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The ionic moments in the rare earth metals, which are due to the
‘unfilled 4f-shell, are coupled together indirectly through “the con-
duction electrons. In the RKKY-model the interaction between the lo-
calized spin and the spins of the conduction electrons is assumed to
be a delta function in space. This model for the s-f exchange inter-
action has been extended in order to take into account the distribu-
tion in space of the localized uf-electrons; and the orbital mcmentum
of the conduction electrons with respect to the ions. A detailed
discussion can be found in the review articles [1,2].

In most experiments and theoretical calculations on the heavy rare
earth metals the exchange interaction is described by an isotropic
Heisenberg interaction, proportional to the suseceptibility of the
conduction electrons and modified by a form factor because of the fi-
nite range in space of the s-f interaction. The presence of magnetic
anisotropy is then related to single ion anisotropy only. However, in
a study of the spin waves in the conical magnetic phase of Er,
Nicklow et al. [3] found that their results éould be explained only
if the Heisenberg Hamiltonian was augmented by a large anisotropic
two-ion coupling. In Tb, because of the ferromagnetic ordering of the
moments, explicit information about the anisotropy of the exchénge
interaction cannot be obtained from the spin wave dispersion relation
as in Er. However, the change of the spin wave energies, when apply-
ing an external field, permits a distinction between the isotropic
and anisotropic part. This technique has been used for determining
the magnetic anisotropy of Tb-10%Ho [4] and of pure Tb [5], by study-
ing the behaviour of the spin wave energy gap at zero wave vector.

The spin wave Hamiltonian is composed of two different kinds of
terms, single ion and two-ion contributions (%& and 3%1), where the
single ion term comprises the Zeeman energy and crystal field ef-
lfeCtS>}ng (including those of magnetoelastic origin)
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where Ji is the total angular moment on site i and H is the internal
magnetic field. The exchange coupling between the moments, which we
allow to be anisotropic, can be written

Hop=-1 ¢ K**(i3) 9% Je (2)

: i>j a J

where J? is the o-Cartesian component of Ji‘

Tor a ferromagnet with the magnetization and field along a b-axis
(perpendicular to the a- and c-axis) we have the following expression

for the energy of the spin waves

() = {[A(Q) + B I[AD - B(@ODE _ 8
where }
AlQ) + B(@) = J[K°C(0) - k°%(q)] + a[xPP(o) - K°C(0)]
' »+ Acp + Bpop + gHpH )

and
AlQ) - B(Q) = J[K*3(0) - K3 ] + J[xPPCo) - x¥¥(0)]
+ ACF - BCF + ngH (5)
All the parameters in egs. (4) and (5) depend implicitly on the
magni{hde and the dircction of the magnetization. The relative mag-
netization, ¢, is a function of temperature and field. The field de-

pendence of ¢ can be obtained from molecular-field theory as
do/dH = gUBJ(l i 0)/kBTN . . (6)

which is zero at low temperatures.

The field dependence of the square of the magnon energiés is then
ae?(q)/an = 2gugh(q) + (3¢2(q)/20) (do/dH) , 7

Thus, by measuring the field dependence of the magnon energies at
zero and finite wave vector, it is possible to determine the g-depen-.
dence of the aa- and cc-components of the exchange interaction.

The energy of spin waves propagating in the c-direction of Tb has
been studied by inelastic neutron scattering. The energies have been
measured as function of field applied along both the easy and hard
directions in the basal plane at three different'temperatures (4.2,
53, and 134 X). An external field of up to 100 kG could be applied.

The observed coupling between the magnons and the transverse pho-
nons propagating along the c-axis perturbs strongly the field depen-

dence of the magnon energies. In a previous analysis of the exper-
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imental results [5,6] the influence of this interaction wasvneglect-
ed, which together with the ambiguity in sign of B(q) (when B(g) be-
comes close to zero) led to exchange parameters which differed rather
much from those deduced in the present analysis. In this analysis
corrections have been made for the magnon-phonon interaction (more
details are going to be published elsewhere [7]).

In order to bring the exchange parameters in an appropriate form,
which allows a least squares analysis of all the experimental re-

sults, we define

I[KCC(0) - K] = K@)od D 4+ KD + Eq)e* Veossy  (8)
and :

J[K220) - KB(] = Kol D - XD 4 o@(q)ck(‘q)cosegy (9)

‘where ¢ is the angle between the direction of magnetization and the
easy axis (b-axis). There was no experimental evidence for distin-
guishing between the temperature dependence of the three anisotropy
parameters XKq), €(q) and D(q).

These four exchange parameters in connection with the two corre-
sponding magnetization exponents, which are shown in fig. 1-3, repro-
duce satisfactorily the field and temperature dependence of the mag-
non cnergies. Furthermore, the integrated intensities of the neutron
grdups behave qualitatively in accordance with the anisotropy de-
duced. An extrapolation of the exchange parameters up to 200 K (o =
0.6) produces a dispersion relation in the easy direction, which
agrees very well with the measured magnon energies. A more complete

and detailed description is going to be published [7].
Conclusion

The anisotropy of the exchange interaction between the hexagonal
axis and the basal plane in Tb, which at 4.2 K amounts to about 30%,
is much smaller than the anisotropy observed in Er. The relatively
large difference between the cc-components of the exchange interac-
tion in the easy and in the hard directions may be connected with the
corresponding anisotropy parameter deduced at zero wave vector [5,7]

(AM = - 1.4l 015'5). The rapid decrease of the anisotropy parameters

with relative magnetization, 012

, implies that the exchange interac-
tion is effectively isotropic above 150 K. Such.a high exponent does
indicate that the anisotropy depends on the distortion of the lattice
from hexagonal symmetry [6].
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1. The relative magnetization exponents j(g) and k(q).
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'Fig. 2. The isotropic paﬁt, Hq), and the anisotropic part, Xl(q), of
 the exchange interaction (represented by open and closed

symbols respectively).

Fig. 3. The basal plane anisotropy parameters &(q) (open symbols)
' and 9(q) (closed symbols).
The solid lines on all the figures are the results of the
least squares fitting to the experimental points. The cross

hatched regions show the standard deviations of the fits.
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