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The competition between superconductivity and magnetic ordering in the rare-earth borocarbides is analyzed
in terms of an estimate of the different contributions to the free energy. The two most important effects are the
Anderson-Suhl screening �Phys. Rev. 116, 898 �1959�� of the indirect exchange interaction and the reduction
of the number of Cooper-pair states by the superzone gaps created by the antiferromagnetic ordering. In the
case of TmNi2B2C, the theory accounts for the anisotropy of the upper critical field, the field dependence of the
radius of the vortices, and the jump in the derivative of the bulk magnetization at the superconducting transi-
tion. The theory also gives a fair account of the magnetic effects on the upper critical fields in the Er, Ho, and
Dy borocarbides.
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I. INTRODUCTION

The rare-earth borocarbides RNi2B2C, with R=Tm, Er,
Ho, and Dy, show the exceptional property of superconduc-
tivity coexisting and competing with antiferromagnetic or-
dering, and they may be classified as unconventional super-
conductors in their own right. The crystal structure is
tetragonal with the rare-earth ions placed on a body-centered
lattice. Recent and comprehensive descriptions of these sys-
tems may be found in Refs. 1–3. The two electronically
equivalent, but nonmagnetic, compounds LuNi2B2C and
YNi2B2C are both strong type-II superconductors below Tc
�16 K, and the upper critical field in the zero-temperature
limit Hc2�0� is 80–110 kOe, when the field is applied paral-
lel to the c axis.4,5 It is normally assumed that the most
important reason for the suppression of the superconducting
phase in a homogeneous magnetic system is the existence of
low-energy thermal fluctuations of the magnetic moments.
That this cannot be the whole story is clear from the obser-
vation that whereas the transition temperature in the Tm
compound is only reduced by about 30% in comparison with
the two nonmagnetic systems, the upper critical field Hc2�0�
along the c axis is a factor of 10 smaller. Additionally, the
anisotropy of Hc2 is much larger than the 15% observed in
the Lu and Y systems. Here, we shall concentrate on the two
alternative mechanisms presented below for explaining these
and similar features observed in the other three rare-earth
systems.

The localized magnetic rare-earth moments are coupled
indirectly through the conduction electrons. The ferromag-
netic component of this Ruderman-Kittel-Kasuya-Yosida
�RKKY� exchange interaction between the rare-earth mo-
ments is reduced in proportion to the superconducting order,
because of the Anderson-Suhl screening of the electron-spin
susceptibility in the long wavelength limit.6 The screening is
not due to currents, as in the case of the magnetic field, but
occurs because the Bardeen-Cooper-Schrieffer �BCS� ground
state is a singlet. The screening implies that the upper critical
field is going to depend on the magnetization induced by the
applied field and thereby on the anisotropy of the magnetic
system. As first discussed in this connection in Ref. 7, the

magnitude of the screening, in the case of the Tm compound,
is determined by the derived stability of the antiferromag-
netic ordering in the presence of a c-axis field. Due to low-
lying electronic excitations associated with the vortices, the
screening is expected to be absent within the cores of the
vortices in the type-II phase. This implies an excess magne-
tization of the flux lines in comparison with their surround-
ings and a radius of the cores that increases with field.

Because of the RKKY exchange, the properties of the
Fermi surface are affected by a magnetic ordering, and any
change of the Fermi surface may change the superconducting
state.8,9 A sinusoidally magnetic ordering gives rise to a new
periodicity of the system, and the RKKY interaction between
the spins of the 4f electrons and the conduction electrons
leads to energy gaps at the wave vectors ��±nQ� /2, where �
is a reciprocal lattice vector and Q is the magnetic ordering
wave vector. If a superzone energy gap cuts through the
Fermi surface, the lifting of the spin degeneracy implies that
the states near the gap become unavailable for the Cooper
pairs, leading to a reduction of the “effective density of
states” at the Fermi surface and thereby to a reduction of the
superconducting energy gap.

In the next section, we present a free-energy analysis of
the competition between superconducting and magnetic or-
dering. The theory is then applied in succession to the four
rare-earth borocarbides in Sec. III with the main focus on
TmNi2B2C. The conclusions are given in Sec. IV.

II. THEORETICAL MODEL

With the basic assumption that the borocarbides are stan-
dard BCS systems, the theory6 determines the zero-
frequency susceptibility at zero temperature to be

�s
0�q� =

1

8N
�

k

��k−q − �k�2 − �Ek−q − Ek�2

Ek−qEk�Ek−q + Ek�
, �1�

where �k=�k−� is the energy of the conduction electrons at
wave vector k subtracted the chemical potential, and Ek

=��k
2+�2. The superconducting gap � is determined by
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N�0�gs
= ln�2��D

��0� 	 = 

0

��D tanh 1
2	�x2 + �2�1/2

�x2 + �2�1/2 dx , �2�

where N�0� is the density of states per unit cell and per spin
state at the Fermi surface, gs is the electron-phonon coupling
parameter, �D is the Debye frequency, and ��0�
=1.764 kBTc. The temperature dependence of the zero-
frequency susceptibility at zero wave vector, relative to the
susceptibility ��0�=N�0� /2 of the normal phase, is then de-
termined by the integral �assuming T
TF�

�s�0�/��0� = 2

0

� e
�x2+�	��2

�e�x2+�	��2
+ 1�2

dx . �3�

The integral vanishes exponentially, �exp�−	��0��, at low
temperatures and approaches 1 linearly when T→Tc. A nu-
merical evaluation of this integral is shown in Fig. 1. The
field h=2�B�H+Hex� acting on the electronic spin compo-
nents has to be a substantial fraction of ��0� before it modi-
fies the zero-field results noticeably. The part due to the ap-
plied field in the type-II phase is of no importance. The
exchange field due to the polarization of the 4f moments of
the rare-earth ions may be of some significance; however,
since the effects on the susceptibility are of second order in
h, the field dependence of �s�0� is neglected.

