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Abstract. Magnetisation measurements on the cubic alloy system HocY, -cSb at 1.6K are 
presented. The results obtained when the field is applied along the easy [loo] axis show the 
presence of an intermediate phase between the high-field, ferromagnetic and the low-field, 
antiferromagnetic phase in the Ho-rich alloys. First-order transitions are observed when the 
field is along the hard [110] or [ l l l ]  axes. The variation of the Nee1 temperature, TN, with 
Ho concentration, e, has been determined by magnetisation and electrical resistivity measure- 
ments down to c = 0.4, and the paramagnetic susceptibility has been measured as a function 
of temperature and concentration. A molecular-field model is developed which describes 
accurately most of the magnetic properties of the HocY, -cSb system. The two-sublattice 
calculations presented include the effects of isotropic and anisotropic bilinear pair inter- 
actions, acoustic and optical quadrupole couplings and the crystal field. The intermediate 
phase, present in an applied field along [loo] at 1.6 K ,  is predicted to be very similar to the 
flopside phase of HOP. At low temperatures, the direction of magnetisation is close to a 
[loo] direction but is found to tilt with increasing temperature in a similar way to that 
observed in DySb. The model predicts the occurrence of a second-order phase transition 
at TN = 5.7 K in HoSb followed by a tricritical-like transition at 5.4 K. This explains the 
anomalous behaviour of the magnetic neutron scattering observed by Taub and Parente, 
and it is consistent with heat capacity measurements. 

1. Introduction 

The rare-earth monopnictides crystallise in the simple NaCl structure and their magnetic 
properties are of considerable interest because the crystal-field effects dominate, but the 
two-ion couplings are sufficiently strong to give rise to collective phenomena at low 
temperatures. The rare-earth antimonides are metals (Hessel Andersen et al 1979a), 
and the conduction electrons are coupled to the magnetic 4f electrons of the rare-earth 
ions, as manifested, for example, in the temperature-dependent resistivity. The exchange 
interaction between the 4f electrons and the conduction electrons introduces an indirect 
coupling between the magnetic ions. To a first approximation this coupling is isotropic, 
but the presence of anisotropic terms is predicted whenever the 4f electrons possess a 
non-vanishing orbital momentum (Kaplan and Lyons 1963). These anisotropic terms 
are, in the present context, entirely equivalent to the magnetic dipole coupling. The 
isotropic exchange coupling is relatively weak in these compounds, whereas the magnetic 
moments are large, implying that the microscopic dipole field might be of importance, as 
first realised by Trammel1 (1963). The Coulomb scattering of the conduction electrons, 
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which produces indirect quadrupole-quadrupole couplings between the ions, seems to 
be just as important as the exchange scattering for explaining the magnetic contributions 
to the resistivity of TmSb (Hessel Andersen and Vogt 1979). Extending this result to 
HoSb we may expect that the electronic quadrupole coupling contributes to the magnetic 
energy by terms of the order of 10% of the exchange contribution. This is of the same 
order of magnitude as the quadrupole couplings induced by the magnetoelastic inter- 
action in HoSb, due to the strain dependence of the crystal field (Mullen et a1 1974, 
Luthi et a1 1977). 

An estimate of the crystal-field parameters of HoSb may be obtained by interpolation 
between those determined in other rare-earth antimonides. This procedure gives a value 
of the parameter x (Lea et a1 1962) which is close to the value xc = $, at which the six 
(lowest) levels, consisting of the rl, ry), and rL2) become degenerate. This arrangement 
of the crystal-field levels leads to a number of special magnetic properties first considered 
by Uffer et a1 (1974) and later discussed at length by Kim et a1 (1975, 1976). 

HoSb orders antiferromagnetically with a Nee1 temperature, TN, of about 5.4 K. 
Neutron diffraction measurements (Taub and Parente 1975) indicate a continuous 
variation of the order parameter, corresponding to a second-order transition, but the 
results show an anomalously large intensity of magnetically scattered neutrons above 
5.4 K. HoSb is a type-I1 antiferromagnet composed of ferromagnetic (1 11) planes, with 
the moments of adjacent planes oriented antiparallel. At low temperatures the magnetic 
moments point along a [loo] axis (Child et a1 1963), but it was suggested that the 
moments were tilted slightly in a direction away from the cube diagonal. 

Here we shall report an extensive study of the ground state properties of Ho,Y -,Sb. 
In accordance with the virtual crystal approximation, we assume that the random 
replacement of Ho ions with the fraction 1 - c of non-magnetic Y ions only introduces 
a uniform scaling, proportional to c, of the interaction between the Ho ions, leaving the 
crystal-field parameters unchanged. The analysis of the magnetic part of the resistivity 
in the equivalent system of Tb,Y, -,Sb by Hessel Andersen et al (1979a) indicates that 
this simple model is a valid approximation. The magnetisation measurements performed 
on HocY, -,Sb at 1.6 K, with the field applied along the three main axes, whikh we shall 
present in Q 2, show clearly the importance of the anisotropic two-ion couplings. Com- 
bined with the other experiments these informative results made it possible to establish 
a detailed model for the magnetic properties of HoSb. In Q 3 we present the two-sublattice 
model and the details of the molecular-field (MF) calculations used in the comparison 
with experiments. Finally, we make some concluding remarks in $4, and discuss 
the implications of the present model for the understanding of other rare-earth 
monopnictides. 

2. Experiments 

Single crystals of HocY, -,Sb were prepared in a way similar to those of Tb,Y -,Sb, as 
reported by Hessel Andersen et a1 (1979a). The crystals were examined by the electron 
microprobe technique. Contrary to the case of the Tb system, the final concentration of 
the Ho ions always turned out to be close to the starting value, and no concentration 
gradients over the samples were observed. The concentration of Ho ions in the different 
crystals was chosen so as to cover uniformly the whole range 1 2 c > 0. 

