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Abstract. We show that the application of the Holstein-Primakoff transformation in the 
spin-wave theory of an anisotropic ferromagnet implies contributions from the isotropic 
two-ion coupling to the energy of the uniform spin-wave mode. Including these contributions, 
the energies of the HF renormalized spin waves are deduced using the method of Lindghrd 
and Danielsen. The macroscopic resonance theory for the uniform mode is found to agree 
with the spin-wave theory if the magnetization is along a symmetry direction. Numerical 
results for the renormalization of the static anisotropy parameters of Tb and Dy are presented. 
The effect of the ellipticity of the moment precession is found to be smaller than reported 
previously. 

1. Introduction 

The temperature dependence of the magnetic anisotropy parameters in the ferromag- 
netic phases of the two rare-earth metals Tb and Dy has been the subject of a recent 
paper by Lindgird and Danielsen (1975), to be referred to as I. They used a generalized 
Holstein-Primakoff transformation (LindgArd and Danielsen 1974) to obtain an ex- 
pansion of the magnetic Hamiltonian in terms of spin deviation operators. The expansion 
was performed such that it accounts systematically for kinematic effects (well ordered 
expansion). A self-consistent Hartree-Fock (HF) decoupling was then utilized in a cal- 
culation of the renormalization of single-ion Stevens operators and the energy of the 
uniform spin-wave excitation. 

The renormalization of the macroscopic anisotropy parameters was found to second 
order in AM( T ) ,  the magnetization-deviation parameter, and b(T), which characterizes 
the non-sphericity of the moment precession. Their results represent an extension of the 
work of Brooks and co-workers (Brooks et a1 1968, Brooks and Egami 1973) who also 
found deviations from the classical 1(1 + 1)/2 power law to first order in b(T). 

In this paper we shall follow closely the approach of Lindgird and Danielsen (1975). 
However, it is shown that the two-ion coupling introduces an adjustment of the magnon 
energy gap at zero wavevector, removing the unphysical features of the Holstein- 
Primakoff transformation reported by Brooks (1 970) and present in the calculation 
in I .  Within the HF approximation, we find that the energy gap is determined strictly 
by the differential change of the free energy, which may be deduced from torque and 
magnetostriction measurements. This is in agreement with that deduced by Brooks 
(1970) using an alternative spin-operator expansion of the magnetic Hamiltonian. 
Here we discuss briefly the dynamic corrections to this result which seems to be of some 
importance in Tb (Houmann et al 1975). 
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Finally, we include a discussion of quantitative results obtained for Tb and Dy. 
These results are based on the correlation functions, A M ( T )  and b(T),  calculated in I .  
The temperature dependences of the anisotropy parameters are found to be closer to 
the l(1 + 1)/2 power law than reported previously. A calculation of the energy gap in 
Dy from static anisotropy parameters agrees with the experimental value, supporting 
the proposal of Egami (1972) of the importance of zero-point effects on the hexagonal 
anisotropy in Dy. 

2. Spin-wave theory in the Hartree-Fock approximation 

The two heavy rare-earth metals, Tb and Dy (HCP structure), are both ferromagnetically 
ordered at low temperatures. The axial anisotropy in the two metals is very large (Rhyne 
and Clark 1967, Ferron et al 1970) and the ionic angular moments are strongly confined 
to the basal plane. The non-cylindrical symmetry of the magnetic potential affects the 
normal modes and gives rise to deviations af the ground state from a fully aligned spin 
state at zero temperature. 

The magnetic Hamiltonian in these metals is known to be very complex (Jensen et a1 
1975). For simplicity we shall neglect the presence of two-ion anisotropy and thus 
consider the two-ion coupling to be isotropic 

where Ji is the total angular moment on site i. The presence of two ions per unit cell is 
inessential in this context and we shall consider the Fourier-transformed two-ion coupling 
to be described by one parameter,y(q), only. 