Linearizing the energies near the Fermi surface, �k
=�vF��k �−kF�, the integral in Eq. �1� may be calculated nu-
merically. At the smallest values of q, the susceptibility in-
creases as q2, but in a large interval �as long as 0q
kF�,
the result is

�s
0�q�/��0� = 0.99

q

q + 1.5q0
, q0 =

��

�vF
�

1

�
, �4�

where � is the superconducting correlation length. Hence, the
zero-temperature susceptibility of the superconductor starts
out at zero but is closely approaching the normal-phase value
already when q�10�−1�0.1 Å−1.

The simplest free-electron model leads to an RKKY
interaction10

HH =
1

2�
ij

J�ij�Ji · J j, J�q� = �
j

J�ij�e−iq·Rij , �5�

with J�q�� �g−1�2���q�−�k��k��, where g is the Landé fac-
tor of the rare-earth ions. Because the electronic susceptibil-
ity is modified in the superconducting phase, the RKKY in-
teraction is also changed. Based on the analysis above, we
assume that the RKKY interaction in the superconducting
phase is

Js�q� = J�q� − �J�1 − �s�0�/��0���q0, �6�

i.e., that Js�q� is unchanged unless q0. J�0� is only partly
determined by ��0�, and even the simplest model above pre-
dicts �J to be different from J�0�. For instance, �J has to
be positive, which is not necessary the case for J�0�. In the
analysis below, �J is considered to be an adjustable positive
parameter, and �s�0� /��0� is assumed to be determined by
Eq. �3�, i.e., to depend on T but to be independent of an
applied field.

The modification of the RKKY interaction given by Eq.
�6� is only significant when the spatial average of �Jz� is
nonzero as induced by an applied field along the z direction.
The free energy of the superconducting phase is then in-
creased by �approximately� 1

2 �J�0�−Js�0����Jz��2 per rare-
earth ion in comparison with the normal phase. This loss in
magnetic energy of the superconducting phase implies a re-
duction of the upper critical field in comparison with its non-
magnetic value. By being proportional to ��Jz��2, the reduc-
tion is going to depend sensitively on how large the induced
uniform moment is at a certain field, i.e., whether the field is
along a magnetically hard or easy axis. Macroscopically, the
Anderson-Suhl screening reduces the upper critical field be-
cause of its effect on the energy balance between the two
phases. On the microscopic scale of a type-II system, the
“normal” and the superconducting phases are mixed, in the
sense that the magnetic screening disappears within the cores
of the vortices due to the presence of low-lying spin-
polarizable excitations. Assuming the cores to be normal
with respect to the magnetic interactions, the radius of the
vortices �� is going to be larger than in the nonmagnetic
case, because of the extra magnetic energy gain of the cores,
and the upper critical field Hc2=�0 / �2��2� is consequently
reduced ��0 is the magnetic flux quantum of the Cooper
pairs�. The allowance of the superconducting and the mag-
netically normal phases to mix in this way implies that the
transition at the upper critical field becomes of second order
in accordance with experiments �see, for instance, Ref. 11�.
In the previous analysis reported in Ref. 7, the two phases
were for simplicity considered to be completely separated, in
which case the transition is a first-order one.

In order to quantify the reduction of the upper critical
field due to the phase dependence of the RKKY exchange,
we need to compare the different contributions to the free
energy. The properties of the nonmagnetic version of the
type-II superconductor are assumed to be specified in terms
of a simplified version of the Ginzburg-Landau free-energy
expression
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FIG. 1. The temperature dependence of the electronic suscepti-
bility in the superconducting phase relative to the normal-phase
value.

JENS JENSEN AND PER HEDEGÅRD PHYSICAL REVIEW B 76, 094504 �2007�

094504-2



F = a����2� +
1

2
b����2�2 + Fn �7�

per formula unit, where the kinetic energy is included in an
indirect fashion in terms of the effective squared order pa-
rameter ����2�. The requirements to be met by this free en-
ergy are that the second-order transition to the normal phase
should occur at Hc2 and that the magnetic susceptibility of
the nonmagnetic type-II superconductor should be the nega-
tive of

X� = �1.16�4��2�2 − 1�N��−1, �8�

as derived from the free energy of the hexagonal Abrikosov
vortex lattice,12 where �=� /� is the Ginzburg-Landau pa-
rameter. In the simplest approximation, � and b may be con-
sidered to be independent of field and temperature, in which
case the two requirements determine the two energy param-
eters to be

a = X��Hi − Hc2�Hc2�0�, b = X��Hc2�0��2, �9�

where Hc2=Hc2�T� is the upper critical field at the tempera-
ture T of the nonmagnetic system and Hc2�0� is the zero-
temperature value. Hi is the internal field acting on the con-
duction electrons. In the nonmagnetic case, Hi is equal to the
applied field to a good approximation, at least at fields larger
than Hc2 /�, where the demagnetization field of the diamag-
netic moment is negligible.

