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A theory is developed for interpreting the effects of the crystalline electric field in non-magnetic metals containing small 
quantities of magnetic rare earth impurities. The experimentally detected regularities in the behaviour of the crystalline-elec- 
tric-field-Hamiltonian parameters for various dilute alloys with heavy rare earth metals have been analyzed. Parameters of the 
model crystal potentials are determined for the non-magnetic metals magnesium, scandium, yttrium and lutetium. It can be 
concluded that the Friedel oscillations in the effective electrostatic interaction between the ions in the metals have observable 
consequences for the crystal-field parameters. 

I. Introduction 

Dilute alloys of rare earth metals (REM) with 
non-magnetic metals are convenient subjects for 
studying the effects of the crystalline electric field 
(CEF). The advantage of these systems is that the 
non-magnetic nature of the matrix metal excludes 
magnetostrictive effects, and the large distances 
between the rare earth ions weaken the exchange 
interaction. Among the non-magnetic metals, 
lutetium and yttrium are closest to the magnetic 
R E M  in their structure and properties. Though 
scandium and magnesium under normal condi- 
tions differ noticeably from the R E M  in their 
parameters,  they have a hexagonal close-packed 
lattice like most of the REM. The CEF effects in 
dilute alloys of REM with the four above-men- 
tioned non-magnetic metals have been inVesti- 
gated experimentally in detail [1-9]. The manife- 
stations of the CEF effects were studied both in 
the magnetic properties [1-4] and in the inelastic 
magnetic scattering of cold neutrons [5-8]. As 

mentioned by  Touborg [9], the experimentally ob- 
tained results are not in accordance, not even 
qualitatively, with the simplest CEF model of 
effective point charges (MEPC) [10]. A number  of 
systematic regularities in the behaviour of the 
CEF Hamil tonian coefficients can be extracted 
from the results of the experimental papers [1-9]. 
Among these regularities one conventionally dis- 
tinguishes two "s t rong"  peculiarities: (1) a greater 
value of the sixth-order CEF parameters,  as com- 
pared with that calculated in the MEPC, which 
are relatively insensitive to the matrix type, and 
(2) a strong correlation between the second-order 
CEF coefficients and the lattice parameters  of the 
various matrices. The other peculiarities are rela- 
tively weaker: (3) a positive sign of the B4o/ f l j  

ratio (unlike the negative sign of this ratio in the 
MEPC), and (4) a weak but  still noticeable irregu- 
lar variation of the CEF parameters  for various 
rare earth (RE) ions dissolved in one and the same 
matrix. 

In the following it will be shown that the 
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"strong" peculiarities are related to an oscillating 
spatial variation of the crystalline field potential 
whereas the "weak" ones, apparently, are intro- 
duced because of the reaction of the outer and 
inner (with respect to the 4f-electrons) electronic 
shells of the RE ions to the crystalline field of the 
metal (the so-called "shielding" of the crystalline 
field). 

subsequent calculations we simply neglect these 
terms, assuming on, . = 1 for 1, = 1, 2 . . . . .  

In order to perform a qualitative analysis of the 
above-mentioned regularities shown by the CEF 
Hamiltonian coefficients we use two types of 
model potentials V,. These potentials describe the 
main features of the CEF space distribution in a 
metal, with a minimum number of parameters to 
be varied. 

2. Interpretation of CEF effects in dilute alloys of 
heavy REM 

The CEF Hamiltonian for hexagonal symmetry 
can be written in the following form: 

= B20020 + B.oO.o + B60060 + B6606 , (1) 

On, , are the Stevens equivalent operators [10] and 
Bn, , (n = 2, 4, 6; m = 0, 6) are written as follows: 

o o  

Bnn , = eb. ~_. A~m(r"+2~)(1 - o.,~), (2) 
p=0  

where e is the electron charge, and b n are the 
Stevens factors usually denoted as a s = b2,  f l j  = b 4 
and Ys = b6 which have been calculated for the 
ground state of all the three-fold positively charged 
RE ions [10]. ( r " )  are the average values of the 
nth power of the f-electron radius [11-13]. A~.m 
are the lattice sums containing various combina- 
tions of derivatives of the metal crystal potential 
(CP) V(r) [14,15]. ,=0 Anm have to be interpreted as 
being due to the contribution of external charges 
to the CP V(r) which satisfies the Laplace equa- 
tion ~72V = 0, whereas A~,, 0 '  = 1, 2 , . . . )  are due 
to the non-spherical part of the charge distribu- 
tion of the conduction electrons near the 4f-shell. 
Assuming a general central-force CP" 

V(r) = E V ~ ( I R , -  r [ ) ,  (3) 
i 

the lattice s u m s  A°m ( n  = 2,  4,  6, m = 0, 6) in the 
hexagonal case are those given in ref. [16] (the 
model used in this paper is equivalent in many 
respects with that of ref. [15]). on, 0 are the so-called 
"shielding factors" of the external-charge part of 
the CP V(r) [17,18]. The rest on, . 0 '  = 1, 2 . . . .  ) are 
the "shielding factors" of the field due to the local 
charge density, which are very uncertain, and in 