The magnetic anisotropy, including magnetoelastic anisotropy, is then due to the 
single-ion Hamiltonian 

sr = XCF + Xz, 

where X z  is the Zeeman term 

X z  = - g p B C J i .  H (3) 
i 

and XcF is the crystal-field Hamiltonian. We shall follow the notation used in I ,  and 
express XcF in terms of Stevens operators: 

r 1 

XCF = CL 1 Bpop(c) + BzOz(c) + i f m e .  
i .1=2,4,6 J i  

(44  

The expression for Xme (the magnetoelastic anisotropy) can be found in I (equation 4). 
The Stevens operators appearing in (44  are defined with respect to the c axis as the polar 
axis which also defines the polar angles 0 and cp. Rotating the quantization axis so as to 
be along the direction of magnetization, HCF may be written 

sCF = 1 [ K;"(e, unio;"(')] 9 1 and m even, (4b) 
i 1.m i 

(see I) where the coefficients K;" depend on the polar angles. 
The total magnetic Hamiltonian, X = X I  + XI,, is transformed into a well ordered 

power expansion in spin deviation operators by applying the method of the generalized 
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Holstein-Primakoff transformation (equation (26) of J) derived by Lindgird and 
Danielsen (1 974) : 

+ + +  &?, = E,  + 1 [ALz+u, + B:(a'a' + aiai) + C,U~?U'U,O~ + C,(ai U ,  U, U, -L U:ai~,ai) 
i 

(5a)  
where only terms to fourth order in the spin deviation operator are retained. The 
coefficients in (5a) may all be expressed in terms of K ;  defined by (4b). A similar expansion 
of .XI, gives 

+ + + +  + C,(a, a, ai a, + aiaiaiai)], 

= E,, + c 2 J [ 9 ( 0 )  - #(q)]a:a, + N - '  1 :Y(q)[a4+a:aqza4+4,-42 
4 44142 

+ ~41a4:a4a41+42-4 - 2a4: a;a4 1 + pq2 - ql. (5b) 
In order to calculate the thermal expectation value of the Stevens operators, (Op(c)), 
the total Hamiltonian is decoupled by means of a Hartree-Fock approximation which 
is the analogue of a random-phase decoupling of the equations of motion. The spin 
deviation operators obey the boson relations by which the following equation is 
deduced : 

x (1 - A M )  + N - ' Z  2 J [ j ( k )  - j ( k  - q)]mk 
k 

and 

B4(T) = B + 2JC,b + 6JC,AM + 12JC,b + N - '  1 J [ j ( O )  - Y ( k ) ] b k  
k 

- J [ f ( o )  - 8 ( 4 ) ] b  + N - ' C  2 J [ Y ( k )  - $(k - q)Ibk. (84 
k 

The use of the well ordered power expansion in spin deviation operators ensures that 
the approximation introduced by (5a) is well defined, as the terms neglected contribute 
to (8) only in higher power of AM and b. By the random-phase approximation, the 
Hamiltonian is transformed into one for which the elementary excitations are non- 
interacting renormalized spin waves, as (8a) is diagonalized by a Bogoliubov trans- 
formation 

&? = E ,  + Eq(T)a4f Cxq (9a) 
4 
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where the renormalized excitation energies are determined by 

Eq(T) = { [ A p - )  + Bq(T)ICAq(T) - Bq(T)1)1;2. (9b) 

This enables us to express the characteristic correlation functions (equation 7) self- 
consistently in terms of the final temperature-dependent energy parameters : 

as given in I (equation 32). nk( T )  is the boson population factor. 

for one term in (8c): 
At zero wavevector, all the two-ion contributions to A,(T) and Bo(?") vanish except 

A.B:(T) = N - '  J [ f ( O )  - f(k)]b,. 
k 

Using equations (8) and (lo), AB:(T) can be written 

Including this contribution, the temperature dependence of the energy gap at zero 
wavevector is changed in comparison with the expression given in I (equations (33) and 
(34)). Using the parameters 

(13) U, = 1(2 + l)/2 and S, = J(J - $) .  . . ( J  - i(1 - 1)) 

defined in I and C(1, m) given in table 2 in I, we find to first order in J - l ,  A-M and b 

+ K;C(1, 2)[1 - ( E ,  - 1)AM T ( E [  - $)b] f K:C(I,4)12b). (14) 

Notice that AMjJ and b j J  have to be considered as terms of second order because of the 
neglection of higher-order two-ion contributions in (11). In the derivation of (14), no 
first-order terms are neglected, as is done in equation (34) of I, in an attempt to obtain 
agreement with the Goldstone theorem. In the next section we show that the expression 
(14) for the energy gap fulfills this theorem, eg A, (T)  + Bo(?") vanishes identically in 
the case of pure planar anisotropy. 

