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I. MAGNETIC PROPERTIES

The Tm-ions in TmNi2B2C are placed in a body-
centered tetragonal lattice with the lattice parameters
[1]: a = 3.4866 Å and c = 10.5860 Å corresponding to
N(Tm) = 1.55415 · 1022 cm−3. The crystal-field Hamil-
tonian is defined in terms of five parameters:

HCF =
∑

l=2,4,6

Bl0O
0
l +

∑
l=4,6

B4
l O

4
l (1)

where Om
l are the Stevens operators. The parameters

have been determined from the crystal-field levels ob-
served by inelastic neutron scattering in combination
with the fitting of the paramagnetic susceptibility and
heat capacity measurements [2]. (The parameters in the
Table 2 of Ref. [2] are not the CEF parameters Anm, but
are the Stevens parameters Bm

l divided by the Stevens
factors αl). The parameters used here have been adjusted
slightly in comparison with those given in Ref. [2] in or-
der to improve the fit to the susceptibility measurements
(without much modifications of the neutron scattering
cross section). The fit obtained is shown in Fig. 1, and
the corresponding crystal-field parameters are given in
Table I.
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Fig. 1. The a- and c-axis susceptibilities of
TmNi2B2C. The experimental results are taken from
Ref. [3]. Corrections for the demagnetization fields
have been made.

As shown in Fig. 1 these crystal-field parameters lead
to a large difference between the two susceptibility com-
ponents. The crystal-field level scheme has a doublet

ground-state and only the Jz component has non-zero
matrix elements within the two states. The next two ex-
cited states are nearly degenerated and lie 3.0 meV above
the ground state. The present parameters lead to a sat-
uration of the moments along the c-axis of 4.8 µB at 2 K
and a field of 30 kOe, in close agreement with the value
observed by Cho et al. [3]. Under the same conditions
the moments along an a-axis are 1.9 µB.
The two-ion interactions are assumed to be described

effectively by a Heisenberg Hamiltonian:

HH = −1
2

∑
i,j

J (ij)Ji · Jj (2)

The phase transition at TN = 1.52 K at the wave vec-
tor QF = 0.094( 2π

a , 2π
a , 0), in the superconducting phase,

determines

J (QF ) =
1

χcc
0 (TN )

=
1

116.3
meV = 8.6 µeV (3)

χcc
0 (T ) is the cc-component of the non-interacting sus-

ceptibility determined by the crystal-field Hamiltonian
at the temperature T [in units of (gµB)2]. The Fourier
transform of J (ij) is defined in the usual way. The clas-
sical dipole coupling is of the same order of magnitude as
the exchange coupling in TmNi2B2C. This coupling has
been calculated in the present system using the method
of Bowden and Clark [4], see Fig. 2. Most of the ef-
fects of this coupling are included in an effective fash-
ion in the crystal-field and exchange parameters. For
instance the rather large anisotropy at zero wave vec-
tor: J aa(0)−J cc(0) = 9.15 µeV is accounted for by the
crystal-field Hamiltonian (as this describes correctly the
susceptibility components in the paramagnetic phase).
The only dipole term which is included in an explicit
way is the demagnetization field. The demagnetization
field is at maximum (g = 7/6 and J = 6):

H0
d = 4πM0 = 4πgµBJN = 12.68 kOe (4)

where M0 is the saturation value of the amplitude of the
magnetization vector:

M = gµB

1
V

∑
i

〈Ji〉 (5)

TABLE I. The crystal-field parameters (meV).

B0
2 B0

4 B4
4 B0

6 B4
6

−0.12 0.33 · 10−3 −0.01 0.7 · 10−5 −1.16 · 10−4
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Fig. 2. The zz-component of the classical dipole cou-
pling in the case of TmNi2B2C, when the wave vector
is along [100] or [110]. Notice that this coupling adds
0.65 and 3.1 µeV to J (Q) − J (0), when Q = QF
and Q = QA, respectively.

The mean-field Hamiltonian for the ith ion is

HMF(i) = HCF − gµBJi · Heff
i (6)

where

Heff
i = H− 4πDM +

1
gµB

∑
j

J (ij)〈Jj〉 (7)

H is the applied field and the demagnetization factor D
is lying between 0 and 1. In most of the calculations
Dzz = 0.76 and Dxx = (1 − Dzz)/2 = 0.12, which are
the values in the experiment of Cho et al. [3]. In a disk
with diameter a and height b

D⊥ =
1
e2

(
1−

√
1− e2

e
sin−1 e

)
; e =

√
1− b2

a2
(8)

implying that the neutron-scattering samples have a c-
axis demagnetization factor of 0.83 ± 0.3 (depending on
how well the geometry of the sample, as for instance 6×
8× 1, may be described by an ellipsoid).
The equilibrium state is found in an inductive way as

the self-consistent solution of Eqs. (6) and (7) using

〈Ji〉 =
1

Z(i)
Tr

(
Ji exp[−βHMF(i)]

)
(9)

β = 1/kBT , and the partition function for the ith ion is

Z(i) = Tr
(
exp[−βHMF(i)]

)
(10)