This phenomenological theory gives a good estimate of
the free energy of the superconducting phase. This is obvi-
ously true when the applied field is close to the upper critical
field, but it is also valid in the limit of zero field, where the
result is F−Fn=− 1

2X�Hc2
2 �−Hc

2 / �8��, since the critical field
Hc=Hc2 / ��2�� and �2�1 in the present systems �� is lying
in the range of 5–12�. The zero-field value of the squared
order parameter is predicted to be

��0�2  �����2��H=0 =
Hc2

Hc2�0�
, �10�

which appears to be an acceptable estimate of the tempera-
ture dependence of the relative squared order parameter of
the homogeneous superconductor at zero field. Hence, the
parametrization of the free energy given by Eqs. �7�–�9�
gives a reasonable overall description of a nonmagnetic su-
perconductor in the limit of �2�1.

When the magnetic ions of the superconducting system
are introduced, the free energy is assumed to be

F = a����2� +
1

2
b����2�2 + �FM

s − FM
n �

����2�
��0�2

+ FM
n . �11�

Here, FM
s is the free energy per rare-earth ion as derived from

the magnetic Hamiltonian of the rare-earth ions in the case of
a homogeneous superconductor at the temperature T and
field H, and FM

n is the corresponding free energy of the nor-
mal phase. The magnetic Hamiltonian in the superconducting
case only differs from the normal one by J�0� being replaced
by Js�0�. At zero field FM

n cancels out, and FM
s is indepen-

dent of ��0�2 except for the remarkable case of Er borocar-
bide below about 2.3 K, where there is a small ferromagnetic

component.13,14 However, the additional ��0�2 dependence in-
troduced by the �J energy term in this exceptional case is
negligible and Eq. �10� still applies. The magnetization of the
sample induced by the applied magnetic field H contributes
to the effective internal field acting on the superconducting
electrons, i.e., Hi in Eq. �9� is now

Hi = H + HD
0 �1 − Dz���Jz��, HD

0 = 4�g�BN , �12�

where Dz is the �relative� demagnetization factor. Neglecting
the small diamagnetic contribution of the superconducting
electrons, the free-energy expression �11� predicts the aver-
age magnetization to be

��Jz�� =
����2�
��0�2

��Jz��s + �1 −
����2�
��0�2 	��Jz��n, �13�

where ��Jz��s�n� is the site average of �Jz� in the pure super-
conducting �normal� phase. Like Eq. �7� in the nonmagnetic
case, the free-energy expression �11� predicts the transition
between the type-II and the normal phases to be of second
order, and the applied upper critical field is derived to be

H = Hc2
� − HD

0 �1 − Dz���Jz��n,

Hc2
� = Hc2 −

FM
s − FM

n

X�Hc2
. �14�

The result �13� for the average magnetization indicates that
the ratio ����2� / ��0�2 may roughly be interpreted as the vol-
ume of the pure superconducting phase, with the order pa-
rameter ��0�, relatively to the total volume of the mixed
type-II phase, and, correspondingly, 1− ����2� / ��0�2 as the
relative volume of the normal-phase cores of the vortices. A
purely phenomenological approach suggests that ����2� / ��0�2

in Eq. �11� may be multiplied by f�����2�� / f���0�2�, where
f�x� is an arbitrary function. In terms of a Taylor expansion,
the leading order correction is obtained from f�x�=1+�x, in
which case the last term in the expression for Hc2

� is being
multiplied by �1+�Hc2 /Hc2�0��−1. Hence, the result for the
critical field in Eq. �14� should be trustworthy close to Tc but
may be questioned at the lowest temperatures. That the result
is correct close to Tc can be verified by a direct standard
calculation12 of Hc2

� utilizing that 1−�s�0� /��0�=2�1− t� / t2

in this limit �t=T /Tc�.
The second possibility for the RKKY interaction to affect

the superconducting state derives from the superzone energy
gaps produced by the antiferromagnetic order parameter.
This effect has been discussed several times in the literature
�see, for instance, Nass et al.8� and most recently by Amici et
al.,9 who considered the phase diagram of HoNi2B2C. The
leading order effect is that the density of states N�0� in the
gap equation �2� is being reduced proportional to the super-
zone energy gaps. The largest of these derives from the first
harmonic of the antiferromagnetic ordering. The superzone
gaps are proportional to the amplitude �Jz�Q�� of this har-
monic, and we simply assume that N�0� in Eq. �2� is being
replace by
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Neff�0� = N�0��1 − ��, � = dQ�Jz�Q�� . �15�

The adjustable parameter dQ introduced here is proportional
to the RKKY exchange coupling parameter and is going to
depend strongly on the wave vector of the first harmonic.
The modification of the gap equation implies that the transi-
tion temperature Tc is reduced in comparison with the non-
magnetic value Tc

0 according to

Tc

Tc
0 =

��0�
�0�0�

= exp� �

1 − �
ln��0�0�

��D
	�  � . �16�

The relation between � and � is assumed to be �
=exp�3.6� / �1−��� in all the four borocarbides. The precise
value of the constant is not important, but the logarithmic
term is found to be 3.6 when using �0�0�=1.7 meV and
��D=32 meV. The latter value corresponds to a Debye tem-
perature of 370 K, as indicated by heat capacity results.