V/(r) = - ~  e x p ( - f i r )  cos(ar  + "/) (4) 

and 

A 
v,(r)  - - c o s ( a t  + (5) 

( k f r )  3 

where kf is the electron wave vector on the Fermi 
surface approximated by the formula kf = 
(3~r2Z/OA) 1/3, Z is the ion valence, and o A is the 
volume per ion. The potential V~ (4) can be easily 
transformed into a pure Coulomb potential, Vcoul 
= Ze/r ,  or into one of the Yukawa type Vv, = 
(Ze / r )  exp( - f l r )  by a proper choice of the 
parameters. The potential V~ (5) is a well-known 
asymptotic form of the two-particle interaction 
potential [19]. Though one obtains convergent ex- 
pressions for the CEF Hamiltonian coefficients 
when using V/ (5), the slow decrease of V/(x 1/r  3 
makes it necessary to perform the summation over 
a great number of coordination spheres of ions. 

The lattice parameters of the matrix metals, 
which are used in the calculations, are presented 
in table 1. The average values of the n th powers of 
the 4f-electron radius for the RE ions [13] are 
given in table 2. In order to reduce the number of 
variable parameters, the shielding factors are as- 
sumed to be the same for all the heavy RE ions, 

Table 1 
Parameters of the matrix metal lattices 

Mg Sc Lu Y 

a (,~) 3.1930 3.3088 3.5052 3.6482 

c (,~) 5.1854 5.2680 5.5494 5.7318 

VA (,~3) 22.89 24.97 29.52 33.03 
= (8//3) 1/2 -- c /a  0.009 0.041 0.050 0.062 
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Fig. 1. The 2nd-order coefficients BE0/a j  for dilute alloys of 
heavy REM with Mg, Sc, Lu and Y. The experimental data 
[4,8,9]: v - Mg, (3 - Se, × - Lu, and • - Y. The vertical lines 
denote the uncertainties in B2o/etj. The theoretical results are 
given by dots and connected for convenience: (a) the dashed 
line indicates the use of the V,-potential (4) with the parameters 
f rom table 4; (b) the solid line shows the results obtained using 

the Vrpotential (5) with the parameters taken from table 5. 

and two of these are considered to be fixed, namely 
o2, 0 = 0.8 and o6, 0 = 0. These values are close to 
those calculated for Pr 3+ and Tm 3÷ [18], which 
are, unfortunately, the only results available in the 
literature. The 04, 0 factor is used as a fitting 
parameter like the three parameters which de- 
termine either one of the potentials V~ (4) or (5). 
Figs. 1 -3  show the comparison achieved between 
the experimental [4,8,9] and the theoretical values 
of the ratios B2o/aj, B4o/flj and B6o/Y J for the 

Table 2 
Average values of <r n > for heavy RE ions [13] 

Tb 3+ Dy 3+ Ho 3+ Er 3+ T m  3+ 

<r 2 > (au) 0.900 0.854 0.812 0.774 0.740 
<r 4 > (au) 2.167 1.971 1.802 1.655 1.528 
<r 6 > (au) 11.480 10.120 8.991 8.040 7.242 

heavy RE ions dissolved in Mg, Sc, Lu and Y. The 
experimental [4,8,9] and calculated values of the 
sixth-order coefficient ratio B66/B6o are presented 
in table 3. The parameter values of the potentials 
V~ (4) and (5) and the factor 04, 0 which are used in 
these calculations are presented in tables 4 and 5. 

We begin the analysis of the peculiarities in the 

20 

10 

0 

1 

1 

~j 

Mg- host 

i I I I 

Tb Dy Ho Er Tm 

I I I I I 

Tb Dy Ho Er Tm 

I I 

Tb Dy Ho Er Tm 

1 A I I I 

Tb Dy Ho Er Tm 

Fig. 2. The 4th-order coefficients B4o/flj for dilute alloys of 
heavy REM with Mg, SC, Lu and Y. The symbols are the same 

as those in fig. 1. 
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Fig. 3. The 6th-order coefficients B6o/Ys for dilute alloys of 
heavy REM with Mg, Sc, Lu and Y. The symbols are the same 

as those in fig. 1. 

Table 4 
Values of parameters of the Vrpotentials (4) and 04, 0 used to 
calculate the CEF Hamiltonian coefficients given in figs. 1-3 
and presented in table 3 

Z /3 a y O4,o 
(A -1) (h -1) 

Mg + 2 1.44 2.830 - 4.64 1.3 
Sc + 3 1.27 2.523 - 3.96 1.3 
Lu + 3 1.10 2.407 - 4.00 1.3 
Y + 3 1.02 2.474 - 4.65 1.3 

Table 5 
Values of parameters of the V-potentials (5) and 04, 0 used to 
calculate the CEF Hamiltonian coefficients given in figs. 1-3 
and presented in table 3 

Z A a "t 04.0 

(volt) (A - 1 ) 

Mg + 2 43.2 2.298 - 2.51 1.1 
Sc + 3 93.6 2.346 - 2.96 1.1 
Lu + 3 93.6 2.212 - 2.85 1.1 
Y + 3 93.6 2.495 - 4.67 1.1 

behaviour of the CEF Hamiltonian coefficients, 
mentioned in the introduction, with the "strong" 
ones. The Lu-Ho system is taken as an example, 
and the theoretical values of the sixth-order coeffi- 
cients obtained from the potential V~ (4), with the 
parameters of table 4, are compared in table 6 
with the results derived from the Yukawa and the 
Coulomb potential. The differences in the coeffi- 
cients B6o and B66 for the three types of potentials 
arise mainly from the nonmonotonic or oscillating 
nature of the first potential (a 4: 0) which results 
in considerably greater values of its higher deriva- 
tives as compared with those of V/y u and V/cou 1. 