The traces are evaluated from the eigenvalues and eigen-
functions of the mean-field Hamiltonian using the EIS-
PACK fortran subroutines. The free energy of the mag-
netic Hamiltonian is finally

FMag = FMF +
1
2

∑
i,j

J (ij)〈Ji〉 · 〈Jj〉 −
1
2
4πDM2

=
∑

i

[
− 1

β
lnZ(i) +

1
2
gµB〈Ji〉 · (Heff

i − H)
]

(11)

If, e.g., only the z component of 〈Ji〉 is non-zero and
is described by one harmonic, 〈Jz

j 〉 = JQ cos(Q ·Rj + φ)
then the exchange contribution to Heff

i in Eq. (7) is
J (Q)JQ cos(Q · Ri + φ). This expression shows that
the most important factors in the determination of the
free energy of the different modulated structures is the
crystal-field parameters and the value of J (Q), and, in
the presence of a ferromagnetic moment, of J (0). The
actual values of the real-space exchange parameters J (ij)
are of less significance. The squaring-up process intro-
duces higher-order odd harmonics in the modulation of
the moments, but even in the limit where the modula-
tion is a square wave the third harmonic is three times
smaller than the first one, and more than 80% of the free
energy is still determined by the first harmonic. In the
present system the ordering wave vectors are close to 0
or 1/2 in units of 2π/a implying that J (3Q) does not
differ much from J (Q), therefore I expect that the un-
acquaintedness with the values of the exchange coupling
at (2n + 1)Q only gives rise to an uncertainty of less
than 5% in the determination of the exchange energy. In
the calculations I have assumed Q = 0.1( 2π

a , 2π
a , 0) cor-

responding to a commensurable structure along [1,1,0]
with a period of 10 layers. This assumption implies an
average of the free energy over 10 different values of the
exchange field. The real-space coupling parameters used
are:

J0 =
∑

j∈i’th layer

J (ij) = 6.798 µeV,

J1 =
∑

j∈(i+1)’th layer

J (ij) = 1.264 µeV,

J2 =
∑

j∈(i+2)’th layer

J (ij) = −0.392 µeV.

Introducing q̃, defined by q = q̃( 2π
a , 2π

a , 0) when q is along
[1,1,0], then

J (q̃) = J0 + 2J1 cos(2πq̃) + 2J2 cos(4πq̃)

which has its maximum at q̃ = 0.1, so that J (q̃ = 0.1) =
8.6 µeV and J (q̃ = 0) = 8.542 µeV. The value of J (0)
actual wanted in the Hamiltonian is incorporated by ad-
justing Heff

i

∆Heff
i =

[
J (0)− J (q̃ = 0)

] 1
gµBN

∑
j

〈Jj〉 (12)

This same procedure, i.e. 10-layered structure, has been
used for calculating the free energy of the ordered struc-
ture at Q = QF and at Q = QA = 0.482( 2π

a , 0, 0), except
that in the latter case the three exchange constants J0,
J1 and J2 were scaled by one common fitting factor. The
value of this parameter used in the final fit is 1.75 corre-
sponding to

J (QA) = 15.0 µeV. (13)
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II. SUPERCONDUCTING PROPERTIES

The superconducting transition temperature is Tc = 11
K corresponding to a superconducting energy gap at zero
temperature ∆(0) = 1.764kBTc = 1.7 meV. One of the
main results of this analysis is that the transition be-
tween the superconducting and the normal phase does
not directly determine Bc2. Instead it is assumed that
Bc2 more or less behaves in the same way as in the “non-
magnetic rare-earth” borocarbides (Y and Lu). The mea-
surements of Bc2 in LuNi2B2C [5] show Tc = 16.5 K and
Bc2(0) = 76 kG, and they explain the temperature de-
pendence of Bc2(T ) by a two-band model. Some differ-
ences between the electronic band-structures in the dif-
ferent rare-earth systems may be expected, but except
for a scaling of Tc from 16.5 to 11 K and a similar scaling
of Bc2(0), the relative temperature dependence of Bc2(T )
is assumed to be the same in the Tm as in the Lu system.
I have no special reason for choosing Lu rather than Y,
except that fit produced by the two-band model is better
in the first case than in the second. There are some dif-
ferences between the two systems, and I start to wonder
whether the Y behavior might not have been a better
choice, but it is difficult to say. I have used the following
cubic fit to the Lu-data in Ref. [5]:

Bc2(t) = Bc2(0)
(
1− 0.285 t− 2.196 t2 + 1.481 t3

)
(14)

t = T/Tc and in this expression I have used Tc = 11.5 K
rather than 11 K (corresponding to a weak adjustment
of the high temperature behavior). The measurements of
Rathnayaka et al. [6] show that the anisotropy between
the cases, where the field is applied parallel or perpen-
dicular to the c axis, is very small, and in the final fit I
have used

Bc2(0) = 65 kG (15)

in both cases. The value of the maximum field is a rea-
sonable interpolation between the values observed in the
cases of Y (Tc = 15.7 K; Bc2(0) = 106 kG) and Lu
(Tc = 16.5 K; Bc2(0) = 76 kG), if assuming that the
band-structure differences reduce Bc2(0) with the same
factor as Tc is reduced.
The new interpretation of the transition between the

superconducting and the normal state implies that the
analysis of this transition by Cho et al. [3] should be
reconsidered. They determined the parameters κ‖ =
6.3 ± 0.3 and κ⊥ = 7.7 ± 0.4 by using the temperature
derivative of the following expression

