

Available online at www.sciencedirect.com

Physica C 408-410 (2004) 97-99

www.elsevier.com/locate/physc

Magnetic phase diagram of ErNi₂B₂C

A. Jensen ^{a,b}, K. Nørgaard Toft ^a, A.B. Abrahamsen ^a, N.H. Andersen ^{a,*},
J. Jensen ^b, P. Hedegård ^b, J. Klenke ^c, K. Prokes ^c, P. Smeibidl ^c, S. Danilkin ^c,
V. Sikolenko ^c, M.R. Eskildsen ^d, P.C. Canfield ^e

^a Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

^b Ørsted Laboratory, Niels Bohr Institute fAPG, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

^c Berlin Neutron Scattering Centre, Hahn–Meitner Insitute, D-14109 Berlin, Germany

^d DPMC, Université de Genève, 24 Quai E.-Answermet, CH-1211 Genève 4, Switzerland

^e Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

Abstract

The magnetic phase diagram of the superconductor $\text{ErNi}_2\text{B}_2\text{C}$ ($T_c = 11$ K and $T_N = 6$ K) has been studied by neutron diffraction as a function of temperature and magnetic field applied along the symmetry directions [0 1 0], [1 1 0] and [0 0 1] of the tetragonal crystal structure. A series of commensurate magnetic structures, consistent with a transversely polarized spin-density wave with modulation vectors $Q = n/ma^*(0.55 \le n/m < 0.60)$ and the spins along b^* , have been observed. The experimental data are compared with the results of a mean-field model that has been established from an analysis of bulk magnetization and zero-field neutron diffraction data. The model accounts for most of the observed features but fails to explain the occurrence of a small component $Q_{\delta} \approx -0.005b^*$ observed close to H_{c2} when the field is applied along [1 1 0].

© 2004 Elsevier B.V. All rights reserved.

PACS: 74.70.Ad; 74.25.Ha *Keywords:* Borocarbides; Magnetic phases; Neutron diffraction; Mean-field model

1. Introduction

In the borocarbides, RENi₂B₂C with RE = Dy, Ho, Er and Tm, superconductivity and antiferromagnetism coexist at comparable temperatures 6 K $\leq T_c \leq 16$ K and 1.5 K $\leq T_N \leq 11$ K [1]. ErNi₂B₂C has attracted attention because magnetization studies have indicated weak ferromagnetism below $T_c = 2.3$ K in zero field and because several magnetic phases develop in an applied magnetic field [2]. Neutron diffraction studies in zero field [3] have corroborated these results and confirmed the earlier findings [1] that the magnetic phases are characterized

^{*}Corresponding author. Addess: Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark. Tel.: +45-4677-4711; fax: +45-4677-5758. by a transversely polarized spin-density wave with an ordering vector $\mathbf{Q} \approx 0.55 \mathbf{a}^*$ (or \mathbf{b}^*) and the spins lying in the basal plane of the tetragonal crystal structure. If $\mathbf{Q} = 0.5\mathbf{a}^*$ was a stable configuration the magnetic structure would consist of ferromagnetic sheets, and since the unit cell contains two Er-ions the stacking sequence would be double layers: up-up-down-down etc. However, nesting at the Fermi surface [4] results in phases with $\mathbf{Q} \ge 0.55\mathbf{a}^*$ and introduces phase slips in the stacking of the commensurate sequences.

Recently a mean-field model has been established and shown to account for most of the observed experimental data [5]. The model suggests that the magnetic transitions result from a series of structures with ordering vectors $\mathbf{Q} = n/m\mathbf{a}^*$ (or \mathbf{b}^*) with $0.55 \le n/m \le 0.60$. The present neutron diffraction study aims to establish the modulation vectors of the stable magnetic phases and to compare the results with the predictions of the

E-mail address: niels.hessel@risoe.dk (N.H. Andersen).

mean-field model. A detailed account of these studies will be published elsewhere [6].

2. Experimental details and mean-field model

A single crystal of approximate size $2 \times 2 \times 0.5$ mm³ was prepared as described in Ref. [7]. The neutron diffraction experiments were performed at BENSC using the E1 triple axes spectrometer and a 4 T horizontal cryomagnet for fields along [0 1 0] and [1 1 0], and the E4 two-axes spectrometers with a 14.5 T vertical cryomagnet for fields along [0 0 1]. Monochromator and analyzer crystals were pyrolythic graphite and typical collimations were 40–60 in., resulting in longitudinal and transverse resolutions between 0.005 and 0.010 rlu.