The introduction of the two-ion contribution (11) to the spin-wave energy gap at 
zero wavevector has removed the unphysical features of the Holstein-Primakoff trans- 
formation present in the calculation in I, and which are also discussed by Brooks (1970). 
Brooks avoided this difficulty by studying instead the equations of motion of J f  and 
J- using a Wortis expansion of Jz. Because AB:(T) appears in (8c) as a term independent 
of q ,  it should be interpreted as a single-ion term, and a comparison with the work 
of Brooks shows that the occurrence of this term is a characteristic of the Holstein- 
Primakoff transformation. 
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3. Relationship between static and dynamic energy gap parameters 

In I, the thermal expectation value of a Stevens operator was evaluated by taking the 
trace over the non-interacting spin-wave states, (94. The details can be found in I ;  we 
shall only quote the result (equation 36): 

(Op(c)), = S,C(l, 0)[1 - a,AM + &(a, - 1)(1 + $-')(AM2 + i b 2 ) ]  

(Of(+, = S,C(I,2)(1 + $J-l)b[l - (a, - t - ;J-1)(1 + $ -  ) AM] 

(Of(c)), = S,C(I, 4)(1 + :J-l)6b2 (1 5 )  

where the Stevens operators are those defined with respect to the direction of magnetiza- 
tion as the polar axis, (4b). J-l is an independent expansion parameter, and the expres- 
sions are evaluated to first order in JW1 and to second order in AM and b. 

The magnetic anisotropy determined by torque or magnetization measurements 
is related to the change of the free energy, F(8, cp), as a function of the polar angles. In 
the case where the magnetic excitations can be considered to be non-interacting bosons 
(equation 9a), the free energy is reduced to 

F(T)  = E ,  + k , T x l n  [l - exp(-q/k,T)]. 
4 

As also shown by Goodings and Southern (1970), this implies that the first derivative of 
F(T) at constant temperature with respect to cp for example is 

The internal energy, U = (XI + is a function of (8,cp) and also of mk and b,, 
which depend implicitly on the angles. Substituting (1 5) into (4b) and calculating (Xll) 
within the same approximation, the following relations are easily derived : 

The introduction of these relations in (17) leads to the important equation 

BF BU - 
aq 10 =% l*:ml.i/l 

(19) 

which allows us to calculate the derivatives of the free energy from a knowledge of 
U(8,  cp). When the magnetization is along a symmetry direction, we have immediately 
from (1 9) 

because in these cases all the first derivatives with respect to the angles vanish identically 
(and Fop = 0). 

A phenomenological macroscopic theory of ferromagnetic resonance has been 
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developed by Smith and Beljers (1955) in which the energy of the uniform spin-wave mode 
is found to  be 

E 4 = ,  = gpBM-~[Fo,ep,,,p. - F;>J l '* ,  (21) 

where 0' and q' are angles defined with respect to a polar axis perpendicular to the 
magnetization M : 

M = NgpBJa = 1 - AM. (22) 
If magnetoelastic couplings are present, the second derivatives have to  be evaluated 
at constant strains (Jensen 1971), introducing a slight complication in the use of (21), 
as a knowledge of the magnetostriction coefficients is required besides the information 
obtained from magnetization measurements (constant stress conditions). 