The initial susceptibility was determined experimentally by the Faraday method in 
the temperature range between room temperature and 1.6 K on a sample consisting of 
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Figure 1.  The inverse susceptibility of Ho,Y, -,Sb 
in the dilute cases and at low temperatures. The 
full curves in this and the following figures display 
the theoretical results. 
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Figure 2. The slope of the inverse susceptibility 
versus T as a function of the concentration of 
Ho ions. 1/x is found to depend linearly on T in 
the range 1G300K and the slope is expressed in 
terms of the square of the effective number of Bohr 
magnetons per ionic unit (Ho,Y -,Sb). 
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Figure 3. The paramagnetic Curie temperature, 
O,, as a function of c determined by the linear 
temperature dependence of 1/x in the range 10- 
300K. 0, is determined experimentally with an 
uncertainty of 1 K at all the concentrations. 

several single crystals. In figure 1 are shown the low-temperature results for the most 
dilute samples (c  = 0.05, 0.1, and 0 2 )  reflecting almost exclusively the single-ion be- 
haviour of the Ho ions. The full curves on this figure and all the following ones are the 
results of the calculations presented in the next section. Within the experimental accuracy, 
the inverse susceptibility was found to be a linear function of T between 10-300 K for all 
the values of c. In figure 2 we have plotted the slope of the inverse susceptibility versus T, 
converted to the square of the effective number of Bohr magnetons per ionic unit, 
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P:ff. We note that the result is very close to that expected for free Ho ions, namely 

Pf,,, ion = c g 2 J ( J  + 1) = 112.5~ 

with g = 2 and J = 8 for Ho3+.  The other quantity which characterises the linear part 
of the inverse susceptibility is the paramagnetic Curie temperature, 8,. The experimental 
results for 8, are displayed in figure 3; the uncertainties are of the order of 1 K in all 
cases. For the Ho-rich alloys 8, is negative, as might be anticipated for an antiferro- 
magnetic system. However, 8, does not approach zero in the dilute limit, which can only 
be interpreted as a genuine crystal-field effect. 

The low-temperature results for the susceptibility of the Ho-rich alloys showed 
clearly the onset of antiferromagnetic ordering by displaying a maximum around the 
ordering temperature. In order to study this phase in more detail we made systematic 
measurements of the bulk magnetisation as a function of magnetic field by using a 
moving sample magnetometer. In figure 4 we show the magnetisation per Ho ion of 
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Figure 4. The bulk magnetisation of Ho,Y, -,Sb parallel to the field applied along an easy 
[ 1001 axis as obtained at 1.6 K. The results are expressed in terms of Bohr magnetons per 
Ho ion. For clarity the magnetisation curves for the various values of c are shifted by a 
multiple of 3pB with respect to each other. The thin lines indicate the saturation value of 
lop(, for the different concentrations. The experimental results for c = 0.5 are omitted, be- 
cause it was not possible to produce single crystals of sufficient quality in this case. H ;  and 
Hf show the positions of the two first-order transitions calculated to occur in HoSb. 

At fields smaller than HT the moments on the two sublattices both have a large component 
perpendicular and a small one parallel to the field, the perpendicular components being 
oriented antiparallel. The phase present above Hf is calculated to be purely ferromagnetic. 
According to the calculations the stable configuration in HoSb at the intermediate fields is 
the flopside spin structure of HOP, but slightly distorted. 
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Ho,Y, -,Sb, parallel to the field applied along an easy [loo] direction at 1.6 K. The 
results are given for values of c ranging from 0.3 to 1.0. For clarity the magnetisation 
curves for the different values of c have been shifted by a multiple of 3pB with respect to 
each other. The thin lines indicate the saturation value of lopB for the different con- 
centrations. The experimental results obtained for c less than 0 3  are not shown. Except 
for a small change of the initial susceptibility, as determined from figure 1, these dilute 
crystals gave results which were identical to those obtained for c = 0.3. 

The most remarkable feature of these magnetisation curves is the indication of an 
intermediate phase in the Ho-rich samples, in which the magnetisation is close to 
5pa/ion, i.e. half the saturation value. It is very tempting to associate this phase with the 
flopside spin structure of HOP, which was determined from neutron diffraction measure- 
ments by Child et al (1963). In this structure, the moments are directed along a [loo] 
direction, and the adjacent ferromagnetic (1 11) planes have the moment directions at 
right angles to each other. Therefore there is a net ferromagnetic component of the 
moments parallel to a [ 1101 direction and a net antiferromagnetic one perpendicular 
to that direction. As discussed in the Introduction, the value of the crystal-field parameter 
x is presumably close to x, = 5 in HoSb, which is also the case for the Ho ions in HOP 
(see for instance Furrer and Kaldis 1975). If x = x, a very simple basis may be chosen for 
the wavefunctions of the six degenerate levels of the crystal-field Hamiltonian, namely 
lJz, = J) where z’ is parallel to any of the six equivalent [OOl] directions (Kim et al 
1975). This means that in the limit of zero temperature the moments in the ordered 
phases of HoSb or HOP are strongly confined to be along a [ 1001 direction and to be of 
maximum magnitude, corresponding to an ionic ground state close to one of the 
lJz,  = J) states. As a first approximation for HoSb we may assume the two constraints 
to be strictly fulfilled, and T = 1.6K may be considered as being close to the zero 
temperature limit (for c = 1). In terms of this simplified model the magnetisation curve 
in figure 4 for c = 1 would consist of entirely straight lines, the moment per Ho ion 
parallel to the field being equal to 0, 5pB, or 1 0 h  in the respective cases of the antiferro- 
magnetic, the flopside, or the ferromagnetic phases, which corresponds quite well to the 
observed behaviour. In this model the two values of the field, HT and H:, separating the 
three phases are simply related to the two-ion couplings, as discussed in the next section, 
and it is easily seen that for vanishing two-ion anisotropy HT and HT coincide, implying 
that the difference is a direct measure of the two-ion anisotropy energy which favours the 
flopside structure. Pursuing the model further, we should expect a related behaviour of 
the magnetisation when the field is applied along a [ 1101 or a [l 111 direction. In these 
cases the two possible phases are the antiferromagnetic one and the flopside structure, 
neglecting the possible existence of more than two different sublattices. The bulk mag- 
netisation should be zero in the first one and for the flopside structure the average ionic 
moment parallel to the field should be 10/J2 pB N 7 . 1 ~ ~  and 10/J3 pB 3: 5 . 8 ~ ~  when 
the field is applied along [ 1101 and [ll 11 respectively. Further, the first-order transition 
between the two phases should occur when the field is equal to H: = H T / J 2  or HZ = 
HT x J3/2 respectively in the two cases. In figure 5 we show the experimental results 
for the magnetisation curves obtained for three values of c, when the field is applied in 
the [110] and [lll] directions at 1.6K. The two first-order transitions at H: and HZ 
are clearly resolved in HoSb, and the experimental ratio between the three critical fields: 
H::HZ:HT of 0*69:0.83: -1 is close to that predicted by the simple model above, 
namely 0.71:0.87:1, which is also the case with the high-field values of the average 
moments. 