−4πMs =
Hc2(T )−H

1.16 · 4π(2κ2 − 1)
(16)

close to Tc assuming Hc2 to be the same as the transition
field H ′

c2. From the calculations I have estimated that
H ′

c2/Hc2 is close to 0.6 and 0.8 in the c- and a-axis cases,
respectively. The theoretical estimates are rather uncer-
tain close to Tc, however, if assuming them to be correct,

I find κ‖ = 8.1 ± 0.4 and κ⊥ = 8.6 ± 0.5. Within the
uncertainties the two values are equal and the common
value is κ = 8.3. On the other hand, the temperature
derivative of the Bc2(T ) curve is not much different from
the experimental values in the temperature regime con-
sidered, which suggests that the two scaling corrections
made here may not be trusted. The estimate of the su-
perconducting condensation energy (see below) may be
utilized for a similar indirect determination of κ, and the
value I deduce from the fit is κ 
 6.3 (in both cases). I
think that this estimate of κ and those based on the mea-
surements of Cho et al. are equally uncertain. The most
qualified guess would be to use the average as a measure
for κ

κ =
λ

ξ
= 7.3± 1 (17)

ξ(0) is estimated from their values of Bc2(0), and then λ
is derived using the values of κ. With the new values of
these parameters I obtain:

ξ(0) =

√
φ0

2πBc2(0)
= 71 Å ; λ(0) = κξ(0) = 520 Å

(18)

where φ0 = 20.68 · 108 GÅ2 is the flux quantum. Finally,
we have

Bc1 =
φ0

4πλ2
lnκ = 1.2 kG ; Bc =

Bc2√
2κ

= 6.3 kG

(19)

The condensation energy in the type II superconduct-
ing state is estimated using the Ginzburg-Landau ex-
pression for the free energy derived by Abrikosov, see
for instance Ref. [7]. This is based on the integration
of the linear field-dependent magnetization of the super-
conducting electrons (close to Bc2 and Tc) given by Eq.
(16)

Fs(T,Bi)− Fn = − (Bc2(T )−Bi)
2

1.16 · 8π(2κ2
F − 1)

(20)

The field Bi is the field which the superconductor consid-
ers to be the external field (the internal field minus the
contribution 4πMs from the superconductor itself, when
neglecting the demagnetization term due to Ms):

Bi = B + 4π(1−D)M (21)

where M is the magnetization of the Tm-ions, Eq. (5),
and B is the applied field. The contribution of the Tm-
ions to Bi is of the order of 10% in both the c- and the
a-axis case [the moment induced in the a-axis case is
somewhat smaller, but (1−D) is about a factor 5 larger
than in the c-axis case]. At 2 K, in the c-axis case, I get
Bi/B = 1.12 when D = 0.83, in nice agreement with the
result shown by Morten in Fig. 22 in his thesis.
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The free energy expression given by Eq. (20) is derived
under the assumption that the order parameter is small
(close to Bc2), but is used here in the total regime of the
superconducting state. We expect that the quadratic de-
pendence is a reasonable approximation, as long as the
system is not in the Meissner phase, but the constant
in front should not be taken too literally. Nevertheless,
the constant derived from the final fit corresponds to
1.16(2κ2

F − 1) = 90 or

κF = 6.27 (22)

where κF = κ agrees reasonably well with the result of
Cho et al., as discussed above.
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Fig. 3. The variation of the field around quadratic
flux-lines placed in a cubic lattice. The results are
along a line connecting two flux lines (periodic con-
ditions) through one of the diagonal of the quadratic
flux line. The cases shown correspond to ξ = 128 Å
and κ = 6.1. The smaller value of ξ = 71 Å implies a
scaling of the field values by 128/71, which is reduced
to some extent if κ is increased.

The model calculations are based on the most simpli-
fying conditions. One of the assumptions made is that
the field H in Eq. (7) and thus also the magnetization M
is homogeneous throughout the sample. This is not true
in the type-II phase where the field is truncated into the
flux lines, however, the large value of κ implies a rather
uniform field distribution: the variation is only about
10% at low temperatures at an averaged (applied) field
of 4 kG, see Fig. 3. Finally, it may be mentioned that
the magnetization due to the superconducting current,
4πMs, is at maximum a factor 103 smaller that Bc2, see
Eq. (16), and thus negligible outside the Meissner phase.