The validity of (21) within the spin-wave approximation is easily shown in the case 
of an axial ferromagnet (Brooks and Egami 1973) as Bq(T)  and hence b(T) vanish 
identically. Here we shall consider the case of extreme non-cylindrical symmetry, 
namely the basal-plane ferromagnet (e' = 0 = in). A straightforward, but tedious, 
calculation of the second derivatives of U ( T ) ,  when the strains are kept constant, gives 

= NJ( l  - AM - ib)[A,(T)  - B,(T)] 

P a  = NJ( l  - A M  + ib)[A,(T)  + B,(T)] 
'q 6;mk.bk 

at 0 = in, within the approximations by which we have determined A,(T) & B,(T) 
(equation 14). When the magnetization is along a symmetry direction (cp = p?t/6),  we 
can make use of (20) to calculate the macroscopic value for the energy gap (21) and it is 
easily seen to agree with Eq= , deduced in the random-phase approximation, (1 1 c). 
If cp # p n/6, then Ua,, may differ from Fqa,  implying some limitation in the validity of 
(21). In principle, however, it is possible to extract these extra contributions to Fqq from 
the macroscopic measurements, allowing also a determination of the energy-gap 
parameters (23) in this case. 

The combination of (20) and (23) guarantees a disappearance of the energy gap when 
the magnetization is along a symmetry direction, in cases where where F,, or F,, are zero 
implying that the expression deduced for the energy gap, (equation 14), is in accordance 
with the Goldstone theorem. 

By the inclusion of all possible single-ion terms in (4) and by allowing AM and b 
to depend on (0, cp), the above result is a generalization of that obtained by Brooks 
(1970). The occurrence of the (1 ? i b )  factors in (23), which are not present in the cor- 
responding expressions deduced by Brooks, is connected to a slightly different definition 
of the two correlation functions, AM and b. In fact, we shall eliminate these factors from 
(23) by defining a new pair of energy parameters: 

A,o(T) * B,o(T) = (1 I: +b)[A4(T) f Bq(T) ] ,  (24) 
where Eq(T) is given by (5%) also in terms of the new parameters. Besides the removal 
of the (1 I: i b )  factors in (23) when A:(T) k Bi (T)  are introduced instead of A,(T) f 
B,(T), these new energy parameters have further advantages. The two-ion term, - J[f(O) 
- f ( q ) ]  b, in (8c) disappears in the corresponding expression for B,"(T), and more 
important, the Zeeman Hamiltonian contributes only to A,"( T).  This gives the trans- 
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formation (24) a physical meaning, as A:(T) k B t ( T )  are the parameters determined 
from the field dependence of the spin-wave energies (Jensen et a1 1975). If we define 
AMo and bo as the parameters determined by (10) when Aq(T) and Bq(T) are replaced 
by A;(T)  and B;(T), we have 

(25) 
The static and dynamic energy-gap parameters deduced in Tb seem to agree satis- 

factorily (Houmann et al 1975) with the exception of the six-fold basal-plane anisotropy 
of the unstrained lattice. A non-zero value of b does not introduce any difference between 
the static and dynamic energy-gap parameters (at least not to first order in AM and b), 
meaning that b is not essential for explaining the appearance of such a difference. It has 
to be a dynamic effect due to either the coupling to the conduction electrons or a break- 
down of the simple Hartree-Fock/random-phase approximations. 

In the rare-earth metals, the coupling between the angular moments on different 
sites, (equation l), is established via the spins of the conduction electrons which are 
polarized and hence contribute to the total magnetization. This may be included by 
defining an effective g-factor, geff = g + Ag, entering (3) and (22). Further, the interaction 
between the magnons and the conduction electrons causes a change of the magnon 
energies. In the random-phase approximation, the energy gap at zero wavevector is 
determined by 

(26) 
(see eg Giovannini et al 1966; in (26) the relaxation of the conduction electrons is 
neglected). Notice that equation (21) leads to the same result only if g = 2 (S-state ion). 
The presence of anisotropic two-ion couplings may strongly enhance the modification 
appearing in (26). The dynamic corrections to the random-phase decoupled spin waves 
(the off-diagonal terms in (6)) are expected to behave in a similar fashion, being pro- 
portional to the energy of the normal mode considered. The difference between the 
energy-gap parameters deduced in Tb may be accounted for by the modification intro- 
duced by the conduction electrons alone, as is shown by an order-of-magnitude estimate 
(Houmann et al1975). 