The scaling introduced by Eq. �16� implies a reduction of
the energy gained by the superconducting ordering at zero
temperature by a factor �2, or that Hc�0���. Considering
that this scaling has only a minor or no effect on the London
penetration depth ��0� but changes ��0� by the factor �−1, we
arrive at

Tc = �Tc
0, � = ��0, Hc2�0� = �2Hc2

0 �0� , �17�

where Hc2
0 �0� and �0 are the nonmagnetic values of these

parameters. Notice that �Jz�Q��, and thereby �, depends on
temperature and fields, implying that Tc, X�, and Hc2�0� are
now functions of the thermodynamic variables in the antifer-
romagnetic phase.

III. UPPER CRITICAL FIELD

The theory developed in Sec. II is applied on the four
superconducting rare-earth borocarbides in the following
sections. The theory is parametrized in terms of the “non-
magnetic” constants, Tc

0 and �0, and the temperature depen-
dent upper critical field. These parameters are, in principle,
those determined in the nonmagnetic counterparts Lu and Y
borocarbides,4,5 i.e., Tc

0�16 K and �0�12. The critical field
when the field is applied perpendicular to the c axis is as-
sumed to be

Hc2 = �2Hc2
0 �0��1 − 0.875t − 0.892t2 + 0.767t3� , �18�

where t=T /Tc=T / ��Tc
0� and Hc2

0 �0��130 kOe. There are
some differences between the experimental upper critical
fields of the Lu and Y compounds, especially in the zero-
temperature limit, and the variation assumed in Eq. �18� is an
average of the experimental results obtained in the two sys-
tems. The experimental results also show an anisotropy be-
tween the cases where the field is applied either perpendicu-
lar or parallel to the c axis. Accordingly, we assume in all
four cases discussed below that Hc2

0 �0� is reduced by 15%
when the field is applied parallel to the c axis. Although the
electronic properties of the different rare-earth borocarbides
presumably are very similar, there are certainly differences
of some importance, and we have adjusted Tc

0 and Hc2
0 �0� to

the experimental situation of each case. In order to be con-

sistent with the scaling in Eq. �17�, �0
2 is scaled with the same

factor as applied in the case of Hc2
0 �0�. The two remaining

parameters of the theory are �J in Eq. �6� and dQ in Eq.
�15�. The two coupling constants should, in principle, scale
with, respectively, �g−1�2 and �g−1�, but have been adjusted
freely for each system.

The internal field Hi in Eq. �12�, and the corresponding
field H−DzHD

0 ��Jz�� acting on the magnetic ions, is assumed
to be uniform within the type-II phase. In principle, the B
field inside the flux lines is shielded from the surroundings,
and should be stronger in the magnetically normal phase of
the cores compared to the field in the superconducting vol-
ume between the vortices. However, because of the large
value of �, the London penetration depth � is large
��700 Å� and the variation of Bi is less than 10% already at
a field of �2 kOe. Certainly, the spatial variation has com-
pletely vanished when approaching the upper critical field,
and the assumption of a uniform internal field is fulfilled in
most of the applications below. Since the internal fields in-
clude significant contributions from the magnetization of the
samples, it is important to have a reasonable estimate of the
demagnetization factor. Most of the samples used in the dif-
ferent experiments are flat disks oriented perpendicular to the
c axis. Hence, in most cases Dc�0.7 and Da�Db��Dc

−1� /2.
The magnetic Hamiltonian of the rare-earth ions is known

with reasonable accuracy for all four borocarbides. Gasser et
al.15,16 have determined the crystal-field Hamiltonian for
each of the different compounds by combining the results for
the crystal-field level intensities, observed in inelastic neu-
tron scattering experiments, with susceptibility measure-
ments. A thorough discussion of the different antiferromag-
netic structures observed by neutron diffraction in the
different rare-earth borocarbides is presented by Lynn et al.17

A. TmNi2B2C

The magnetic properties of TmNi2B2C have been studied
by neutron diffraction in detail.7,18–21 The system orders an-
tiferromagnetically at TN=1.52 K. The ordering wave vector
is QF= �0.094,0.094,0� �in reciprocal lattice units� with the
moments polarized along the c axis. As discussed in Ref. 7,
the small value of �QF� is readily explained as being an effect
of the Anderson-Suhl screening. Furthermore, the antiferro-
magnetic ordering, at 0.1 K, stays stable as long as the sys-
tem is superconducting up to a c-axis field of about HN
�8 kOe �except that the ordering wave vector changes its
direction above 2 kOe�.20,21 The value of TN implies that
J�QF��8.6 �eV. The stability field HN−DzHD

0 ��Jz�� times
g�B is a measure of the energy difference �J�QF�−Js�0��
��Jz�. Since, in the normal phase J�QF��J�0� because of
the small value of �QF�, this estimate leads to �J lying be-
tween 5 and 8 �eV or �J�6.5 �eV, as used in the model
calculations.