III. THE INTERACTIONS BETWEEN THE
MAGNETIC AND SUPERCONDUCTING

ELECTRONS

The coupling between the magnetic and the supercon-
ducting systems is assumed to be as weak as it possi-

bly can. The only effect considered is that the electrons
which establish the indirect RKKY exchange-coupling
between the Tm-ions, are metallic and share the Fermi
surface with the electrons which condense into the super-
conducting state. In real space the two types of electrons
may be quite isolated from each other.
The Heisenberg exchange-interaction between the con-

duction electrons and the localized 4f electrons gives rise
to the indirect RKKY-coupling between the Tm ions me-
diated by the metallic electrons. The RKKY interaction
of the Tm ions is determined by the susceptibility of the
conduction electrons, χel(q) (at zero frequency) [8]:

J (q) =
∑
τ

|j(q+ τ )|2χel(q+ τ )

− 1
N

∑
q′

∑
τ

|j(q′ + τ )|2χel(q
′ + τ ) (23)

j(q) is an exchange integral proportional to (g−1), which
may be assumed to vary slowly with q, and τ denotes a
reciprocal lattice vector. The last term implies that the
RKKY-interaction of the ith ion with itself is cancelled
[as this interaction just adds a constant to the Hamilto-
nian, Ji · Ji = J(J + 1)]. In the free electron model (in
the normal state), the susceptibility [per electron in units
of (gµB)2] is:

χel(q) =
1
2N

∑
k

f(εk)− f(εk−q)
εk−q − εk

; χel(0) =
1
2
N (0)

(24)

where N (0) is the density of state at the Fermi surface
per electron and per spin state. The adding of a recipro-
cal wave vector to q or k, as occurring in Eq. (23), cor-
responds in the band-electron picture to a change of the
band index. Restricting q or q′ in (23) to be wave vectors
lying within the first Brillouin zone, then the terms with
τ = 0 are the intra-band contributions, whereas the re-
maining ones are the inter-band terms corresponding to
different band indices in Eq. (24).
Introducing the BCS energy gap ∆ and the quasi-

particle energy Eq =
√

ε2q +∆2 then the susceptibility
in the superconducting state is

χs
el(q) =

1
2N

∑
k

f(Ek)− f(Ek−q)
Ek−q − Ek

+
1
2N

∑
k

[
f(Ek)− 1

2

Ek

− f(Ek−q)− 1
2

Ek−q

]

× EkEk−q − εkεk−q −∆2

E2
k − E2

k−q

(25)

In the limit of q → 0 the last sum vanishes. The first sum
is the contribution due to the quasi-particle excitations
and vanishes also at zero temperature, because Ek > 0
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(εF = 0). Per has calculated the temperature dependence
of this term by solving the BCS-energy gap equation.
The term does not depend much on the presence of a
magnetic field but starts to increase exponential above
0.2Tc. It becomes equal to χel(0) at Tc and is about
half this size at 0.7Tc. The temperature dependence is
parameterized by the expression (t = T/Tc):

χs
el(t,0) = χel(0) e

−6.23403+11.4561 t−5.28023 t2 (26)

At large values of q the superconducting energy gap may
be neglected in Eq. (25) and in this case the expression
is the same as in the normal case. This modification of
the electronic susceptibility and its importance for the
RKKY interaction was discussed first by Anderson and
Suhl [9] and they estimated that the susceptibility, in the
zero temperature limit, develops a maximum at

qd =
(
3πk2

F ξ−1
) 1

3 (27)

Using kF ≈ 0.2–0.4 a∗ and ξ = 71 Å this expression
indicates qd = 0.14–0.23 a∗. I do not think that this esti-
mate is relevant, as it concerns properties nearly out on
the scale of kF , where large deviations from the behavior
of the simple model are expected. A numerical calcu-
lation shows that the behavior, in a large regime when
q � kF , is quite well described by:

χs
el(q) = χel(0)

0.99 q
q + 1.5 q0

; q0 =
π∆
�vF

≈ 1
ξ

(28)

This expression is independent of kF (as long as q � kF ).
It is not valid at sufficiently small q, where χs

el(q) de-
pends quadratic on q. Fig. 4 shows the numerical re-
sult in comparison with the approximate one given by
Eq. (28). Band-structure calculations indicate an aver-
age Fermi velocity of the order of 2.3 · 107 cm/s ⇒ ξ ≈
�vF /π∆ = 280 Å or q0 ≈ 0.002 a∗, whereas a direct use
of ξ = 71 Å gives q0 ≈ 0.008 a∗.
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χs
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Fig. 4. χs
el(q) has been calculated by linearizing the

energies near the Fermi surface: εk = }vF (k − kF ).
The density of states is constant and ∆ = 0.001 ·
}vF kF . In the regime shown the susceptibility in the
normal phase is very close to be a constant. q and
ξ−1 are in units of kF , and ξ−1 = 0.001π.

Close to zero wave vector the RKKY-interaction in the
normal phase of the Tm system (for q perpendicular to
the c-axis) may be written as J (0)[1 − Aq2]. The con-
stant A may be expected to be of the order 5 (a∗)−2 (1
would mean at shallow maximum, whereas 5–10 would
compare with the order of magnitude of this term in the
rare-earth metals, however, the dipole coupling reduces
the number in the present system by 4.5, see the caption
to Fig. 2; the model has A = −2.8). The replacement
of χel(q) with χs

el(q) in Eq. (23) only leads to significant
changes at q < 10 · ξ−1 implying that only the long-
wavelength part of the intra-band, τ = 0, term is al-
tered. The analysis of the experiments shows that Js(0)
in the superconducting phase is close to zero. This re-
sult implies that, in this system, χel(0) is the dominating
contribution to the RKKY-interaction at zero wave vec-
tor, J (0) ≈ |j(0)|2χel(0), occurring because the second,
constant, term in Eq. (23) accidentally cancels the inter-
band, τ �= 0, contributions to the first summation term.
The q-dependence of J (0)[1−Aq2], i.e the A term is de-
termined exclusively by the first term in (23). Here the
inter-band contributions are expected to be, at least, as
important as the τ = 0 term, which is determined by the
long-wavelength behavior of the electronic susceptibility.
– In the free electron model χel(q) 
 χel(0)(1− q2/12k2