The scaling of the dynamic corrections to the energy of the normal modes, arising 
from either of the two mechanisms, implies that they vanish for the magnetic contribu- 
tions (Jensen 1971) to the long-wavelength phonons (zz zero energy). Within the present 
approximations, we find that the ‘soft mode’ behaviour expected for the transverse 
sound waves (which have their polarization vector in the basal plane and their propaga- 
tion vector parallel to an applied field along the hard planar axis) is exhaustively des- 
cribed by the static magnetostriction parameters (C and A )  and the value of the critical 
field (proper account has to be taken on the effects of the magnetic dipolar field). 

AM = AMo + $(bo)’, b = bo(l + $J-’  + +AMo). 

Eq=o = Eq=,/(l  + ; A d  

4. Renormalization of the static anisotropy parameters 

In this section we shall discuss the renormalization of anisotropy parameters as deduced 
from (15). If b is non-zero, then the Stevens operator expansion, (4a), and the usual 
definition of the magnetic anisotropy in terms of spherical harmonics for example is 
not directly related, as discussed in I and by Brooks and Egami (1973). Here we shall 
consider only the two combinations of anisotropy parameters, U,, and Uvv, which are 
relevant in determining the static value of the energy gap in the case of a basal-plane 
ferromagnet. For simplicity, we include only the two most important terms of the 
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magnetoelastic Hamiltonian, Xme in (4a). These are the 1 = 2, Bi  contribution to C and 
the 1 = 4, B: contribution to A (the y-strain parameters C and A are those defined in, 
for example, Houmann et al1975). Proceeding as in I, we deduce the following expressions 
for U,, and Uqu, at 0 = n/2: 

N-'U,, = N-'F,, = 6Bi0 - 608, + 210&, - 6Bi6 cos6cp + 2cYB;2Bi2 

+ cYBi4B14 - C~(~B;~B;, + B,B14) cos6cp 

(27b) N - '  Uqu, = 4c'(B2,) -+ 2 + 4 ~ @ : , ) ~  - 10c'Bf2Bi4 COS 6cp - 36B,+, COS 6q,  

where we used the following notation for the magnetostriction parameters: 

C ( T )  = Biz ,  A(T) = B,f, ,  C' = 4c6,/N. (27c) 

Based on the calculation by Callen and Callen (1965, 1966), we neglect the small kine- 
matic correction appearing as the J - '  factors in (15); and we further interpret (15) as the 
first terms appearing in an expansion of the following power laws: 

B ,  = BPS,o"'(l + 6)ql  + 62)3-"1'2, 

BL; = B;Sfa"l(l + g ) Y ( l ,  l'(1 + b"2)Y(L9 2' 

Bf: = B;S,o"'(l + 6)-"1-1(1 + 6 2 p - 1  2. 

6 = bo-*. (29) 

(28) 

The exponents y(1, 1) and y(1, 2) are given in table 1, and 6 is defined 

Except for the higher-order corrections, the replacement of b by 6 and the occurrence 
of the (1 + b2) terms, these are the results also deduced by Brooks and Egami (1973). The 
identification of power laws from the finite expansion (15) is not unique, however; (28) 
agrees with the low-temperature result obtained by Callen and Callen (1965, 1966) in the 
case where b can be neglected. At higher temperatures, Callen and Callen deduced a 
substantial kinematic correction to the 1(1 + 1)/2 power law, such that oar is replaced by 
B' in the limit of B -+ 0. The ogf dependence in (28) can be expected to be valid only at 
temperatures satisfying 

(304 
corresponding to a range for which 1 times the population of the boson levels are much 
smaller than the number of (25 + 1) physical states. It is not possible to include all the 
b2 terms of (15) in an expansion of a simple power law in (1 f 6), as is shown in (28) by 
the appearance of terms in powers of (1 + 6,). If we require this correction to be unim- 
portant by 

A M ( T )  = 1 - o(T)  $ 2/1, 

6(T)  $ 111, (30b) 

Table 1. The exponents y ( l ,  1) and y ( l ,  2) appearing in equation 128) 

L 1 2 
4 0 18 
6 - 5  2 .- 1 0 S. 
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then we may hope that this is the condition by which higher-order corrections in terms 
of powers of (1 + b"), n 2 3, in (28) can also be neglected. 