At the lowest temperatures, the QF ordering disappears,
when applying a field of 10–15 kOe in the a direction, and is
replaced by a new antiferromagnetic ordering of the c-axis
moments at the wave vector QA= �0.483,0 ,0�.7,18 Against
any intuitive anticipations, this antiferromagnetic ordering
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becomes more stable the larger the field. This surprising ob-
servation has now been explained by the discovery that the
system is in a quadrupolar ordered phase below TQ=13.5 K,
at zero field, showing up as a modulated c-axis displacement
of the Tm ions at the wave vector QA.19 The antiferromag-
netic ordering is induced by the uniform magnetic field due
to the oscillating anisotropy term associated with the quadru-
polar ordering. An important property of the quadrupolar
phase is that the order parameter is extremely sensitive to the
a-axis field, and at low temperatures it is enhanced by a
factor of 10 in a field of 100 kOe compared to the zero-field
value. When the field is applied along the c axis, the quadru-
polar order parameter stays small and only induces a minute,
longitudinally polarized, antiferromagnetic moment. The
quadrupolar ordering does not have much influence on the
upper critical field in the c-axis case, not only because the
order parameter stays small but also because the superzone
energy gaps produce by the quadrupolar moments do not
affect the spin degeneracy of the conduction electrons, in
which case the changes of N�0� and of the effective N�0� in
the gap equation are the same, and they are only of second
order in the energy gaps. When the field is applied perpen-
dicular to the c axis, the antiferromagnetic ordering induced
by the field enhances the superzone energy gaps and gives
rise to a linear reduction of the effective N�0�. In practice,
the effects of the two contributions to the superzone gaps
may hardly be distinguished, and the extra superzone effects
due to the quadrupolar ordering are considered to be ac-
counted for by introducing an effective coupling parameter
dQ multiplying the amplitude of the modulated antiferromag-
netic moments in Eq. �15�.

The calculated upper critical fields in the case of
TmNi2B2C are compared with experiments in Fig. 2. The
results are obtained using the parameters given in Table I and
the magnetic Hamiltonian developed in Ref. 19. In the a-axis
case, the amplitude of the QA antiferromagnetic ordering

grows smoothly as the temperature is reduced and is only of
importance for the upper critical field below about 5 K. In
the case where the field is along the c axis, the superzone
effects due to the QF ordering, below �1 K, are small be-
cause the amplitude �J�QF�� is nearly zero close to the upper
critical field. In all circumstances, they are assumed to be
dominated by the small extra energy gained in the supercon-
ducting phase, because it stabilizes the antiferromagnetic QF
ordering. This implies a small increase of the upper critical
field below 1 K, in agreement with observations.

At the transition from the superconducting to the normal
phase, the theory predicts a continuous variation of the mag-
netization, but the derivative of the magnetization is changed
by

��M

�H
�

s+n
− ��M

�H
�

n
=

g�B���Jz��s − ��Jz��n�
Hc2

� �Hc2
*

�H
− 1	

=
g�B�2.845 − 3.518�

40.7kOe
�− 4.29�

= 0.08�B/kOe �19�

at 2 K, when the field is along the c axis. This value agrees
acceptably with the experimental observation by Cho et al.11

of a jump of about 0.05 �B /kOe. In the case that the field is
applied perpendicular to the c axis, both the calculated and
the experimental values are a factor of about 7 smaller.

Eskildsen et al.23 have measured the neutron cross sec-
tions of the vortices in Y and Lu borocarbides. The form
factor of the �1,0� reflection of the flux-line lattice is deter-
mined by

�h10�2 =
�0

2

�2���4e−4�2Bi�
2/�0, �20�

from which they derived ��85 Å and ��1060 Å at 1.9 K
in the Y and Lu compounds. Eskildsen20 has done the same
measurements in the case of Tm borocarbide. He did also
determine the internal B field for all three compounds, sim-
ply by measuring the distance between the flux quanta. In Y
and Lu borocarbides, the internal field was found to be equal
to the applied one, within experimental accuracy, whereas
the internal field in the Tm compound was a factor of about
1.15 times the applied c-axis field. The experimental results
of Eskildsen for the Tm compound are shown in Fig. 3.
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FIG. 2. �Color online� Upper critical field in TmNi2B2C. The
experimental results are from Ref. 22. The dashed lines show the
assumed values of Hc2

0 �T� �the temperature factor is the one of Hc2

in Eq. �18� with �=1�, when the field is parallel or perpendicular to
c. The solid lines are the calculated results using Dc=0.64.

TABLE I. The model parameters of the four rare-earth borocar-
bides. The nonmagnetic upper critical field Hc2

0 �0� is the value used,
when the applied field is perpendicular to the c axis. Hc2

0 �0� is
changed by the factor of 0.85 of in the c-axis case.