The mean-field model described in details in Ref. [5], includes crystal field parameters, RKKY-exchange, the classical dipole–dipole interaction, and a quadrupole coupling. Crystal-field and quadrupole parameters have been established from neutron scattering and X-ray experiments. The exchange coupling has been derived from a fitting of the bulk magnetization [2,7] and neutron diffraction data [3].

3. Results and discussion

Two stable structures have been identified with ordering vector $Q = 11/20a^*$ (or b^*) in zero field [5]. Above $T_c = 2.3$ K there is an equal number of up and down spins, but below T_c one of the spin directions becomes more populated, leading to weak ferromagnetism. At low temperatures the structures are squared-up and not sinusoidal as they are close to T_N .

A field applied along [010] results in the formation of two different domains. Since the spins are Ising like the most favorable domain has $Q = n/ma^*$. When increasing the field H more up-spins are formed. At 1.8 K, Q changes from 16/29 a^* in zero field to $4/7a^*$ in the field range between 7 and 11 kOe, and is followed by a change to 10/17 a^* for 11 kOe< H < 13 kOe. Above 13 kOe and below the paramagnetic transition at 20 kOe, Qreverts to $4/7a^*$. The transitions and phases change gradually with temperature and at 4 K the $4/7a^*$ phase appears only near 9 kOe and transforms into a phase with $Q \approx 18/31a^*$ for 11 kOe< H < 20 kOe. The transverse domain stays at $Q \approx 16/29b^*$ and decreases gradually in intensity as the field is increased. The H-Tphase diagram agrees with data derived from bulk measurements [2,7,8].

When applied along [001] the critical field for the antiferromagnetic phase is as high as ~ 170 kOe at 1.8 K. The phase diagram, studied in fields up to 120 kOe (the magnetic torque detached the crystal at higher fields),

shows a gradual change of Q from $\approx 11/20$ to $\approx 5/9a^*$ (or b^*) as the field and/or the temperature is increased.

Studies performed with the field along the [110] direction reveal a series of ordering vectors $Q = Q_p + Q_\delta$ as a function of field and temperature. The principal ordering vector Q_p along a^* or b^* range from $Q_p \approx 11/20$ to $\approx 18/31$ rlu, as shown in Fig. 1a. A peculiarity is the small, but clearly observable rotation of the principal ordering vector Q_p by an orthogonal component Q_δ , which occurs close to and above the superconducting critical field, H_{c2} .

The mean-field model has been a valuable tool in the interpretation of the neutron diffraction and the bulk magnetization data. It accounts for the stability of many of the observed phases; however, it fails to account for the small finite Q_{δ} shown in Fig. 1b.

Fig. 1. Magnetic phase diagram of ErNi₂B₂C with the magnetic field applied along the [1 1 0] direction. Single-phase regions are marked in (a) with their different values of the principal component, Q_p , of the ordering vector; remaining regions are multiphased. A small orthogonal component $Q_{\delta} \approx -0.005$ rlu develops in the streaked region of the phase diagram shown in (b).

Acknowledgements

The Danish Technical Research Council via the Framework Program on Superconductivity and the Danish Natural Science Research Program via DANSCATT support this work. The EU Commission under contract HPRI-CT-2001-00138 supports the neutron diffraction experiments at BENSC. P.C.C. acknowledges support from the U.S.D.O.E, W-7405-Eng-82.

References

- [1] J.W. Lynn et al., Phys. Rev. B 55 (1997) 6584.
- [2] P.C. Canfield et al., Physica C 262B (1996) 249.
- [3] S.-M. Choi et al., Phys. Rev. Lett. 87 (2001) 107001.
- [4] S.B. Dugdale et al., Phys. Rev. Lett. 83 (1999) 4824.
- [5] J. Jensen, Phys. Rev. B 65 (2002) 140514.
- [6] A. Jensen et al., Phys. Rev. B 69 (2004).
- [7] B.K. Cho et al., Phys. Rev. B 52 (1995) 3684.
- [8] S.L. Budko, P.C. Canfield, Phys. Rev. B 61 (2000) R14932.