As the final experimental study we have tried to establish the Nee1 temperature as a 
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Figure 6 .  The Nee1 temperature of Ho,Y, -,Sb as a function of e. The transition temperature 
at the different concentrations is determined experimentally by magnetisation and electric 
resistivity measurements, the results of which are shown by the triangles and the full circles 
respectively. By extrapolating the linear temperature dependence of the neutron scattering 
intensity at Q, observed in HoSb by Taub and Parente (1975) between 5.4 and 5.6 K, to zero 
intensity we estimate TN to be 5.70 005 K in HoSb. The full curves display the theoretical 
results of the MF calculation which predicts the transition to be of second order at concentra- 
tions larger than cT N 034, changing to first order at smaller concentrations. The continua- 
tion of the phase-line of the second-order transition is indicated by a broken line. At cT the 
system is tricritical. For c smaller than about 0.15 magnetic ordering is no longer possible. 
In the pha.se diagram we also indicate the calculated temperature T,, for the second-order 
transition to the non-magnetic quadrupolar phase described in the text. This phase is 
destroyed by the onset of magnetic ordering. 
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function of the concentration of the Ho ions. In this study we used two methods. The 
first consisted of measuring the bulk magnetisation at constant value of the applied 
field as a function of temperature. By extrapolating the temperature at which the maxi- 
mum occurred for different values of the applied field down to zero field, we obtained 
the results shown by the triangles in figure 6. As the second method we utilised the very 
rapid variation of the electric resistivity occurring just around TN, observed also by 
Taub and Williamson (1973) and Taub et al(1974) in pure HoSb, which is similar to that 
of Tb,Y -,Sb (Hessel Andersen et al 1979a). The results obtained using this method are 
denoted by the full circles in figure 6. A more detailed account of the resistivity measure- 
ments for the various concentrations will be published elsewhere (Hessel Andersen 
et al 1979b). Both the two methods are subject to an uncertainty of the order of a few 
tenths of a degree, and for the dilute crystals (c < 0.3) no sign of the possible occurrence 
of antiferromagnetic ordering above 1.6 K could be detected. 

3. Mean-field calculation of the ground-state properties 

In the Introduction we argued that various types of interactions here expected to be 
important for the magnetic properties of Ho,Y -,Sb. As discussed in the preceding 
section the magnetisation curves in figure 4 clearly indicate the presence of anisotropic 
couplings between the Ho ions sited on the two different sublattices. Therefore we base 
our calculations on the following two-ion Hamiltonian: 

*li = -3 y(Y& - rJ)JI ' JJ + yD('1 - 'J) ['('I, ' J , )  ('I] J J )  - J l  ' JJ] 

+ K(Y,  - rJ) 2 , m ( ~ ~  + '2 - ~ ( J J I  [ ' 2 , m ( ~ j )  + '2 - m ( ~ j ) I  
m =  - 2 , 0  2 

I # J  c 

J ,  is the total angular momentum of the Ho ion at the position Y,, 3,, is a unit vector 
along I", - Y,, ' z , m  denotes a second rank Racah operator (see for instance Lindgird 
and Danielsen 1974), and the x, y ,  and z axes are along the three crystallographic [OOl] 
directions. This Hamiltonian contains the bilinear and biquadratic interactions which 
might contribute to the MF Hamiltonian of HoSb. Besides the higher-order multipole 
couplings we neglect only the possible strain dependence of the two-ion terms, which 
probably are relatively of the same order of magnitude as the strains The self- 
consistent m equations were solved numerically, but in an estimate of the different 
effects of the interactions, the simple crystal-field model used in the preceding section is 
of great value. For instance, within this model the expectation value of (J,J,):'P is zero. 
This was not entirely true in the numerical calculations, and instead of neglecting 
K'( vI - Y,) we make the somewhat more realistic assumption that 

K'(r,  - Y,) = -K(Y, - vj). 

This choice implies that the quadrupolar coupling becomes particularly simple by being 
independent of a coordinate transformation within the angular momentum space, and 
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the quadrupolar part of (1) may be written in the condensed form 
+ 2  

( -llm d,,m(JI) a2, -,J,) = ; ( J L . J J ) 2  - y ( J  + 1)2. 
m =  - 2  

The two-ion Hamiltonian is treated within the molecular-field approximation. A 
further reduction of the complexity of the problem is attained by assuming that only two 
different magnetic sublattices are present. This assumption is valid if the different (1 11) 
planes within one of the sublattices are coupled ferromagnetically. An estimate shows 
that the strength of this coupling needs only to be of the order of one tenth of the total 
ferromagnetic coupling deduced for the ions within one of the sublattices. The MF 
Hamiltonian for a momentum operator belonging to sublattice 1, J , ,  can then be written: 

zMF(l)  = B,O(Ot + 50:) + B:(O,D - 210;) - g p B H .  J ,  + ~[%,~(1) - +(y;4,(1))]. (2) 
The crystal-field part is expressed in terms of the Stevens operators as usual. The cases 
in which c is less than one are included by scaling the two-ion part with the factor c in 
accordance with the simplest, virtual-crystal, approximation. The two-ion part of (2) is 

expressed in terms of the acoustic and optical coupling parameters, defined by 

B(Q) = 1 Y(r, - r j )  ex~[ iQ.  ( r I  - YJ]  'V -6Y(rz). 
j 

Q is the wavevector describing the two-sublattice structure of the alternating (1 11) 
planes perpendicular to Q, and only the couplings between the twelve nearest neighbours, 
j ( r , ) ,  and the six next-nearest neighbours, f ( r , ) ,  are retained. Similar expressions are 
valid for K(0) and K(Q), whereas f,(O) vanishes due to the cubic symmetry, although 
f = 2,(Q) is non-zero. The MF Hamiltonian for J ,  belonging to the other sublattice is 
obtained from (2) and (3) by interchanging the indices 1 and 2. We note that the reduced 
symmetry of the two-sublattice structure allows one more quadrupole term in (3), which, 
however, is similar to K'(Q) and therefore can be ignored in HoSb. 

