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Magnetic ordering and excitations of Cu2Te2O5Cl2 are analyzed in terms of a tetramerized spin model for
the tetrahedral Cu clusters of spin 1/2. The mean-field model is able to account for the main properties of the
incommensurable magnetic structure observed by Zaharko et al. �Phys. Rev. B 73, 064422 �2006��. The
calculated excitation spectra show many similarities with the experimental neutron-scattering results. Close to
a magnetic Bragg point at 2 K, the theory predicts the presence of a quasielastic phason mode and an inelastic
amplitude mode at about 0.6 meV. This is in qualitative agreement with experimental observations of Prša
et al., but the amplitude mode is observed at the much higher energy of about 2.5 meV. This discrepancy is
puzzling since the tetrahedral Cu-spin system, in any other respect, behaves as a system of large local spins
coupled with each other in a three-dimensional fashion. Preliminary model calculations for the Cu2Te2O5Br2

system lead to the same conclusion.
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I. INTRODUCTION

The crystal structure of Cu2Te2O5Cl2 was determined by
Johnsson et al.1 It belongs to the tetragonal space group

P4̄ �No. 81� with a=7.621 Å and c=6.320 Å, and
the Cu ions are placed at the positions Cu-1 �x ,y ,z�, Cu-2
�1−x ,1−y ,z�, Cu-3 �y ,1−x ,−z�, and Cu-4 �1−y ,x ,−z�,
where x=0.731, y=0.453, and z=0.158 �in units of the lattice
parameters�. The crystal structure projected on the ab and ac
planes is shown in Fig. 1, and it contains clusters of Cu ions
aligned in tubes along the c direction. The four Cu ions lying
closest to each other form a distorted tetrahedron. The spins
of the Cu++ ions are S= 1

2 , and the system is ideal for study-
ing frustration effects due to intratetrahedral spin interactions
competing with the exchange interactions between spins on
neighboring tetrahedra. In contrast to the pyrochlore lattice
antiferromagnets, which are geometrically frustrated because
the tetrahedra are sharing corners,2 the tetrahedra formed
here are separate units. The high-temperature susceptibility
of Cu2Te2O5Cl2 approaches that of uncoupled spins, and at
low temperatures the susceptibility is reduced and goes
through a maximum at about 23 K.1 The maximum indicates
that the 16 spin-1/2 states of the Cu ions in each tetrahedron
are tetramerized so to create a singlet ground state separated
from the excited states by a gap of about 40 K.

The susceptibility and heat-capacity measurements clearly
indicate a transition to an ordered phase at a temperature of
about 18.2 K.3,4 The phase was anticipated to be a simple
ferromagnetic or antiferromagnetic ordering of the tetrahe-
dral cluster spins, but neutron-diffraction measurements by
Zaharko et al.5 surprisingly revealed a much more complex
situation—that the Cu spins in the Cl system were ordered at
the incommensurable wave vector Q= �−0.150,0.422,0.5�.
Recent diffraction measurements utilizing polarized neutrons
have led to a detail determination of the spin structure.6 The
ith tetrahedron is specified by the lattice vector Ri of the unit
cell in which Cu-1 and Cu-2 are lying. The ordered spin of
the Cu-� ion in this tetrahedron is then described by the
following equation:

�S�i� = S0�x̂ cos�Q · Ri + ��� + ẑ sin�Q · Ri + ���� , �1�

where ẑ is a unit vector along the c axis and x̂ is a unit vector
in the ab plane making an angle � with the a axis. Hence, all
the four ordered spins of a certain tetrahedron are lying in the
same xz plane, which spins rotate from one tetrahedron to the
next as described by the wave vector Q. The xz plane of the
moments is not perpendicular to Q, as in the case of a genu-
ine helix, however, the polarization is nearly perpendicular to
the projection of Q on the ab plane �Q makes an angle of
110° with the a axis�. At 2 K, the amplitude S0 is found to be
0.44 and � is about 14°, and assuming �1=0, the three other
phase angles are determined to be �2=13°, �3=−136°, and
�4=154°. Notice that the four Cu ions specified by �=1, 2,
3, 4 in Eq. �1� are all belonging to the same tetrahedron, but
only the Cu-1 and Cu-2 ions are lying in the unit cell speci-
fied by Ri. In Table III of Ref. 6, the Cu-3 and Cu-4 ions are
those belonging to the neighboring Cu tetrahedron along the
c axis but lying in the same unit cell as the two other ions.
This definition adds an extra 180° to the phases �3 and �4.