Tm Er Ho Dy

g−1 1/6 1/5 1/4 1/3

Tc
0 �K� 10.8 11.2 8.8 16

Hc2
0 �0� �kOe� 59 58 30 74

�0 6.9 6.8 4.9

�J ��eV� 6.5 3.6 2.0

dQ 0.018 0.007 0.013 0.029
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Except for the ratio at the highest field, the calculated results
of Hi /H using Eq. �12� are in good agreement with the ex-
perimental values of Bi /B. The form factor is calculated by
inserting

�2�B� = �2�0�
Hc2

Hc2
* �21�

into Eq. �20�, and a reasonable fit is obtained when assuming
��0�=89 Å and ln �h10�2=9.6 at zero field. The nonmagnetic
upper critical field is Hc2

0 =Hc2=41.3 kOe, which corre-
sponds to the value of ��0�= ��0 / �2�Hc2��1/2 assumed in the
fit. The upper critical field of the magnetic system, Hc2

* , is
determined by the expression in Eq. �14� �at an arbitrary
field� and decreases as the energy difference between the
superconducting and the normal phase is increased, roughly
proportional to the square of the field, and ��B� /��0� is found
to be about 1.9 at the transition at 9.7 kOe. The zero-field
value of the form factor indicates ��660 Å, whereas the
experimental value of about 8.9 corresponds to ��780 Å.
These results for � and � agree with other determinations of
these parameters and correspond to ��8, which is of the
same order of magnitude as �0 used in the model. Due to the

Anderson-Suhl screening, the present theory predicts that the
moments within the cores of the vortices are larger than
those in the superconducting volume between the vortices,
which difference reaches a value of about 0.8 �B per Tm ion
close to the phase transition at 2 K �see Eq. �20��. As first
considered by Abrahamsen,24 this excess magnetization of
the cores is going to add to the scattering of the neutrons
from the vortices. This effect is probably the explanation for
the slight increase of the experimental form factor seen in
Fig. 3, when the field increases from 0 to 3 kG. A more re-
alistic interpretation of the field dependence of �h10�2 com-
pared to the one presented here should include the effects of
this additional scattering mechanism.

B. ErNi2B2C

The magnetic properties of the Er compound are well
documented.13,14,17,25,26 At low temperatures, the system is
very hard to magnetize along the c axis, and within the ab
plane it shows a four state clock behavior with the easy axes
being along the a or b axes. Er borocarbide is superconduct-
ing below Tc=11.2 K and becomes antiferromagnetically or-
dered at TN=6 K. The ordered moments are transversely po-
larized within the ab plane and the ordering wave vector is
Q��0.55,0 ,0�. The hard c axis is not favorable for the qua-
drupolar ordering found in the easy c axis Tm system, and
the quadrupolar phase is not occurring in this system,19 and
probably neither in the two other hard c-axis systems, Ho
and Dy borocarbides.

The strong magnetic anisotropy implies that the periodic-
ity of the antiferromagnetic structure becomes locked to the
lattice periodicity, where the commensurable period depends
on temperature and fields. At zero field, the commensurable
structure has a period of 40 lattice planes, and the magnetic
net moment is zero above Tc�2.3 K. Below this tempera-
ture, it becomes energetically favorable for the system to
rearrange the structure into another 40-layer one, which has a
small ferromagnetic component.14 It is important to realize
that the ferromagnetic transition in ErNi2B2C does not occur
because of a ferromagnetic interaction, which interaction is
actually strongly negative and is further reduced by the
Anderson-Suhl screening. The ferromagnetic component has
to be considered to be an accidental by-product of the low-
temperature commensurable structure.

The effects of the magnetic Er ions on the upper critical
fields of ErNi2B2C have been calculated using the model
derived in Refs. 14 and 26 and the parameters in Table I. The
results are shown in Fig. 4. In the c-axis case, the magnetic
moment induced by the field is very small, implying that the
Anderson-Suhl screening has nearly no consequences. Below
the second-order transition at about 6 K, the rapid increase
of the ordered moment results in a steep reduction of the
upper critical field. When the field is applied in the ab plane,
along �100� or �110�, the reduction is appreciable in the para-
magnetic phase. Because of the large moment induced by the
field, the transition to the antiferromagnetic phase is a first-
order one, but the amplitude of the oscillating moments stays
relatively small below the transition. Correspondingly, the
theory predicts a sharp, but small jump in the upper critical
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FIG. 3. The upper figure shows the ratio Bi /B as a function of
the field B applied along the c axis of TmNi2B2C at 1.9 K. The
points are the experimental results of Eskildsen �Ref. 20� and the
solid curve shows the calculated variation when the demagnetiza-
tion factor Dc=0.72. The lower figure displays the field dependence
of the logarithm of the flux-line-lattice form factor under the same
conditions as in the upper figure. The neutron-diffraction results are
from Ref. 20. The solid line is the calculated result and the thin line
indicates the upper critical field.

JENS JENSEN AND PER HEDEGÅRD PHYSICAL REVIEW B 76, 094504 �2007�

094504-6



field at the transition to the antiferromagnetic phase. The
experimental upper critical field does not show a jump, but
only a change of slope at the transition. The reason might be
that the experimental transition is smeared out due to the
inhomogeneities introduced by the relatively large demagne-
tization field ��1 kOe�.