In writing the anisotropic dipolar term in (3) we have made a particular choice for 
Q, namely Q = + ( x / a )  (1,1, l), where a is the lattice parameter. The part YE of YD, due 
to the pure magnetic dipole coupling, is determined from 

ari - r J )  = (gPLg)2 i Y ,  - +3. 

The lattice sums of the long-range dipole coupling at different wavevectors have been 
calculated by Cohen and Keffer (1955). In the present case 

f g (Q)  = [ ( ~ , u ~ ) ~ / u ~ ]  (- 12J2 + 0 + 8J6/9 + 3J2/2 + . . .) = - 14'46(gpB)2/~3 ( 5 )  
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or -5.28 x Ho ions ~ m - ~ ) .  Besides the 
microscopic dipole field the coupling also gives rise to the macroscopic Lorentz field 
(and the demagnetisation effects included in the internal field). It is easily seen that 
the Lorentz field only adds to the effective value of f ( 0 )  by $nN(gpB)2, equal to 
6.13 x 10-3meV. 

In the numerical calculations the MF Hamiltonian of the sublattice 1 is diagonalised, 
determining the (25 + 1) eigenvalues 8, and the corresponding eigenfunctions /v). 
The thermal expectation value of an operator A is 

meV (a = 6.13A or N = 1.74 x 

i 2 3 + 1  

where 

and the free-energy per ion belonging to sublattice 1 is 

F ,  = - kBT In Z ,  

The same scheme is applied to an ion belonging to the other sublattice. The (new) 
expectation values determined by (6) are introduced in (3), and the calculations are 
repeated until a self-consistent solution is attained. Except close to second-order phase 
transitions convergence is rapid. When comparing different solutions to these equations, 
the phase having the lowest free-energy per ion, F = i(Fl + F 2 ) ,  was chosen, as it is the 
most stable one. We note that, in such a comparison, it is important to include the last, 
‘constant’ term in (2). The procedure used here is equivalent to the one applied for the 
seven/eight sublattice structure calculation for Er (Jensen 1976). 

To illustrate the effects of the different two-ion parameters, we consider the free- 
energy F at T = 0, using the simplifying crystal-field model of x = x,. The crystal-field 
energies of the three different phases occurring when the field is applied along a [loo] 
direction are equal, whereas the two-ion and Zeeman contributions differ. The calcula- 
tion is straightforward and the two critical fields are given by 

(7) 
HT H; cJ[Y(Q) - f(O)l/gPB 
H: - HT 1: cJ{ -8, + +[K(Q)  - K(O)] (5 - +)’}/gpB. 

The mean value of the two fields is determined by the isotropic exchange interaction, 
whereas the flopside structure is stable (H: > HT) only because of the anisotropic 
couplings. The dipole contribution, (9, to f ,  is negative and contributes in HoSb to 
H: - HT by 5.8 kOe, which is to be compared with the experimental value of about 7 kOe 
(see figure 4). 

Because of certain effects discussed later on we shall not assume that K(Q) - K(0) 
is negligible, but instead assume that the electronic contribution, KJO), to K(0) can be 
neglected. Then K(0) is solely of magnetoelastic origin. In general, it is not possible to 
distinguish between intrinsic, electronic quadrupolar terms in the MF Hamiltonian and 
the crystal-field terms introduced by strain. An exception to this is that the magneto- 
elastic contributions to K(0)  or K(Q) are always non-negative, whereas there is no such 
constraint on the electronic terms. 

The magnetoelastic part, K,,(O), of K(0) is determined from the induced strain, 
Al/l, parallel to a field applied along a [OOl] direction in the paramagnetic phase of 
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HoSb. In figure 7 is shown the experimental result reported by Luthi et a1 (1977) com- 
pared with the calculated behaviour 

Al/l = E 3 3  = (+){[2N/3(c,i - c12)1Kme(o)}1 <a,,o).  (8) 
The field is assumed to be in the z direction, a2,0 = 3[3J; - J ( J  + l)], and at these 
temperatures the two sublattices are identical. The value of K,,(O) determined by this fit 
is the same as that deduced by Mullen et a1 (1974) from the temperature dependence of 

-1 oc 

-051 ! 1 ! 
2 L 6 8 10 12 1L 

Temperature [ K j  

Figure 7. The magnetoelastic strain, Al/l, induced parallel to a field of 15 kOc applied along 
a [OOl] direction in the paramagnetic phase of HoSb. The experimental results are those 
reported by Liithi et al(1977). 

e l l  - c12 in HoSb. By definition K,,(O) is equal to 4gt in their notation, and the isotropy 
relation, i.e. K,,(O) = -KLe(0), corresponds to gt being equal to i g i .  The expression (8) 
has a general validity, but in order to reduce the number of parameters, we assume that 

= K,,(O) -t K,,(O) = K,,(O). 
The remaining six parameters, four two-ion and two single-ion, occurring in the MF 
Hamiltonian, (2) and (3), can now be determined from the experiments. 

The two crystal-field parameters and f ( 0 )  determine the paramagnetic susceptibility 
of Ho,Yl -,Sb 

xC(0) = x o / P  - cf(0)xol (9) 
where xo is the non-interacting susceptibility as given by for instance Bak and LindgArd 
(1973). For convenience, x in this section is defined in units of (gpB)’. The three parameters 
also determine the high-field magnetisation in the ordered phase, and the crystal field 
is important for the variation of TN with e. For instance, if x were equal to x, then TN 
as a function of e, in figure 6, would be a straight line through the origin. The final values 
of the fitting parameters are given in table 1, and in figure 8 we compare our values for the 
reduced crystal-field parameters, A, ( r4 )  = Bt/p, and A , ( r 6 )  = Bz/y,, with those 
determined in other rare-earth antimonides. The crystal-field parameters deduced 
correspond to x = 0.70 and W = -0.23K in the notation of Lea et a1 (1962) which 
implies a level scheme having the non-magnetic doublet, ri’), as ground state. The 
splitting between the ground state and the ry’ triplet is 3*44K, and the rl singlet lies 
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Table 1. The MF parameters of HoSb (in mev) as defined in the text. These values for the 
parameters are used in all the calculated results given by the full curves in the figures. 