The lattice parameters a and c of the isostructural
Cu2Te2O5Br2 compound are increased by, respectively, 2.8%
and 0.9% in comparison with the Cl compound. The volume
of the tetrahedral Cu unit shows the opposite modification by
being reduced by about 3%. These changes imply that the
gap between the singlet ground state and the excited states of
the tetrahedral is increased, whereas the intertetrahedral in-
teractions are reduced. The effective intertetrahedral cou-
pling, responsible for inducing a magnetic ordering of the
singlet ground-state system, exceeds the threshold value by
about a factor of 2 in the case of the Cl system. The Br
compound is closer to quantum criticality, as the effective
interaction is here only about 15% larger than the critical
value. The Br compound is observed to order6 at 11.4 K at
the wave vector �−0.172,0.356,0.5� in a structure described
by Eq. �1� with an amplitude at 2 K of S0=0.20. The angle
between the x and a axes is now �=9° and the phase angles
are �2=22°, �3=−105°, and �4=134°.
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Here, I shall mostly concentrate on the Cl compound. The
mean-field �MF� model for describing the magnetic ordering
of this compound is developed in Sec. II. The magnetic ex-
citations predicted by this model and calculated within the
random phase approximation �RPA� are analyzed in Sec. III.
In Sec. IV, I present a condensed version of the similar
analysis performed on the Br compound. The results
achieved by the MF/RPA models of the two tetramerized
compounds are summarized in Sec. V.

II. MEAN-FIELD MODEL OF Cu2Te2O5Cl2

The bulk properties and the Raman-scattering results of
Cu2Te2O5Cl2 and of the Br compound were analyzed suc-
cessfully by Gros et al.7 and Jensen et al.8 in terms of a
tetramerized model for the four Cu spins of one tetrahedron.
The model in Ref. 8 is utilized here as the starting point for
the MF analysis. In accordance with the S4 symmetry of the
crystal, the Hamiltonian of the four Cu spins of one tetrahe-
dron is considered to be

Ht = J1�S1 + S2� · �S3 + S4� + J2�S1 · S2 + S3 · S4�

+ D1�cos �D�S1
aS3

c − S1
cS3

a + S2
cS4

a − S2
aS4

c�

+ sin �D�S1
cS4

a − S1
aS4

c + S2
aS3

c − S2
cS3

a�

+ cos �D�S1
bS4

c − S1
cS4

b + S2
cS3

b − S2
bS3

c�

+ sin �D�S1
bS3

c − S1
cS3

b + S2
cS4

b − S2
bS4

c�� , �2�

where S� is the SU�2� spin operator at site � with the com-

ponent S�
� along the � axis. The coupling parameters are

found to be

J1 = 40.9 K, J2 = J1, D1 = 0.03J1, �D = 55.6 ° . �3�

In the previous model the Dzyaloshinsky-Moriya �DM� an-
isotropy, D�� ·S��S�, was assumed to be dominated by the
term, where D�� is parallel to the c axis.8 Since then, the
plane of the moments has been determined to be perpendicu-
lar to the ab plane.6 In this situation the c-axis term may be
neglected in comparison with the present DM term, where
D�� is perpendicular to the c axis. The local symmetry indi-
cates that the intratetrahedral DM vector ��=1, 2 and �=3,
4� should be approximately perpendicular to the plane deter-
mined by r�−r� and the c axis.9,10 This is not an exact sym-
metry, and D�� is allowed to point in a somewhat different
direction in the ab plane by introducing a �D, which is dif-
ferent from the angle of 33.5° between the ab component of
r1−r3 and the a axis.