C. HoNi2B2C

The magnetic properties of Ho borocarbide are
complex.17,28–31 The magnetic anisotropy of the Ho system is
similar to that of the Er system except that the easy axes are
now the �110� directions. As discussed, for instance, by Lynn
et al.17 there is a competition between three different antifer-
romagnetic structures. The main transition is observed at
about 6 K, and below this temperature the ordered phase is a
simple commensurable antiferromagnet with Q= �0,0 ,1� and
the moments along a �110� direction. Between 6 and 8 K, the
diffraction experiments show small scattering intensities at
�0,0,0.91� and at �0.55,0,0�. Because of the weak intensities,
these extra features do not have much influence on the
present calculations and are neglected. For the same reason
as in the Er compound, the Anderson-Suhl screening has no
influences on the calculated upper critical field, when apply-
ing the field along the hard c axis, instead the superzone
effects are strong below the second-order phase transition,
which is assumed to occur at 6 K �see Fig. 5�. When the field
is applied in the ab plane, the Anderson-Suhl screening is of
some importance, and in the antiferromagnetic phase the su-
perzone effects are appreciable but less pronounced than in
the c-axis case. The experiments show a number of meta-
magnetic spin-flop transitions.28,29 The lowest-field transition
occurs at about 5 kOe, both when the field is applied along
�100� or along �110�, and the uniform moment makes a jump
from nearly zero to about 3 �B /Ho. We have not developed
a model for describing these transitions with sufficient accu-
racy �see instead Ref. 30�; however, the calculations show
that the uniform moment above the transition is sufficiently

large so that the superconducting state is quenched because
of the Anderson-Suhl screening effect. Hence, the present
model predicts that the upper critical field along �100� or
�110� coincides with the field determining the lowest meta-
magnetic transition, when the temperature is below about
3 K. Experimentally, this field is about 5 kOe roughly inde-
pendent of temperature, as assumed in Fig. 5, but hysteresis
effects are important.

D. DyNi2B2C

The Dy compound shares many of its magnetic properties
with Ho borocarbide.17,33,34 The easy axes are the �110� di-
rections, and the magnetically ordered phase has the ordering
wave vector Q= �0,0 ,1�. The main difference is that the su-
perconducting phase is only stable within the antiferromag-
netic part of the phase diagram. The superconducting transi-
tion at Tc�6.5 K is below TN=10.6 K and the lowest-field
metamagnetic transition in this system occurs at an ab field
which is larger than the upper critical field, at increasing-
field conditions. Below the metamagnetic transition, the
magnetization induced by the applied field is practically
zero, and the Anderson-Suhl screening has no influence on
the phase diagram. Instead, the superzone gaps are important
and they produce nearly the same effects whether the field is
applied parallel or perpendicular to the c axis; hence, the
anisotropy of the calculated upper critical fields is alone due
to the assumed 15% difference between the nonmagnetic Hc2

0

values. This is an accordance with the experimental results,
as shown in Fig. 6. Utilizing decreasing-field conditions,
Peng et al.33 succeeded in maintaining a metastable spin-flop
phase down below the critical fields shown in Fig. 6, at the
lowest temperatures. In this situation, the upper critical field
was found to coincide with the field of the spin-flop transi-
tion. This is entirely equivalent with the low-temperature be-
havior of the Ho compound.
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FIG. 4. �Color online� Upper critical field in ErNi2B2C. The
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IV. CONCLUSION

The Tm, Er, Ho, and By borocarbides have the unique
property of allowing superconductivity to exist simulta-
neously with an antiferromagnetic ordering of the rare-earth
moments. The 4f moments of the rare-earth ions do certainly
interact with the superconducting electrons, and, probably,
the largest part of the interaction between the 4f moments is
the RKKY interaction, which involves the conduction elec-
trons in a direct fashion. The acting of the RKKY interaction
implies not only that the superconducting Cooper pairs are
scattered by magnetic fluctuations but also that the RKKY
interaction is partly screened in the superconducting phase at
long wavelengths, and that the antiferromagnetic ordering
creates energy gaps at the Fermi surface, which superzone
gaps reduce the effective density of states determining the
superconducting order parameter. The main purpose of the
present paper is to convince that the two phenomena associ-
ated with the RKKY interaction, the Anderson-Suhl screen-
ing of the ferromagnetic RKKY component and the super-
zone gaps produced by the antiferromagnetic ordering, are
essential for understanding the properties of these unusual
rare-earth compounds.

Effectively, we have used four fitting parameters for each
of the compounds, Tc

0, Hc2
0 �0�, �0

2�J, and dQ. The two first
ones and �0 establish the superconducting properties of the
“nonmagnetic” compound. �Hc2

0 �0��1/2 and Tc
0 scale approxi-

mately in the same fashion, and �0 is chosen to obey the
same scaling, from one borocarbide to the next including the
Y and Lu compounds. Some of the differences are due to real
changes of the electronic properties, but we also expect that
they, effectively, reflect influences of the magnetic fluctua-
tions. In order to access the relative importance of these fluc-
tuations, we have calculated the paramagnetic low-energy
response �below �0.4 meV� of the rare-earth moments in the
different cases. The weakest fluctuations are found in the Tm
system, and here they are reduced by a factor of 3 �Ising-
like� compared to the free ion. The strongest ones, i.e., fluc-

tuations as large as for a free ion, are found in the Ho and Dy
compounds, leaving Er borocarbide as an intermediate case.
The conditions in the case of Dy are special, as the super-
conducting phase is only appearing at temperatures where
the low-energy magnetic fluctuations are totally removed,
because of the antiferromagnetic ordering. This may partly
explain why the superconducting model parameters of Dy
are those in Table I that are closest to the Y and Lu values.
Incidentally, the reentrant behavior suggested by the model
parameters of Dy, because Tc

0�TN, is assumed to be pre-
vented by the strong fluctuations of the Dy moments close to
and above TN. Leaving Dy as a special case, then Ho boro-
carbide should be the one that is most influenced by mag-
netic fluctuations, even more so when considering that the
interaction is also expected to be proportional to �g−1�2.
This is consistent with that Ho borocarbide is the weakest
nonmagnetic superconductor according to Table I.