Parameter Value 

B: (-2.3 i 0.15) x 

B: (-4.3 * 0%) x lo-' 

bD -2.0 x 10-3 
K(0)  3.73 x 10-5 
WQ) 9.33 x lo- '  

f ( 0 )  (-1.19 0.1) x lo-' 
d(Q) (2.17 + 0.1) x lo-* 

12.0K above the ground state. The remaining levels all lie at much higher energies 
(9&125 K). With this level scheme the inverse single-ion susceptibility, 1/x0, is very close 
to a linear function of T between 1&300K, in accordance with the experiments. The 
slight curvature of l/xo causes uncertainties in the calculated values of P:,, = ~(113.1 
kO.1) and Op = -(1.53 & 0.1) K in the limit of c = 0. Because the ground state is non- 
magnetic, x0 starts to saturate at low temperatures (below 10 K) as shown in figure 1. 

10 ' l I ' I ' ' 1 I l l '  

I 
I 

€ T i 

I 
ZL 4 

0 Pr Nd Sm Tb Ho Er Tm 1L 0 Pr Nd Ho Er Tm 1L 

Number of Lf electrons 

Figure 8. The reduced crystal-field parameters, A,(r4)  = Bt /P ,  and A , ( r 6 )  = B : / y ,  
determined in various rare-earth antimonides, and displayed according to the number of 
4f electrons of the rare-earth ions. 

The results are obtained from: Pr:  Turberfield et al (1971); N d :  Furrer et al (1972); 
Sm: Mullen et al (1974); Tb:  Stutius 1969): Ho: this work; Er: Shapiro and Bak (1975); 
Tm: Birgeneau et al(1971). 

The anisotropic bilinear coupling, f D ,  does not affect the paramagnetic susceptibility 
at zero wavevector, but the staggered susceptibility is anisotropic 

where i or 1 1  indicates the component perpendicular or parallel to Q. The signs of the 
dipole contribution, j: ,  and of H: - HT both indicate that 8, is negative, and therefore 
that x;(Q) > x;,(Q). Considering only this possibility, the divergence of x",Q) at the 
temperature Tx, determined by 
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10- 

c ( f ( Q )  - $,)Xo(T = TN) = 1 (1 1) 

implies the presence of a magnetically ordered phase below this temperature. There 
exist two possibilities, either that a second-order magnetic transition occurs at TN, or 
that the magnetic ordering is already finite at this temperature, in which case the transi- 
tion to the paramagnetic phase at higher temperatures is of first order. In the case of the 
second-order transition the ordered phase, just below TN, is antiferromagnetic, Q = (n/a) 
(1. 1, 1) or the equivalent choices, with the moments lying in the (1 11) plane perpendicular 
to Q. The possible existence of a quadrupolar ordered phase above TN can be included 
by determining x,, in the presence of the quadrupolar field. The various possibilities have 
been discussed extensively by Uffer et a1 (1974) and Kim et a1 (1975, 1976) in the ferro- 
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Figure 9. The sublattice magnetisation, (pi, of 
HoSb calculated as a function of temperature. The 
broken line shows the experimental results de- 
duced from the intensity, I ,  of magnetically 
scattered neutrons at the wavevector (./a) (1, 1, 1) 
as measured by Taub and Parente (1975), 
lpl x JI/sin $. Close to TN these results include 
the effect of critical scattering of the neutrons. The 
full circle denotes the low-temperature result of 
Child et al(1963). 

F iyre  10. The temperature dependence of 
( G 2 ,  o ) / J ( J  - 9 calculated in HoSb. The quadru- 
pole moments of the two sublattices are equal. 
The z axis is fixed to be along the [OOl] direction 
defined in figure 11 in relation to-the angle $. This 
choice implies that (82,2 + 02, vanishes 
identically, and the remaining off-axis components 
are all very small. 

magnetic case which is equivalent to the antiferromagnetic one if 2, vanishes. Neglecting 
quadrupolar couplings they find that if x = x, then the transition is just at the borderline 
between a first- and a second-order transition, i.e. the system is tricritical at T = T,. 
When K(0) is finite they determined the transition to be of second order if K(0)  is negative, 
but of first order if K(0) is positive (Kim et a1 1975). K(0) contributes to the energy of both 
the ferro- and antiferromagnetic phases, whereas the term due to K(Q)  vanishes in these 
structures. In the present case x is slightly less than x, which necessitates a few modifica- 
tions (see also Kim et a1 1976). Again neglecting K(0) and f ,  we find the transition to be 
of second order in the Ho-rich alloys, but of first order when the ordering temperature is 
below about 1.3 K. In the dilute limit the non-magnetic crystal-field ground state destroys 
the tendency for magnetic ordering. The introduction of K(0)  equal to K,,(O), which is 
positive, causes the transition in HoSb to be of first order with a discontinuous change of 
the moments by about 6pg (see also Uffer et a1 1974). Such a strong first-order behaviour 
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is not consistent with the neutron diffraction measurements of Taub and Parente (1975). 
However, the introduction of a finite f ,  has important consequences on the phase 
transition in the antiferromagnetic case, as suggested by the appearance of 2D in (10) 
and (11). In fact, choosing f ,  equal to -2.0 x meV gives a temperature depen- 
dence of the magnetisation which is very close to that determined from the experiment 
of Taub and Parente. In figure 9 we show our final results for the sublattice magnetisation 
in HoSb as a function of T, compared with the square root of the intensity of magnetically 
scattered neutrons at wavevector Q (Taub and Parente 1975). The similarities between 
the calculated and experimental behaviour are striking, and the minor differences are to 
be expected as an inherent effect of the MF approximation. This agreement allows us to 
put confidence in the behaviour predicted by the present MF model for HoSb. The theoreti- 
cal model predicts a second-order transition at TN = 570K followed by a very steep 
increase of the magnetisation around TE, = 5.4K. In the interpretation of their results 
Taub and Parente associate the temperature TE, with the ordering temperature, and the 
magnetic intensity above this temperature they considered to be due to an anomalously 
large critical scattering. Associated with the transition at TE, they observed a modification, 
due to a magnetoelastic strain, of the nuclear (111) reflection, which in our model is 
consistent with the strong increase of (a,, o> occurring at this temperature and shown 
in figure 10. 