The total Hamiltonian includes Ht of each tetrahedron,
the exchange interactions between the single spins of each
tetrahedron and those of the neighboring ones, the Zeeman
term, and the classical dipole-dipole interaction,

H = �
i

Ht�i� +
1

2 �
�i,�j

Jij
��S�i · S�j − �

�i

2	BH · S�i

−
1

2
�2	B�2 �

�i,�j
�
�


D�
��i,�j�S�i
� S�j


 . �4�

S�i
� denotes the �th Cartesian component of S�i at the posi-

tion r�i and

FIG. 1. �Color online� The Cu2Te2O5Cl2 crystal projected on the ab and ac planes. The intratetrahedral interactions J1 and J2 are
indicated by the red and black lines, respectively. The intertetrahedral interactions between the central tetrahedron and its surroundings,
Ja−Jk, are indicated by colored lines according to the specifications to the right.
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D�
��i,�j� =
3�r�i

� − r�j
� ��r�i


 − r�j

 � − �r�i − r�j�2��


�r�i − r�j�5
. �5�

The dipole-dipole interaction is weak compared to the ex-
change, but it is anisotropic. The interesting feature of this
anisotropy term is that it predicts an orientation of the plane
of the moments close to that observed experimentally. How-
ever, in comparison to the DM term D1 of the order of a few
percent of J1, the classical anisotropy is of no importance
and may be left out of the model. The exchange-interaction
parameters Jij

�� considered in the model are defined in Fig. 1
and comprise seven different couplings Ja , . . . ,Jk. The total
number of model parameters is 11. The previous analysis
determines 3–4 of these from susceptibility, magnetization,
and Raman-scattering measurements.8 The properties of the
ordered phase �TN, Q, and the amplitude of the ordered mo-
ments� imply 3–4 more constraints. This leaves about 4 extra
degrees of freedom which have been utilized for various
purposes to be discussed below. In the model calculations,
the intratetrahedral interactions have been accounted
for in an exact way, whereas the intertetrahedral interactions
have been treated in the mean-field approximation,
S�i

� S�j

 	S�i

� �S�j

 �+ �S�i

� �S�j

 − �S�i

� ��S�j

 �, when i� j. The mag-

netic ordering is presumably incommensurable, but in order
to carry out the calculations I need to assume a commensu-
rable structure. I have considered various possibilities, and
the smallest, but still acceptably realistic choice, is a lattice
of 7�7�2 tetrahedra, in which case the ground-state wave
vector Q= �− 1

7 , 3
7 , 1

2 �	�−0.143,0.429,0.5� is reasonably
close to the experimental value. Introducing the MF approxi-
mation in Eq. �4�, the Hamiltonian of the ith of the
7�7�2 different tetrahedra in one commensurable period is
diagonalized and the thermal expectation values �S�i

� � are cal-
culated. This calculation is repeated until self-consistency is
attained. When the equilibrium configuration has been estab-
lish, the “noninteracting” susceptibility tensor11 of the jth
tetrahedron is determined �in units of �g	B�2� by

�AB
0 �j,� = lim

�→0+

 �

ab

Ea�Eb �a�A�b��b�B�a�
Eb − Ea − �� + i��

�na − nb�

+
1

kBT
� i�

 + i�
�2

� �
ab

Ea=Eb

�a�A�b��b�B�a�na − �A��B��� . �6�

A or B is one of the 4�3 spin operators S�j
� , and Ea, �a�, and

na are the ath eigenvalue, eigenstate, and population factor,
respectively, of the MF Hamiltonian for the jth tetrahedron.

In order to derive a set of interaction parameters, which
predict the right ordering wave vector at TN, I have utilized
that the characteristic determinant vanishes at the second-
order phase transition or, approximately, that

���� − ��
�

���
0 �j,0����J���Q�� → 0+ �7�

for T→TN
+, when neglecting the minor effects of the aniso-

tropy terms. In the paramagnetic phase, �� ��
0 �j ,0� is indepen-

dent of the tetrahedron considered and approximately diago-
nal with respect to the Cartesian components �� is equal to a,
b, or c� and

J���q� = �
k

Jjk
��e−iq·�Rj−Rk�. �8�

The model to be discussed below is determined by the
parameters in Eq. �3� and by the following values for the
coupling parameters defined in Fig. 1:

Ja = 0.8, Jb = − 0.1, Jc = − 0.1, Jd = − 0.3,

Jf = − 0.03, Jh = 0.1, Jk = − 0.42, �9�

in units of J1. Notice that the coupling parameters with a
negative sign are the ferromagnetic ones. The ordered struc-
ture determined by this model is similar to the one deter-
mined from polarized-neutron diffraction �Eq. �1��, though
there are some subtle differences, which are, however, diffi-
cult to detect experimentally. The calculated polarization is
not precisely circular, but the lengths of the two semiaxes
differ by less than 0.5%, which slight eccentricity is ne-
glected. More significant modifications are that the plane of
the moments is different for the four different magnetic sub-
lattices and that these planes are tilted small angles away
from the c axis. Hence, instead of Eq. �1�, the calculated
structures are described by the following expression:

�S�i� = S0�x̂� cos�Q · Ri + ��� + ẑ� sin�Q · Ri + ���� ,

�10�

where x̂� lies in the ab plane making the angle �� with the a
axis, and ẑ� is tilted an angle �� away from the c axis within
the plane normal to x̂�. The spin components in the abc
coordinate system are determined from the xyz components
�and �Sy��0� according to

�Sa� = �Sx�cos � + �Sz�sin � sin � ,

�Sb� = �Sx�sin � − �Sz�sin � cos � ,

�Sc� = �Sz�cos � . �11�

The calculated results for the structure parameters defined by
Eq. �10� are shown in Table I when using the model defined

TABLE I. The structure parameters of Cu2Te2O5X2 at 2 K. The
upper part applies to X=Cl and the lower one to X=Br. All angles
are in degrees. In the calculations �1=�2 is found to differ from
�3=�4 but only by about 0.15°. The remaining angles not included
in the table are �1=0, �2=−�1, and �4=−�3. The experimental val-
ues are determined by the neutron-diffraction experiments of Zaha-
rko et al. �Ref. 6�.

S0 �� �1 �3 �2 �3 �4

Calc. 0.436 14 �1.2 �0.1 3.9 �153.6 157.5

Expt. 0.44 14 13 �136 154

Calc. 0.205 9 �1.9 �1.0 12.1 �159.2 171.3

Expt. 0.20 9 22 �105 134
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above, i.e., Eqs. �3� and �9� in the case of Q= �− 1
7 , 3

7 , 1
2 � and

T=2 K. By calculating the free energies of structures with
various commensurable periods it is found that the true or-
dering wave vector of the model depends on temperature. It
is �−0.157,0.414,0.5� just below TN and close to
�− 6

41 , 18
41 , 1

2 �= �−0.146,0.439,0.5� at 2 K. Experimentally,5 the
temperature dependence of Q is much weaker, and I have
chosen a set of parameters so that the calculated Q is rela-
tively close to the experimental one both at 2 K and at TN.
The calculated structure parameters depend on the choice of
Q, but the changes are small and unimportant as long as the
assumed commensurable �metastable� structure has a Q in
the neighborhood of the true ordering wave vector. The cal-
culated structures may exhibit the presence of higher har-
monics, but in the present model they are of no significance.
The diffraction experiments do not show any indications of
higher harmonics,12 and when developing the model I have
aimed at minimizing their importance.

At zero field the two domains with the ordering wave
vectors Q= �Qa ,Qb ,0.5� and Q�= �Qb ,−Qa ,0.5� are degen-
erated. Experimentally, the application of a field of the order
of 5 kOe parallel to Q removes the Q� domain.12 The model
calculations indicate that the system has a strong tendency
toward developing a double-Q structure, where the Q do-
main has an additional component polarized nearly along the
b axis and modulated with the wave vector Q�. If modifying
the model slightly, Jf =0 and D1=0.003J1 while the remain-
ing parameters are unchanged; the amplitude of the Q� com-
ponent is found to be 0.3 times the Q component at 2 K. The
double-Q component is nearly unaffected by a field of 5 kOe
and is only removed at fields which are ten times larger. At
zero field, the Q� order component is stable nearly up to TN
�within the numerical accuracy�. In the final model �Eq. �9��,
the Q� component is eliminated at all temperatures, and the
number and amplitudes of the higher harmonics are simulta-
neously reduced, which features are in accordance with the
experimental observations. However, as we shall see, the cal-
culated excitation spectrum indicates that the system is
nearly soft with respect to the creation of the double-Q com-
ponent.