F )
corresponding to a contribution to A of 1 (a∗)−2 times
χel(0)/J (0), if kF is as small as 0.3 a∗.– The important
point here is that although A may be different in the nor-
mal and in the superconducting phase, it is likely that A
is still of the order of 5 (a∗)−2 also in the superconduct-
ing phase. Assuming that the RKKY-interaction in the
superconducting phase is J (0)[χs

el(q)/χel(0)−Aq2], then
the maximum in this RKKY-function occurs at

qd 
 (
4
3 ξ A

)− 1
3 (29)

(assuming ξ−1 � a∗). Using A = 5 (a∗)−2 and the exper-
imental value of ξ, this expression predicts qd = 0.11 a∗.
The dependence of the actual values of A (or ξ) is slow,
if A (a∗)2 is changed from 1 to 10 then qd/a

∗ is changed
from 0.18 to 0.084. This estimate of the ordering wave
vector in the superconducting phase can of course only
be considered as a rough “order-of-magnitude” estimate.
However, the result of the numerical calculation is rather
general, as it only depends on the properties of the elec-
trons close to the Fermi surface. In the general case
vF should be replaced by an averaged value, which may
correspond to the replacement of the calculated ξ with
the experimental one. I think that the estimate may be
trusted to such a degree that we may conclude that, if the
RKKY-coupling in the normal phase of Tm-borocarbide
has a (local) maximum at zero wave vector, then the
Anderson-Suhl mechanism would shift the maximum out
to a value of q which is of the same order of magnitude
as observed experimentally. It is possible that it is a
“crypto-ferromagnetic” system. On the other hand, the
estimate does not exclude the possibility that the max-
imum in J (q) at q = QF is an intrinsic property, also
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present in the normal phase. It is rather easy to con-
struct an acceptable model with the maximum at the
right position, as shown by the 10-layered model I use
in the calculations. The possibility that TmNi2B2C may
be a crypto-ferromagnetic system has also been discussed
by Kulić et al. [10].
The RKKY-interaction is affected by the supercon-

ducting energy gap at the Fermi surface. Due to the
RKKY exchange the properties of the Fermi surface is
also affected by a magnetic ordering, and any change of
the Fermi surface may change the superconducting state,
as discussed for instance by Amici et al. [11] and in more
detail by Nass et al. [12]. A sinusoidally magnetic order-
ing gives rise to a new periodicity of the system, and the
RKKY interaction between the spins of the 4f electrons
and the conduction electrons leads to energy gaps at the
wave vectors (τ ± nQ)/2, where τ is a reciprocal lattice
vector and Q is the magnetic ordering vector. The lead-
ing order term corresponds to n = 1, but the squaring
up of the magnetic ordering introduces other odd inte-
ger values of n, and the higher-order coupling processes
introduce both even and odd values of n. The effects of
these so-called superzone boundaries, on the resistivity
of the rare-earth metals, were discussed in detail by El-
liott and Wedgwood [13], see also the recent discussion
by Ellerby et al. [14].
If an energy gap cuts through the Fermi surface the

lifting of the degeneracy implies that the states near the
gap do not contribute to the creation of Cooper pairs
corresponding to a reduction of the “effective density
of states” at the Fermi surface appearing in the equa-
tion determining the superconducting energy gap. – In
a more general formulation (band-model) an energy gap
at the Fermi surface is created at a point on the sur-
face, whenever its position differs by the wave vectors
nQ from another point on the surface.– The reduction
of the effective density of states is proportional to the
size of the energy gap, which by itself is proportional to
the amplitude of the magnetic modulation, JQ [13,12].
The superconducting transition temperature or the en-
ergy gap depends exponentially on the (effective) density
of states at the Fermi surface:

∆(0) = 2ωD exp
[
− 1
N (0)g

]
(30)

and so do the condensation energy Fs(0) =
1
2N (0)∆2(0)

and Bc2. The precise variation of the effect is not so
important in the model calculations presented below. It
is the maximum reduction of Bc2 which is the important
quantity. In the calculations I have assumed that the
effective density of states in the gap-equation is described
by

N̄ (JQ, 0) = N (0)(1− δ) ; δ = dAJQ(A) (31)

JQ(A) is the value of the first harmonic of the Fourier
transform of 〈Jz〉, when Q = QA. The effect seems only
to be important in the QA-modulated phase, probably

because the superzone gaps created by this ordering de-
stroy important nesting features at the Fermi surface,
whereas the energy gaps produced by the QF -ordering
are much more harmless to the effective density of states.
The scaling of the density of states introduced by Eq. (31)
then implies:

Tc

T 0
c

=
Bc2

B0
c2

= exp
[

δ

1− δ
ln

(
∆(0)
ωD

)]

 exp

[
− 2δ
1− δ

]

(32)

(using ωD of the order of 13 meV, the right value is not
important). The final value of the fitting parameter is

dA = 0.053 (33)

JQ(A) is of the order of 4 in the low temperature limit,
which implies a relative reduction of the effective den-
sity of states by 20% (δ = 0.2) and of Bc2 by 40%. The
magnitude of the energy gaps created by the RKKY cou-
pling is very uncertain. The free electron model suggests
that the energy gaps may be of the order of 20 meV
when the magnetic moments are saturated (ferromag-
netic), [= 2J{J (0)/2N (0)}1/2], i.e. of the order of 10
times the superconducting energy gap.