Taub and Parente could not detect any discontinuous change of the order parameter 
in HoSb. Further, Mullen et a1 (1974) observed a 40% softening of c l l  - c12 close to 
TN, which indicates that the transition is (close to) second order. The strong modification 
of c l l  - c12 occurring in the paramagnetic phase can be explained in a random-phase 
(RPA) model only by the introduction of a strong electronic enhancement of the quad- 
rupole susceptibility, and in their analysis Mullen et a1 deduced a (g')' corresponding to 
a value of K,,(O) five to six times larger than K,,(O). In the paramagnetic phase time- 
reversal symmetry implies that the magnetic contribution to a quadrupole susceptibility 
at zero frequency vanishes within RPA. However, this argument does not eliminate higher- 
order magnetic contributions and close to a second-order magnetic transition the critical 
fluctuations limit the usefulness of the RPA. In fact, the situation just below TN in HoSb 
has the easy-plane resemblance to the HCP ferromagnet To, in which case c66 is finite 
only because of the hexagonal anisotropy (Jensen and Palmer 1979). The symmetry 
differs in the two cases, for instance the c l l  - c12 and the c44 modes should be affected 
in a related way by the magnetic ordering in HoSb, but the mixing with the c44 mode is 
strongly opposed by the large anisotropy of the quadrupole susceptibility. The three-fold 
axis normal to a (111) plane implies that only B: gives rise to a very small anisotropy 
within this plane, the negative sign of B: favouring a [Ti21 direction. In contrast, B t  
produces an anisotropy field tending to pull the moments out of the (11 1) plane towards a 
[OOl] axis. The symmetry of the magnetic phase just below TN predicted by our model 
indicates that c1 - cI2 might be strongly reduced due to magnetic effects, which should 
also be reflected in the behaviour above TN. We therefore propose that the softening of 
cI1 - cI2  in HoSb close to TN, is due to critical magnetic fluctuations rather than to a 
large electronic quadrupole coupling. In fact, the large value of K,,(O) deduced by Mullen 
et a1 (1974) from the temperature dependence of c l l  - c12 is incompatible with the 
present analysis. 

Because of the crystal field the angle *, between the direction of the magnetic moments 
and the [l 113 axis, changes with temperature. I) starts to deviate from 90" immediately 
below TN, due to the effect of B t  mentioned above. As shown in figure 11, $ changes 
rather abruptly at TE,. This rapid variation of t+b may serve as the most precise definition 
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of TA. Within the accuracy of the numerical calculations no discontinuous change of $ 
was detected, but a precise determination of the nature of this transition is difficult to 
achieve. Below Ti the magnetic moments still make a finite angle with the [OOl] 
direction, but this becomes very small, - 2", below 3 K. At all temperatures the moments 
are confined to the plane defined by the [Ti21 and [OOl] axes. This confinement is mainly 
due to E:, and as mentioned above it is very weak close to TN. The calculated temperature 

I I 1 I I I l l  
1 3 L 5 I I  6 

femperature ( K )  Ti TN 

Figure 11. The angle tj between the direction of the magnetic moments (in one of the two 
sublattices) and Q, chosen to be along [l l l] ,  calculated as a function of temperature in 
HoSb. At all temperatures the magnetic moments are confined to the plane defined by the 
[Ti21 and [OOl] directions corresponding to t j  being equal to 90" and 54.74" respectively. 
Tk is considered to be defined by the abrupt change of I) displayed on the figure. The position 
of this transition is also marked on the preceding figures 9 and 10. 

dependence of the magnetisation vector in HoSb, which is given by figures 9 and 11, is 
very similar to that of DySb determined from neutron diffraction measurements by 
Felcher et a1 (1973). DySb and HoSb have many features in common, the most significant 
difference being that K(0) is relatively larger in DySb, so that the transition at TA is 
instead a first-order transition between the paramagnetic and antiferromagnetic regimes. 
Felcher et a1 proposed that the unusual behaviour of the magnetic moment in DySb is 
produced by the dipole coupling, in agreement with the present model (see also the ab- 
stract by Rhagavan and Levy 1979). 

In the fit we use the indication from the neutron data in figure 9 that Tf, is 5.4 K. TN 
is considered to be determined partly by these data and partly by the results given in 
figure 6, which presumably reflect the transition at TN rather than the one at TA. Using 
K(0) = K,,(O), then Tf,  and TN determine the values of fD and $(Q). Of the three 
parameters $(Q) is the most important one in determining TN as a function of c, which is 
shown in figure 6. According to the general discussion above, the change in nature of the 
magnetic transition occurring at c = cT N 0.34 is an effect of the r$') doublet ground 
state rather than of YD or K(0). At the concentration c = cT, TN and TA coincide and this 
system is tricritical. In contrast to the dipole susceptibility, the quadrupole susceptibility 
of the operator a2, o(or + 2 )  includes elastic contributions from the rL2) ground state, 
which implies that it diverges in the zero-temperature limit. Eventually, at low concen- 
trations, a second-order transition to a phase having a non-zero quadrupole moment 
occurs at T, before the magnetic transition. If TN is larger than T, this phase is quenched, 
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whereas the presence of a finite quadrupole moment has no essential implications for the 
magnetic transition, We find K(Q) to be larger than K(0) implying that the quadrupolar 
phase, indicated on figure 6, is characterised just below To by a non-zero (8z,o) the 
sign of which is opposite in the two different (1 11) planes. 