The possible higher harmonics in the case of a commen-
surable structure with the dimensions �1��2��3 are at the
wave vectors

Qp = � p1

�1
,
p2

�2
,
p3

�3
�, pi = 0,1, . . . ,�i − 1 �12�

modulo a reciprocal-lattice vector. Incidentally, in the case of
the tetragonal 7�7�2 lattice, the Q� component may
equally well be classified as a higher harmonic. That it is a
genuine double-Q component may be checked by choosing,
for instance, a 40�40�2 lattice with Q= �− 6

40 , 17
40 , 1

2 �
= � 17

20 , 17
40 , 1

2 �, where Q�= � 17
40 , 3

20 , 1
2 � is not among the wave

vectors of the higher harmonics.
The calculated structure has many features in common

with the magnetic structure derived from the polarized-
neutron-diffraction experiment. The orientation angle of the
DM vectors, �D, has been adjusted so that the orientation of
the plane of the moments is in agreement with experiment

when neglecting the small tilting angles ��. The spins of
Cu-1 and Cu-2 are nearly parallel to each other and nearly
antiparallel to the spins of Cu-3 and Cu-4. The calculated
angles �12=4°, between the spins of Cu-1 and Cu-2, and
�34=49°, between the spins of Cu-3 and Cu-4, differ some-
what from the experimental values of �12=13° and �34
=70°. I have tried to improve on this, but it turned out to be
difficult to get any appreciable changes in the values of these
angles. Actually, the calculated structure is rather robust
against even major changes in the interaction parameters in
Eq. �9�, as long as they predict the right TN and Q. The tilting
angles �� are proportional to the DM anisotropy. If the sign
of D1 is changed, these angles change sign. The presence of
the DM anisotropy implies that only one chiral domain is
stable. The chirality chosen in Eq. �10� corresponds to a posi-
tive value of D1. If this coupling constant is negative, the
sign in front of ẑ� Eq. �10� should be changed from plus to
minus. The prediction that only one of the two choices is
stable, as determined by the sign of D1, is concordant with
the experimental observation of Zaharko et al.6 that the two
chiral domains are “unequally populated.”

The previous analysis8 indicated that J2�J1, which is in
agreement with the present indications. J2 cannot be much
larger than J1 since that would lead to an ordered structure,
where �S1� and �S2� are �nearly� antiparallel instead of par-
allel to each other. If adjusting the other exchange param-
eters, the ordered structure may equally well be reproduced if
choosing a smaller J2, except for one property. The zero-
point reduction in the ordered moment is found to increase in
proportion to the reduction in J2 /J1 when adjusting the other
coupling parameters so to keep TN and Q fixed. Assuming
J2 /J1=0.9 instead of 1, the amplitude is calculated to be
reduced from S0=0.436 to about 0.42. A comparison of this
result to the experimental value of 2S0=0.88�0.01 indicates
J2 /J1�0.9 and probably close to 1.