IV. THE PHASE DIAGRAM OF TmNi2B2C

The different magnetic phases to be considered are the
paramagnetic (P) and the two ordered phases at Q =
QF or QA, the F or A phase, respectively. The three
magnetic phases may occur while the electronic system
is either in the normal (N) or in the superconducting
state (S). Hence, we need to consider 6 different phases of
which only one (NF) does not seem to appear. The phase
diagram is constructed using a number of parameters,
which are

• Magnetic coupling parameters: The 5 crystal-field
parameters in Table I. The demagnetization fac-
tor Dzz = 0.76. The three exchange parameters,
J (0) 
 J (QF ) = 8.6 µeV and J (QA) = 15.0 µeV.

• Superconductor parameters: Tc = 11.5 K (the use
of this value instead of 11 K should not be taken too
literally). Bc2(0) = 65 kG, where the two param-
eters determine Bc2(T ) as given by Eq. (14). The
condensation-energy parameter 1.16(2κ2

F −1) = 90
or κF = 6.27.

• The parameters describing the effects of the inter-
actions between the magnetic and superconducting
electrons: The two-ion coupling parameter in the
superconducting state,

Js(0) = J (0)
(
1− α

[
1− χs

el(t, 0)/χel(0)
])

(34)
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The susceptibility ratio is given by Eq. (26) and
in the final fit α = 1. The RKKY energy-gap
parameter dA = 0.053 determining the reduction
of the effective density of states in the SA-phase,
δ = dAJQ(A).

Out of these 9 + 3 + 2 = 14 parameters the construction
of the phase diagram has lead to the determination of
3 + 2 + 2 = 7 parameters.

A. The SP–NP transition

The transition between the normal and the supercon-
ducting state, while the magnetic system stays paramag-
netic, determines the 2 (3) superconducting parameters,
Bc2(0) and κF (and Tc). The calculation of the position
of this transition requires two more of the remaining 5
fitting parameters, namely J (0) and α, which are both
determined from the SF–SP transition, in combination
with the assumption of J (0) 
 J (QF ), which may be
expected to be true to within ±5%. I may add that it is
not the two coupling parameters themselves but their dif-
ference J (0)−Js(0), which is the significant parameter
in the calculations.
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Fig. 5. The transition between the superconducting
and the normal phase, when applying a field parallel
or perpendicular to the c-axis. The closed symbols
show the experimental results of Cho et al. [3], and
the open ones are the results of Don Naugle and Daya
Rathnayaka [15]. The solid lines are the calculated
results. The thin (red) line shows Bc2(T ) used in the
fit, as explained in the text.

I have tried to consider the free energy accounts at
the SP–NP transition, when the field is applied along
the c-axis at 1.6 K (above the SF-phase). Although the
temperature is low, the magnetic entropy is still impor-
tant, but it may be estimated assuming the crystal-field
system to be determined alone by the ground-state dou-
blet. The diagonal Jz matrix-elements between the two

state vectors are +Mz and −Mz, where Mz = 3.893,
however, the use of a slightly larger effective value of
about 4.1 gives a better estimate of the magnetization
(and thus also of the entropy). At 1.6 K the transition
occurs at the field B = 8.557 kG implying Bi = 9.981
kG and with Bc2(T ) = 59.92 kG the free energy of the
superconductor is Fs/N = −44.3 µeV (per Tm-ion).
Just below the transition 〈Jz〉 = 2.808 and just above
〈Jz〉 = 3.592. Hence, there is a jump in the magnetic
moment of 0.9 µB at the transition, which is not ob-
served in the experiments of Cho et al. [3]. The Zee-
man and dipolar energies are rather large: −gµBB〈Jz〉+
2πDM2/N = −119.5 µeV below the transition and above
−137.6 µeV (using D = 0.76). Finally, the exchange en-
ergy is zero below the transition [Js(0) = 0] whereas
in the normal phase −1