At low temperatures both (.Iz) and (8z,o) are close to their saturation values in 
HoSb, and the calculated moment of 9 . 6 4 ~ ~  at zero temperature agrees reasonably with 
the low-temperature result of 9 . 3 ~ ~  reported by Child et nl (1963). Figure 12 shows the 
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Figure 12. The sublattice moment of Ho,Y, -,Sb per Ho ion calculated as a function of c 
at 1.6 K and at zero temperature. 

calculated dependence on c of the magnetic moment at 1.6K and at zero temperature. 
The transitions occurring in the field-dependent bulk magnetisation of HoSb at 1.6 K 
(figures 4 and 5) fix the parameter K(Q)  and also f ( 0 ) .  The value of HT + H z  gives a 
more accurate determination of f ( 0 )  than that obtainable from the susceptibility 
measurements. The approximate expressions for the positions of the transitions, (7), 
are found to be quite closely fulfilled in HoSb. The calculated magnetic structures, 
occurring when a field is applied in the symmetry directions of HoSb, are similar to those 
expected on the basis of the x = x, crystal-field model. The anisotropy field due to 
f D  gives rise to slight distortions, which are already present in zero field (see figure 11). 
More important modifications are due to the deviation of x from xc and to the finite 
temperature, raising the possibilities of pulling the moments away from a [OOl] direction 
and of reducing their magnitudes. Besides the obvious effects, reflected directly in the 
magnetisation curves, these extra degrees of freedom were important in the following 
cases. In the structure calculated at high fields applied in a [ 11 13 direction, the moment of 
one of the two sublattices is directed almost along the [110] axis. The other modification 
we shall mention is of more significance. It is reflected in the calculated curves in figure 4 
for c less than 1 by smearing out the transition at HT. Instead of the flopside structure 
other structures turned out to be possible at the intermediate fields, of which the most 
important one is described as having the moments of both sublattices parallel to the field, 
along [OOl], but one of the moments being of reduced magnitude and, at low fields, 
directed opposite to the field. This structure allows a greater and smoother variation of 
the bulk magnetisation than the flopside configuration. It is only metastable when 
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c = 1, but at 0.9 it is the stable one between 10 and 13 kOe, and at the smaller concen- 
trations the (simple) flopside structure ceases to be stable. We shall not present a more 
detailed account of the different configurations which have been calculated, partly 
because they depend on the chosen parameters, for instance K(0) + K(Q), which only 
have minor consequences for the magnetisation parallel to the field. The comparison 
between the calculated and experimental magnetisation curves in figures 4 and 5 deserves 
one more comment. The transitions at Hg and H z  in HoSb are observed to be more 
sharp than those at HT and H:. The more gradual change occurring when the field is 
along the [OOl] axis might be due to the presence of metastable configurations of energies 
just above that of the ground state. The number of low-lying metastable states is limited 
in the two other cases, and also the difference in free-energy between the stable con- 
figurations occurring on either side of one of the transitions depends more rapidly on 
field around Hg and H: than around HT and H2. 

The final values for the parameters are given in table 1, and all the calculated results, 
shown by the full curves in the figures, are obtained using these numbers. The experi- 
mental evidence is not entirely sufficient to establish the MF model uniquely. The uncer- 
tainty is raised by the possible electronic contribution, KJO) to K(0) which is neglected 
in the fitting procedure. It is unlikely that KJO) is negative, but a positive contribution 
to K(0) of as much as K,,(O) itself cannot be excluded. If the value of K(0) is doubled, 
much the same results are obtained if the values of BD and K(Q) in table 1 are multiplied 
by about 1.4 and 1.3 respectively. The remaining parameters are not very sensitive to this 
change. If K(0) is increased by more than a factor of two major discrepancies start to 
develop. 

4. Discussion 

The magnetic properties of Ho,Y, -,Sb are found to be determined by a complex coopera- 
tion between the different types of interactions. These might be divided into three main 
categories: the crystal field, the isotropic exchange, and the anisotropic two-ion inter- 
actions. The competitive effects of the crystal field and the exchange coupling are the 
dominating ones for establishing the phase diagram, the strong confinement of the 
moments at low temperatures, the paramagnetic susceptibility, etc. Although the aniso- 
tropic couplings are an order of magnitude weaker than the isotropic one, they are clearly 
manifested in the experimental results. The neutron diffraction results of Taub and 
Parente (1975) for the sublattice magnetisation of HoSb indicates the occurrence of two 
magnetic transitions, at TN and TN, separated by only -0.3 K in our interpretation. The 
intermediate phase present in an applied field along a [OOl] direction in HoSb at 1.6 K 
can only be accounted for by the anisotropic two-ion interactions. Finally, the magnitude 
of the magnetoelastic coupling, K,,(O), is determined by the experimental results of 
Mullen et al (1974) and Luthi et al(1977). 

The fitting procedure, based on the two-sublattice MF Hamiltonian, gives a quite 
accurate determination of the crystal-field and isotropic exchange parameters, which all 
compare with those determined in other rare-earth antimonides. With the use of (4), the 
exchange parameters may be expressed in terms of a ferromagnetic nearest neighbour 
and an antiferromagnetic next-nearest neighbour coupling which are 

j ( v J  = 0.82 x 10-3meV f ( u J  = -3.62 x 10-3meV. 

If the Lorentz dipole-field contribution is subtracted from f ( O ) ,  then f ( v J  is reduced to 
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0.31 x meV. We note that the Lorentz field gives rise to an effective ferromagnetic 
coupling of the different (1 11) planes within any one of the two sublattices which is more 
than sufficient for maintaining the two-sublattice structure under all the circumstances 
considered. 

It is not possible to get a precise estimate of the three anisotropy parameters f,,, W O ) ,  
and K(Q) without further experimental evidence. The most informative experiment 
would be a study of the magnetic excitations in HoSb at low temperatures using inelastic 
neutron scattering. The quality of the fit which is obtained allows us to put a limit on the 
range over which the parameters may vary. YD is certainly smaller than the pure dipole 
contribution, Y:, by a factor lying between two and three. This difference can be pro- 
duced by the indirect exchange coupling and is compatible with the free-electron estimate 
of Kaplan and Lyons (1963). 