Based on “Goodenough rules,” Whangbo et al.13 argued
that the superexchange parameter Ja in Fig. 1 should be the
dominating one, i.e., larger than J1 and that J2 is much
smaller than J1 or Ja. This suggests that the tetrahedral unit
consisting of the four Cu spins coupled by �Jb ,Ja� might be a
more advantageous choice than that specified by the �J1 ,J2�
interaction lines. The previous analyses do not distinguish
between which tetrahedral unit is tetramerized, whereas the
present results for the ordered magnetic structures are de-
pending on this choice. The alternative tetrahedral unit pre-
dicts ordered structures similar to the one observed except
for one essential difference—that the polarization of the
spins at sites Cu-3 and Cu-4 are interchanged. This difficulty
is so severe that the choice of the �Jb ,Ja� tetrahedron as the
tetramerized unit must be rejected. The knowledge that J2 is
of the order of J1 opens up for the alternative possibility for
a tetrahedral unit along the c axis in which Jk replaces J1, but
this choice may immediately be dismissed, since this would
produce a �nearly� antiferromagnetic ordering of �S1� and
�S2�, if Jk is smaller than J2, whereas the opposite choice
would produce a structure where all phase angles
������ /4. Hence, it may be concluded that not only is the
�J1 ,J2� tetrahedral unit the most natural choice, when con-
sidering the distances between the Cu ions, but it is also the
only one capable of producing a magnetic structure similar to
the one observed.
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The band-structure calculations of Valentí et al.14 show
that most of the electron hopping integrals between the Cu
ions connected by the interaction lines in Fig. 1 are signifi-
cant. This suggests that the corresponding exchange integrals
are also important. In accordance with this analysis and with
the estimate of Whangbo et al.,13 it is assumed that Ja is the
dominating intertetrahedral interaction. For an isolated tetra-
hedron the ground-state singlet has the energy −2J1+ 1

2J2 if
J1�J2 or − 3

2J2 in the opposite case, and, in order to secure
that �J1 ,J2� is the most favorable tetrahedral unit, Ja has to
be smaller than J1. These considerations indicate that the
model value Ja=0.8J1 is reasonable, but I have to stress that
the structure calculations themselves are not capable of con-
firming that this is about the right value. The second largest
exchange parameter in the model is the ferromagnetic cou-
pling Jk. The value of this interaction is probably close to
being unacceptably large. It is reduced if Ja is increased, but,
since Ja may not be that much larger, I have instead intro-
duced the antiferromagnetic Jh interaction along the c axis.
The calculated structure does not depend much on Jh−Jk,
hence, the assumption of Jh=0.1J1 has effectively reduced
the absolute value of Jk by 0.1J1. The angle � defining the
orientation of the plane of the moments is dictated by the
orientation of the DM vectors. The angle between the plane
of the moments and the DM vectors is roughly constant, and
if assuming the DM vectors to be perpendicular to the vec-
tors connecting the sites involved, i.e., if �D=33.5°, the cal-
culated angle � would instead be about −8°. The absolute
magnitude of the DM coupling is nearly of no importance for
the model and is left undetermined. The last one of the 4
extra degrees of freedom has been used for general improve-
ments of the calculated RPA spectrum discussed in Sec. III.
The last point I want to discuss is the special role played by
the Jf interaction, which accounts effectively for a combina-
tion of this interaction with the corresponding interaction
between 1,2 �3,4� ions on neighboring tetrahedra along the b
�a� axis. Although, the model value of this parameter is small
�−0.03J1�, it has a strong impact on the calculated structure.
The most important reason for introducing Jf has been its
great influence on the magnitude of the higher harmonics and

the double-Q component, which are all nearly eliminated,
when introducing Jf =−0.03J1 in combination with a not too
small D1=0.03J1. The uniform magnetization calculated in
the presence of an applied field is also significantly improved
by the introduction of Jf.

In the case of the final model determined by Eqs. �3� and
�9�, the calculated magnetization curve at 1.5 K agrees with
the experimental one,7 as shown in Fig. 2. The susceptibility
components, assuming an equal population of the two single
Q domains, are compared to the experimental results ob-
tained from a polycrystalline sample in Fig. 3. The sign and
the size of the anisotropy below TN are in agreement with the
experimental results obtained from a single crystal in the
antiferromagnetic phase.15,16 It is somewhat surprising that
the bulk exchange parameter JB=��jJij

��=−0.8J1 is ferro-
magnetic, but the least-squares analysis of the bulk proper-
ties presented in Ref. 8 led to the same result of JB=−0.6J1
with an uncertainty of about 20%.