2J (0)〈Jz〉2 = −55.1 µeV. In
the simplified model the internal energy of the crystal-
field Hamiltonian is zero, but the entropy is changed.
The value 〈Jz〉 = 2.808 = 4.1(n0 − n1), in the super-
conducting phase corresponds to the population factors
n0 = 0.842 and n1 = 1 − n0 = 0.158. These num-
bers agree quite well with that derived from Heff = 4.05
kOe, which gives rise to a splitting of the doublet by
0.225 meV. The entropy contribution to the free energy
is −ST = kBT (n0 lnn0 + n1 lnn1) = −60.2 µeV. In the
normal phase the corresponding numbers are n0 = 0.937,
n1 = 0.063, Heff = 7.33 kOe (and thus an energy
splitting of the doublet by about 0.41 meV) implying
−ST = −33.0 µeV. The different contributions to the
energy differences between the superconducting and the
normal phase are then (in units of µeV): Condensation:
−44.3; Exchange: 55.1; Zeeman and dipolar: 18.1; En-
tropy: −27.2 (−28.9), which numbers add up to zero (if
using the right value in the bracket for the entropy term).
At this temperature, the gain in Zeeman and dipolar en-
ergy is roughly out-balanced by the free-energy change
due to the reduction of the entropy. Hence the loss of the
superconducting condensation energy by about 44.3 µeV
is compensated for by the gain in exchange energy due
to the jump in J (0) by 8.6 µeV.
Figure 5 shows the final fit to the experiments of Cho

et al.. The experimental results of Don Naugle and Daya
Rathnayaka are added after the fit was made! (The
value of the demagnetization factor influences the results,
and it is therefore important that Don Naugle and Daya
Rathnayaka give us a rough estimate of the demagneti-
zation factor of the sample they have used). The cal-
culation, in the case where the field is perpendicular to
the c axis, is made with the field along the a-axis, [100],
however, the anisotropy is insignificant below 20 kOe and
the maximum at 2.4 K in the [110] case is only about 2
kOe higher than in the [100] case. In the calculations
the anisotropy in the position of the transition is due ex-
clusively to the anisotropy of the magnetic system. The
magnetic moment induced by the field is much smaller in
the a-axis than in the c-axis case, thus the superconduct-
ing condensation energy has to be reduced more before
it may be compensated by the gain in exchange energy.
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– At 2.4 K the critical field is 29.61 kG and the two
values of 〈Jx〉 is 1.4653 and 1.5801 corresponding to a
jump in the magnetic moment of 0.13 µB. The con-
densation energy is determined by Bi = 32.34 kG and
Bc2 = 55.79 kG, or Fs/N = −9.8 µeV, and the exchange
energy in the normal phase has nearly the same value
−1

2J (0)〈Jx〉2 = −10.7 µeV.– Considering that the fit is
determined (effectively) by only two parameters, Bc2(0)
and κF , leading to a reasonable result for both ones, the
final result is convincing. The mechanism for the tran-
sition must be the right one. The problem left is that
the transitions are predicted to be strongly first-order
ones with jumps in the values of the magnetic moments
(rather small in the a-axis case, but certainly observable
in the c-axis case). The experiments of Cho et al. [3] in-
dicate that the transitions are continuous with a jump in
the derivative of the magnetization.
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Fig. 6. The experimental points are the total
magnetic scattering intensities observed by Morten
(adding the intensities of the different scattering
peaks). The experimental intensity scale has been
adjusted so to fit the calculated results shown by the
solid line. The theoretical results are derived using a
20 layered structure instead of the 10 layered one, in
order to get a more smooth result.

B. The SF–NP and SA–SP transitions

The study by Morten et al. of the SF-phase, when
applying a field along the c-axis, has been used for de-
termining two parameters: J (QF ) = 8.6 µeV is simply
determined by the transition temperature TN = 1.52 K
at zero field. The other parameter is the amount by
which the superconducting electrons suppresses J (0).
The small value of QF implies that in a normal metal
J (0) may only be up to 5% smaller than J (QF ), and
in this case the c-axis modulated F-phase would change
into the paramagnetic (ferromagnetic) phase at a critical
field of the order of 0.3 kOe. However, in the low temper-
ature limit the SF-phase is observed to exist up to a field
of the order of 10 kOe, which is only possible if J (0) is
strongly reduced by the superconducting electrons. The
magnetic intensity measurements at 100 mK, Fig. 53 in

Morten’s thesis, have been used for deriving that α 
 1
or J (0) = 0 in the superconducting phase. The fit of the
intensities is shown in Fig. 6. Notice that the reduction
of the oscillating moment goes stepwise, by the flipping of
one moment in the period per step. This means that the
SF-SP transition at a certain temperature, very quickly
below TN , becomes a first-order one. At TN , or when the
field is applied perpendicular to the c axis, the transition
is of second order.
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Fig. 7. The phase diagram of the superconducting
and magnetic phases in TmNi2B2C in the presence
of an applied field in the c-direction. The open and
closed circles show the experimental results from, re-
spectively, Ref. [15] and [3]. The squares show the
experimental results of Morten. The solid lines are
the calculated phase lines and the dashed ones are ex-
trapolations of the phase lines. The thin (red) dashed
line is the result obtained using D = 0.85 rather than
0.76.