The quadrupole parameters, K(0) and K(Q), are both positive and they are of the 
same order of magnitude, K(Q) being somewhat larger than K(0). The order of magnitude 
estimate of the electronic contribution, given in the introduction, suggests terms of the 
size of Kme(O). However, this estimate should not be taken too literally, and these terms 
might be smaller. At least we find that K,,(O) represents the upper limit of K,,(O), and 
further that the magnetoelastic contribution to K(0)  is sufficiently large to account for 
the experiments. In the flopside structure the non-zero quadrupole moments are 
(b2,,CJz,)) z J ( J  - i), the z' axis being parallel to the magnetic moments on either 
one of the two sublattices, for example the [lo01 and [OlO] directions. A consideration of 
the strain modes, which are compatible with this configuration, shows that there is one 
at wavevector Q = (./U) (1,1, 1) induced by K,,(Q), the magnetoelastic part of K(Q). In 
this strain mode the Sb ions are displaced along the [lrO] direction, perpendicular to 
Q and in the plane of the quadrupole moments, corresponding to a normal mode of the 
lattice, i.e. a transverse phonon at L. We emphasise that the polarisation vector of the 
strain mode is not along one of the [Ool] directions as is sometimes stated. The remaining 
two orthogonal polarisation vectors, [110] and [OOl] in our example, are those describ- 
ing the uniform strain mode induced by K,,(O). We may add that the 'optical' quadru- 
polar phase below involves the other transverse mode at L of the Sb lattice, i.e. the 
one polarised along [112]. These two phonon modes are degenerate in the case of no 
ordering. In principle it should be possible to determine K,,(Q) by measuring the magni- 
tude, us,, of the transverse optical displacement of the Sb ions in the flopside configuration 
which is given by 

(12) 
where M,, is the mass of the Sb ions and cos, is the angular frequency of the transverse 
phonon mode at L. Using the frequency of 271 x 3.25 x 10'2s-' observed in NdSb 
(Wakabayashi and Furrer 1976) and K,,(Q) = K(Q) we get uSb N 1.1 x 10-3a N 

7 x 10- A in HoSb at low temperatures. The simplest model of an isotropic magneto- 
elastic coupling between nearest neighbouring Ho and Sb ions suggests that 

'Sb = L [3Kme(Q)/4M~b($b11'2 < '2,0> 

Kme(Q)iM,bmlba2 = Kme(O)(cl 1 - C12)/2N = -K6,(0)C4,JN 
and hence that Km,(Q) FZ 0.8 K,,(O) should be a factor of three smaller than K(Q). 

The positive, acoustic quadrupole coupling K(O), together with the crystal-field 
interaction, favours an alignment of the (quadrupole) moments along ap [OOl] axis, 
and it sustains magnetic ordering above Tv, determined by (11). These tendencies are 
opposed by the anisotropic bilinear coupling 2D, because it tends to pull the moments 
away from the [Ool] axis towards the (1 11) plane perpendicular to Q. The tilting of the 
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moments is accompanied by a simultaneous reduction of their magnitude. The relatively 
slow increase of the magnetisation calculated for HoSb below TN, but above T;1, is due 
to f ,  (see figure 9). If f D  is replaced by 2: then the stronger dipole coupling reduces 
substantially the magnetisation between T ,  and down to 2K, in comparison with the 
result shown in figure 9. Bak et al(1976) have discussed the critical behaviour of systems 
which have order parameters with IZ 2 4 components. They used Landau symmetry 
arguments to predict a first-order transition in the case of a type-I1 antiferromagnet 
where the magnetic moment lies along a [OOl] direction, corresponding to HoSb or 
DySb if 2D vanishes. If the ordered phase is a type-I1 antiferromagnet with the moments 
directed perpendicular to Q, as we expect to be the case in HoSb just below TN, then 
Bak et a1 predict the transition to be of first order instead of the second-order behaviour 
suggested by the MF approximation. In the latter case the first-order behaviour is dictated 
not by symmetry arguments but by the absence of a stable fixed point in Wilson’s 
€-expansion of the renormalisation-group equations. In DySb a MF model may easily 
account for the occurrence of the first-order transition, whereas the MF calculation 
predicts the transition to be of second order in HoSb, which should therefore be an 
adequate example for testing the €-expansion hypothesis of Bak et a1 (1976). However, the 
slow increase of the magnetisation between T, and TG (figure 9) indicates that the 
presence of a discontinuity in the order parameter close to ‘T; might be too small to be 
detected experimentally, (compare also with the discussion of Taub and Parente 1975). 

The magnetic specific heat, C,, has been calculated for HoSb. The MF result exhibits 
a strong peak centred at T;. The peak value is found to be finite, but the limited accuracy 
of the numerical calculations might disguise a possible divergence of C, at TL. The 
effect of the transition at Th is dominated entirely by the large peak at T‘, (critical fluctua- 
tions are not included). This calculated behaviour is in good agreement with the experi- 
mental result of Taub and Williamson (1973) and Taub et a1 (1974) who reported a 
temperature of 5 4 K  for the position of the peak, consistent with our interpretation. 
The calculated values of C, are slightly smaller than the experimental ones above T\, 
and the reverse below T;, which minor differences are characteristic of the MF approxi- 
mation. The calculation indicates that HoSb is very nearly tricritical at T ;  which is sub- 
stantiated by the critical exponents CI = 0.85 and CI’ = 9.54 determined by Taub et a1 
from their measurements of the specific heat and the temperature derivative of the 
resistivity respectively. These exponents compare with SI = i applying in the case of a 
tricritical system (see also the discussion by Uffer et al 1974). 

There are two aspects which might be relevant in a comparison with the magnetic 
properties of other rare-earth monopnictides. One is the determination of the strength 
of the different interactions in HoSb, which should be comparable in other rare-earth 
antimonides, with appropriate scaling. To some extent this might also apply to the other 
monopnictides. The other is the presentation of two examples in which the anisotropic 
two-ion forces are crucial. We have already discussed the implication of the comparison 
between our model for HoSb and the temperature dependence of the sublattice mag- 
netisation in DySb. The different couplings in HOP are presumably very close in magni- 
tude with those occurring in HoSb, with one exception. The stability of the flopside 
structure in zero field and at low temperatures requires that the parameters of HOP 
give a negative value for HT and a positive one for H4 when inserted in equation (7). 
The transition temperature in HOP is 5.5 K, which is about the same as in HoSb, and this 
is probdbly also the case with the anisotropy field, H,* - HT. Therefore we expect that 
the only significant difference between HoSb and HOP is a change of f ( 0 )  so that 
f ( 0 )  t f ( Q )  in HOP. A definitive model for the anisotropy field in HOP requires studies 
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like those we have performed on HoSb or an extension of the neutron scattering experi- 
ments of Furrer et al (1975, 1977). As first proposed by Trammell (1963) the magnetic 
dipole force might be sufficient for stabilising the flopside structure in HOP. 
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