement  theory  has  been  ex- 
pressed by Bell (1975) as follows: ‘So long as the 
wavepacket reduction is an essential component, 
and so long as we do not know exactly when and 
how  it takes  over from  the Schrodinger equation, 
we do not have an exact and unambiguous formula- 
tion of our most fundamental physical theory’. We 
suggest that such a wavepacket reduction occurs 
whenever two systems interact sufficiently strongly 
that  a  measurable  change is produced in the  one 
which gives information on the  quantum  state of 
the  other after the interaction. It is not necessary 
that  the  former system is a measuring apparatus in 
the conventional  sense,  nor  that the change which it 
undergoes as a result of the interaction is actually 
observed. Our discussion indicates, not surprisingly, 
that  the criterion for determining  whether  a change 
is measurable in this sense is supplied by the uncer- 
tainty relations. The role of the uncertainty princi- 
ple as the fundamental  element of the  quantum 
theory  extends  therefore to determining  whether or 
not an irreversible change has occurred when two 
systems interact, and  hence to establishing the 
direction of time. 
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