In the present model, the interactions between the mag-
netic rare-earth ions and the superconducting electrons are
determined in terms of the two parameters �J and dQ. In the
construction of the theory, we have been forced to make a
number of quite drastic simplifying assumptions. For in-
stance, we have assumed a simple isotropic superconducting
gap � although indications of gap anisotropy have been ob-
served, in particular, in the case of the nonmagnetic
borocarbides,35 as reviewed recently by Gupta.3 The possible
presence of nodes in � is going to change the temperature
variation of �s�0� /��0� shown in Fig. 1, especially in the
zero-temperature limit, but even major modifications of the
relative variation of this ratio between 0 and 1 would not be
of much importance for the present analysis. The theory ac-
counts convincingly for many particulars of the experimental
observations. The model rightly predicts that the anisotropy
of the upper critical field should have the opposite sign in the
Tm compound compared to the hard c-axis systems Er and
Ho. It is important to realize that if the magnetic fluctuations
should be dominating the systems, the sign of the anisotropy
would be the opposite: the fluctuations are most effectively
reduced when the field is applied along an easy axis. Actu-
ally, in the cases of the Er, Ho, and Dy borocarbides, the field
along the hard c axis has nearly no consequences for the
magnetic systems within the superconducting phase. In this
situation, the superzone effect is the only one left, which, in
addition, is stronger here than in the easy-axis cases, simply
because the hard-axis field does not reduce the antiferromag-
netic order parameter. The superzone gaps are much largest
in the Dy case, where the model indicates that the effective
density of states at the Fermi surface is being reduced by up
to 20%. The ordering wave vector Q is the same in the Ho
and in the Dy system, and dQ is smaller in Ho than in the Dy
case, although the difference is somewhat larger than ex-
pected from the �g−1� scaling. The superzone effect is ca-
pable of accounting for most part of the near-to-reentrant
behavior of the Ho compound, but it is also clear that the
magnetic fluctuations are important for this particular phe-
nomenon, which fluctuations may be enhanced by the com-
petition between the three different antiferromagnetic order
parameters close to TN. The interaction parameter dQ is
larger in the Tm compound than expected from the �g−1�
scaling, which may indicate that the unique quadrupolar or-

0 1 2 3 4 5 6 7 8
Temperature (K)

0

2

4

6

8

10

U
pp

er
cr

iti
ca

lf
ie

ld
(k

O
e)

[100]
ab−plane
[001]

DyNi2B2C

FIG. 6. �Color online� Upper critical field in DyNi2B2C. The
experimental �100� results are from Ref. 33 and are those obtained
for increasing fields. The H �c and H�c data are from Ref. 34. The
solid lines are the calculated results.

JENS JENSEN AND PER HEDEGÅRD PHYSICAL REVIEW B 76, 094504 �2007�

094504-8



dering of this system leads to important deformations of the
Fermi surface. Except for the case of Tm, dQ scales roughly
like �g−1�.

The Anderson-Suhl coupling parameter �J is expected to
be proportional to �g−1�2, which is not the case. This is a
somewhat disturbing result; however, this parameter is deter-
mined by finer details of the electronic bands near the Fermi
surface, which do not necessarily depend in a systematic way
on the rare-earth system considered. The importance of the
individual electronic properties of the different rare-earth
systems may be exemplified by comparing the exchange in-
teraction determined in Tm and in Er borocarbide: In the Tm
system, J�0� is close to the maximum value J�QF�, whereas
this parameter is strongly negative in the Er system. In the Er
system, J�q� has a sharp maximum at the ordering wave
vector q�QA, whereas J�QA� is negative in the Tm
system.14,19

One of the special phenomena in these magnetic super-
conductors is that the uniform polarization of the magnetic
moments adds to the internal magnetic field �Eq. �12��. This
effect is straightforwardly included in the model calculations.
It is not insignificant, but it is neither of great importance
since it only adds a few kilogauss, at maximum, to the inter-
nal field and thereby reducing the applied upper critical field
with the same relatively small amount.

The analysis of, in particular, the Tm system leaves no
doubt that the Anderson-Suhl screening is important, as al-
ready concluded by Nørgaard et al.7 It explains why this
system does order at the small wave vector QF instead of
zero—and why the antiferromagnetic phase stays stable up
to a c-axis field of the order of 8 kOe—and also explains the
increase of the radius of the vortices with field and the
change of slope in the magnetization curve when the system
becomes normal. For completeness, we point out that the
clear indications of the Anderson-Suhl screening effects rule
out the possibility that the rare-earth borocarbides are triplet
superconductors; they must be singlet BCS superconductors,
since the formation of the singlet ground state is the basic
condition for the presence of screening.

Note added in Proof. Recently we learned of a detailed
analysis of the effects of the paramagnetic moment on the
vortices in Tm brorcarbide by L. DeBeer-Schmitt et al. 36
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