When making the calculations shown in Fig. 6, I have
assumed that the system stays in the superconducting
phase (the reduction factor α is assumed constant). The
F-phase should not be stable outside the superconduct-
ing state (at fields larger than 0.3 kOe). On the other
hand the superconducting state may take advantage of
the energy gain due to the presence of the F-phase in
comparison with the SP-phase. This implies, as shown
in Fig. 7, that the SF–NP phase line in the c-axis case
is pushed towards higher field values in comparison with
the SP–NP line (the dashed line). However, this advan-
tage becomes smaller the smaller the oscillating moment
is, and the transition should be a first-order one, where
the magnetic intensity suddenly jumps to zero. This does
not agree with Morten’s measurements, as he has seen a
tail of the intensities continuing into the normal phase,
assuming that the measurements in Ref. [15] are correct
in showing that the normal phase appears above 7–8 kOe.
My only explanation is that a non-uniform distribution
of the demagnetization field may create small volumes in
the sample where the effective D is nearly 1, in which
volumes the SF-phase may stay stable up to higher val-
ues of the applied field. The calculated SF–SP phase line
in the superconducting phase agrees well with the mea-
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surements of Morten, which adds to the credibility of the
value of α derived in Fig. 6.
The phase diagram in the a-axis case is shown in Fig. 8.

This phase diagram would have been qualitatively similar
to the one shown in Fig. 7, if not for the appearance of the
phase with the magnetic ordering wave-vector QA. One
difference is that the field perpendicular to the c-axis has
a very weak effect on the c-axis modulated structure, and
the F-phase would be stable up to very high fields (of the
order of 30–40 kOe) in a normal magnetic system. The
calculated SF–SP phase-line is therefore nearly vertical
in Fig. 8.
The last two phases to be considered are the SA and

NA phases. The stability of these two phases is estab-
lished in terms of the two remaining fitting parameters
J (QA), determining the Néel temperature of this phase
in the normal state, and dA, determining how much this
ordering disturbs the superconducting phase. The value
of J (QA) = 15 µeV corresponds to a Néel temperature
of 2.67 K, as indicated by the dashed line in Fig. 8, and in
the zero-temperature limit the NA-phase should be sta-
ble up to a field of 45 kOe. In order to determine the fit,
I started out by assuming the QA-phase to be unstable in
the superconducting case. Then J (QA) was adjusted so
that the NA-phase would appear at about 12–13 kOe at
zero temperature. The position of this transition is very
sensitive to any change of J (QA), implying that this pa-
rameter can not possibly be much larger as that would
drive the transition down to zero field, and the NA and
possibly also the SA phase would appear in, and modify
appreciably, the c-axis phase diagram. The final value of
this parameter implies that the normal A-phase is just at
the threshold of being stable at the SF–NP phase-line in
the c-axis diagram. It is still an open question, whether
this phase is present in the c-axis case, possibly in a small
pocket around the SF–NP phase-line, and this question
has to be settle by an experimental investigation. The
next step in the fitting procedure was to reduce dA to
a value where the A-phase started to be stable also in
the superconducting state. A fine tuning of dA to the
value of 0.053 led to the calculated a-axis phase diagram
in Fig. 8.
The a-axis phase diagram has been investigated by

neutron diffraction experiments up to a maximum field
of 18 kOe. In the low temperature limit scattering in-
tensities due to the QF -ordering were observed up to
a field of about 14 kOe. The QA-ordering is observed
to appear above about 9 kOe and to exist still at the
maximum field of 18 kOe. In Fig. 8 the dark-gray (ma-
genta) area indicates the occurrence of the A-phase, and
the gray (cyan) area is the one where the two magnetic
phases are observed to coexist. The light-gray (yellow)
area indicates the one in which weak scattering inten-
sities due to the QA ordering are still observable. The
latter results are obtained whilst heating the sample at
a constant field. The squares denote the temperatures
at which the QA-scattering intensities are half the zero-
temperature values, at a constant field, corresponding to

the points where the intensities are rapidly declining with
increasing temperature. These points are lying close to
the first-order phase-lines bounding the areas in which
the QA phase is calculated to exist.
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Fig. 8. The phase diagram of the superconducting
and magnetic phases in TmNi2B2C, when the field
is applied perpendicular to the c-direction. The open
and closed circles show the experimental results from,
respectively, Ref. [15] and [3]. The squares and the
hatched areas indicate the experimental results of Ka-
trine, as explained in the text. The solid lines are the
calculated phase lines and the dashed one is the ex-
trapolation of the NA-NP phase line.

Hysteresis effects are expected at the different first-
order transitions, but the light-gray area in Fig. 8 ex-
tends far beyond that, which may possibly be explained
by usual hysteresis effects. In the a-axis configuration
the demagnetization field is small and a possible inho-
mogeneous distribution of this field is unimportant. The
variations in the magnetic field may help to smear out the
transitions but this effect is weak, as indicated by Fig. 3,
probably less than 0.5 kOe. The remaining possibility
is the effects due to a spatial variation of the supercon-
ducting order-parameter. Within the core radius ξ of the
flux lines the electrons are normal, and in these volumes
the QA ordering may survive in the paramagnetic phase,
as considered by Per. This effect may possibly explain a
part of the observed light-gray area, but it is still difficult
to understand how a substantial part of the light-gray
area in Fig. 8 may cover temperatures at which the QA

ordering is unstable also in the normal phase (this stabil-
ity line is indicated by the dashed line in the figure). The
presence of normal electrons in the cores of the flux-lines
may also be the reason why the magnetic moments are
observed to change continuously at the SP – NP phase
lines. In the c-axis case where this jump is calculated to
be quite large, the non-uniformity of the demagnetization
field may be just as important.
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