The second-rank coefficients B2o/as correlate 

Table 3 
Experimental [4,8,9] and calculated ratios of the 6th-order 

coefficients B66/B6O 

Tb Dy Ho Er Tm Theory Theory 
(4) ~ (5) 

Mg 77/8  8.5 9.2 11.1 8.6 9.5 10.0 
Sc - 9.6 8.5 10.2 - 9.1 9.2 
Lu - 9.0 9.6 10.4 - 9.1 9.0 
Y - 8.2 10.3 11.1 - 9.6 9.5 

Table 6 
The CEF Hamiltonian 6th-order coefficients of the L u - H o  
system for various model potentials 

~// (4) EYu (4) [~/Coul (4) 
a = 2.407 a = 0 a = 0 
y =  -4 .00  y = O  7 = 0  
fl = 1.10 fl = 1.10 fl = 0 

B6o/7 s (K) 15.5 2.3 4.2 
B66/Ts (K) 141 20 38 
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both with the atomic volume v A of the matrix 
metal and with 8 - - ( 8 / 3 )  1 / 2 -  c / a ,  i.e. the devia- 
tion of the c/a-ratio from its ideal value. The 
dependence on 8 follows from the vanishing of 
BEo/otj by symmetry if ~ = 0, implying B2o/a J to 
be proportional to 8 to leading order. Accepting 
this dependence, it is found that the experimental 
results shown in fig. 1 are very well described by 
the following expression 

Bzo/as = C~RE)ZV~8 (6) 

with C(rE)= --0.015 K / A  9 for the average heavy 
RE-element. Both v A and 8 increase steadily 
through the sequence Mg, Sc, Lu and Y (see table 
1). The simple Coulomb potential predicts B2o/a g 

ZVA a& and is therefore unable to account for 
the observed variation with v A. In contrast, the CP 
(5) with the parameters given in table 5, for in- 
stance, accounts well for the experimental B2o/a g. 
The strength of the potentials considered, 
A / ( k f r )  3, measured relative to the Coulomb 
potential at the first coordination sphere, is about 
the same (--0.06) in all the four metals. This 
means that the strong increase in the magnitude of 
B2o/Ctj with v A originates from the oscillatory 
modulation of the CP (5) alone. Much the same 
can be said about the other CP (4). 

Let us proceed to the "weaker" peculiarities in 
the behaviour of the CEF Hamiltonian coeffi- 
cients, mentioned in the Introduction. The posi- 
tive magnitude of the ratio B4o/fl g in the model 
calculations was obtained only when choosing the 
"shielding factor" 04, 0 to be greater than one (see 
tables 4 and 5). This is inconsistent with the 
calculated value 04,0=0.045 for Tm 3+ [18]. At 
present we are not able to explain this disagree- 
ment. It might be necessary to take into account 
the direct Coulomb and exchange interactions be- 
tween the electrons of the RE ions and the con- 
duction electrons, when calculating the shielding 
factors on,,, instead of regarding the RE ion as 
"free".  It might also indicate that our implicit 
assumption that the phase ( a r  + y) in the poten- 
tials (4) or (5) has to be near to 3~r/2 at the first 
coordination sphere (see also ref. [13]), is not 
adequate. 

The magnitude of the coefficients Bn,~ (2) of 

the CEF Hamiltonian is determined by both the 
CP space distribution (by means of the, lattice 
sums A~m) and the product  of the two constants 
( r  n) and (1 - on,,), which depend on the proper- 
ties of the RE ion. Because of the assumption that 
the shielding factors on,, are constants, the calcu- 
lated coefficients B~o/b ~ (n = 2, 4, 6) presented in 
figs. 1-3 reflect the change of ( r  ~) for the heavy 
REM - a gradual decrease with the increase of the 
atomic number of the ion (see table 2). There are 
systematic deviations of some significance from 
the simple (rn)-scaling behaviour correlating 
mainly with the REM considered, which indicates 
a variation of on,~ through the series of heavy 
REM. However, some of the results, especially 
those obtained in the magnesium-alloYs, indicate a 
more complex interplay between the 4f- and the 
conduction electrons than we have been consider- 
ing in this analysis. The aim of the present paper 
is a qualitative analysis of the CEF Hamiltonian 
of RE ions placed in non-magnetic metallic sur- 
roundings, and one should treat the CP parame- 
ters given in tables 4 or 5 only as heuristic values 
satisfactorily describing the general regularities. 
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