The characteristic correlation functions, A M o ( T )  and bo( T) ,  at zero temperature and 
as functions of temperature, have been calculated in Gd, Tb and Dy by LindgArd and 
Danielsen in I. Using their values in the case of Tb, we derived the zero-temperature 
values, C;, and effective power laws, bk, of the parameters in (28) defined by 

(31) 
and given in table 2, where we have included the small corrections of b(T) and AM(0)  
from (25). d(T) is the effective relative magnetization 

"f - B m S  C'td"" 
B l m  - 1 lm  

d = d(T) = M(T) /M(O)  Z 0 + AM(0).  (32) 
Table 2 shows that the deviations from the l(1 + 1)/2 power law are not very dramatic, 
in spite of the large value of b(T) used in the calculations. We remark that the terms 

Table 2. The zero temperature values, C;, and effective power laws, /3& ofthe static anisotropy 
parameters Bi. In the calculations we use AM(?") = 00064 + [l - B(T)] and b(T)  = 
0.0323 + 0.35[1 - d(T)], corresponding to A M o ( T )  and bo(?") deduced by Lindgird and 
Danielsen (1975) in the case of Tb. The effective power laws, P;, only vary by a few percent in 
the range 1 B > 0.8, and they are comparable with the classical Y ,  = l (1  + 1)/2 power law. 

1 m f c:m s:, a1 

0.2 
0 
4 
0 
6 
2 
4 
6 

1.01 
1.21 
0.96 
1.59 
0.79 
0.95 
0 7 8  
0.54 

2.6 
7.0 
9.6 

13.9 
21.6 

3.3 
12.3 
26.8 

3 
10 
10 
21 
21 

3 
10 
21 

proportional to b2 in the expansions of the power laws in (28) cannot be neglected, not 
even in the limit of zero temperature, because b(0) # 0 and the coefficients to b2 are of 
the order of a:. 

The large hexagonal anisotropy present in Dy may cause a significant pdependence 
of AM and b. When an external field is applied along a hard planar axis in Dy or Tb, 
then the angle 6 between the directions of the magnetization and the applied field is 
determined by the equilibrium condition (19): 

NgpBJoH sin 6 - iKZ(6) sin 66 = 0, 

N-'Kz((p) = 136B&(,((p) + 18~~B2'~(cp)B2~(cp) 1 .  

(334 

(33b) 

where KZ depends on the angle 6 if AM or b are pdependent:  

The parameter KZ deduced from magnetization measurements (Feron et a1 1970) is 
mostly determined by the value of the critical field, H c ,  at which 6 becomes zero. This 
transition is of second order only as long as 

KZ(hard) > - :KZ(easy), (334 
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Table 3. A: and B: are the energy-gap parameters of Dy at zero temperature (in units of 
meV). The two parameters are derived using the known value of Eq = o  (easy) and the anisotropy 
measurements by Feron et al(1970). The calculation performed by Lindglrd and Danielsen 
(1975) of AMo(0) and bo(0) in Dy (using a different value of B:) is then utilized in a variational 
calculation of AM(0) and b(0) given in the table. Using these parameters, we determined the 
relative zero-temperature values, C g ,  of KZ in the two cases in which the magnetization is 
along an easy and a hard direction. 

l 6  
~- 

A0 B: NO)  
_ _ _ _ _ ~ - ~  

Easy 3.68 - 1.80 00321 0.0168 0.746 
Hard 3.38 - 2.96 0.0068 0.0305 0,554 

assuming the pdependent part of Kz to be proportional to cos 6q1 only. If Kz is considered 
to be independent of cp, then the energy gap in Dy at zero temperature and zero field is 
calculated to be 2.6 0.4 meV (Brooks and Egami 1974, Houmann et al 1975) using the 
static anisotropy parameters determined by Feron et a1 (1970). Introducing the change of 
Kz estimated in table 3, K:(easy) z 1.35K;(hard) where Kz(hard) is the parameter 
determined by the magnetization measurements, we find E q =  &easy) E 2.9 meV. This 
number is in fair agreement with the experimental energy gap of 3G3.2  meV (Marsh and 
Sievers 1969, Nicklow and Wakabayashi 1972), supporting the proposal of Egami (1972) 
of the importance of zero-point effects in Dy. When the temperature is increased, the 
relative difference between Kz(easy) and Kz(hard) should decrease, implying that the 
energy gap deduced from the static measurements, without correcting for the q-depend- 
ence of K z ,  should approach the experimental value. This is the case as shown in figure 1. 
AM and b, and hence Kz, depend on the strength of the applied field. Corresponding to 
the estimate given in table 3, we find that Kz(easy) should increase by 3.1 per 100 kOe 

0 

' t  

Figure 1. The spin-wave energy gap at q = 0 as a 
function of temperature in Dy, measured by infrared 
resonance (3, Marsh and Sievers 1969) and by inelastic 
neutron scattering (+, Nicklow and Wakabayashi 
1972). The full curve displays the result obtained 
from the magnetization measurements (Feron et al 
1970) when neglecting a cp-dependence of Kz. The 
arrow points at the value deduced at zero tempera- 
ture when the estimated zero point change of KE, 
given in table 3, is included. 

Temperature (K) 
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and Kz(hard) by 7.5 % per 100 kOe, both at zero temperature, which numbers are some- 
what smaller than those estimated by Brooks and Egami (1974). 

At low temperatures, d(T) > 0.9, the parameters A M ( T )  and b(T)  used in the tables 2 
and 3 fulfill the conditions (30) for all values of 1 d 6. A much more severe limitation of the 
numerical results above is raised by the assumption of @(T)  being independent of q 
in the calculation of b(T). The measurements of Bt(T)  in Tb as a function of q parallel 
with the c direction (Jensen et a1 1975) have revealed a strong q-dependence of Bi (T)  
which is interpreted in terms of large anisotropic two-ion couplings. The q-dependent 
contribution to S:(T) arising from the isotropic two-ion coupling (the last term in 
(8c)) is entirely negligible in comparison with B:(T) (being smaller by a factor of 10 at 
least). The observed q-dependence of B,O(T) implies that the values of AM(0)  and b(T) 
used in the tables 2 and 3 are subjected to large uncertainties. More reliable values may 
only be derived when @(T)  has been determined in all symmetry directions. 

5. Conclusion 

In the spin-wave theory of an anisotropic ferromagnet (Bn # 0), the application of the 
Holstein-Primakoff transformation implies that single-ion contributions to the spin- 
wave energies are transferred to the two-ion part of the Hamiltonian. We included these 
contributions to the energy of the uniform spin-wave mode in a random-phase calcula- 
tion and obtained essentially the result deduced by Brooks (1970) using an alternative 
spin operator technique. The advantages achieved by the use of the method of Lindgiird 
and Danielsen (1 974, 1975) of a generalized Holstein-Primakoff transformation, in 
comparison with the one used by Brooks (1970) and Brooks and Egami (1973), are a 
more precise definition of the characteristic correlation functions, A M ( T )  and b( T),  
in terms of the spin-wave Hamiltonian, and the more systematic way in which kine- 
matics effects are encountered. 

We presented numerical results for the renormalization of anisotropy parameters 
in Tb and Dy which were based on the calculations of A M ( T )  and b(T) by Lindgiird 
and Danielsen (1975). Our results showed the effects of b(T) to be less drastic than re- 
ported in the previous papers. We pointed out that the numerical results can only be of a 
qualitative nature until the spin-wave parameter, Bt(T) ,  has been determined as a 
function of the wavevector along all the symmetry directions. 
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