III. MAGNETIC EXCITATIONS IN Cu2Te2O5Cl2

The scattering intensities and energies of the magnetic
excitations are calculated for the mean-field model derived in
Sec. II. When including the intertetrahedral interactions
within RPA, the Cartesian susceptibility tensor of the inter-
acting system is, in real space,11

�� ��i,�j� = �� ��
0 �i��ij + �

k,�,

�� ��

0 �i�Jik
�
�� �
k,�j� , �13�

where the noninteracting susceptibility tensor is defined by
Eq. �6�. The frequency argument  is suppressed but is the
same for all the susceptibility tensors. In the present calcu-
lations I have neglected the very small contributions of the
intertetrahedral classical dipole interaction, which simplifica-
tion reduces Jik

�� to a scalar quantity with respect to the Car-
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FIG. 2. �Color online� High-field magnetization of Cu2Te2O5Cl2
measured by Gros et al. �Ref. 7�. The solid line is the calculated
result.
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tesian components. The Fourier transform J���q� is defined
by Eq. �8� and

�� ���q� = �
k

�� ��j,�k�e−iq·�Rj−Rk�. �14�

In the paramagnetic phase �� ��
0 �j�=�� ��

0 is independent of j
and the final susceptibility tensor in reciprocal space is de-
termined from

�� ���q� = �� ��
0 + �

�


�� ��
0 J�
�q��� 
��q� . �15�

This equation becomes a straightforward matrix equation to
be solved with respect to �� ���q� when replacing the suscep-
tibility tensors by 12�12 matrices in the vector space
spanned by the 3�4 Cartesian components of the four spins
in one tetrahedron. The correlation function proportional to
the neutron-scattering cross section is then determined by11

I�q,� = �
�


��
 − q�q
/q2

4��1 − e−�/kBT����

Im����
�
 �q,�e−iq·�r�−r��� .

�16�

The phase factor in the square bracket accounts for the dif-
ferent positions r�=r�j −R j of the Cu spins within one tetra-
hedron. Contour plots of I�q ,� calculated for q along three
different directions at 20 K are shown in Fig. 4. The
calculations are performed with a finite resolution using
��=0.15J1 in Eq. �6�.

For the noninteracting tetrahedron, when leaving out the
small anisotropy terms, the energy differences between the
singlet ground state �s1� and the excited states are 2�1−r�J1
to a singlet �s2�, J1 to a one triplet state �t1�, �2−r�J1 to two
degenerate triplets �t2� and �t3�, and 3J1 to a quintuplet �q�,
where the ratio r=J2 /J1. In the present case of r=1, the
ground state is doubly degenerated and there are three ex-
cited triplets at J1 and the quintuplet at 3J1. At zero tempera-
ture, the noninteracting susceptibility of this system only
contains one pole at the energy J1	3.5 meV. At 20 K the
triplet states are significantly populated implying that the
noninteracting susceptibility contains two more poles: one at
zero energy and one at 3J1−J1 with intensities of the order
12%–15% of the singlet-triplet-excitation intensity. The an-

isotropy terms lead to slight modifications of this picture by
splitting the degenerate levels into singlets and doublets, but
these energy separations are small. The most important fea-
ture in the calculated excitation spectra is the singlet-triplet
excitation. Due to the intertetrahedral interactions, this be-
comes a dispersive mode centered around 3.5 meV. The dis-
persion is strong, when q is approaching Q or Q�, where the
mode nearly goes soft �20 K is less than 2 K above TN�. The
additional poles in the noninteracting susceptibility, due to
the thermal population of the triplet states, lead to a weak-
intensity excitation branch at about 7 meV and prevent a true
soft-mode behavior of the low-energy excitations. The most
important correction to this RPA theory is that the excitations
acquire a nonzero linewidth due to the single-site fluctua-
tions in the population factors. Based on the diagrammatic
high-density 1 /z expansion,11,17 a rough estimate of this ef-
fect at 20 K shows that it corresponds to that produced by a
nonzero value of ���0.2J1, i.e., close to the value of ��
=0.15J1 used in the calculations. This estimate applies for
the singlet-triplet excitations, whereas the excited-states ef-
fects are anticipated to be broadened even more. The inelas-
tic neutron-scattering results of Prša et al.18 agree in many
details with the calculated dispersive behavior of the triplet
excitation. Their results do not include the low-energy part of
the spectra, as measurements below 1.4 meV were not pos-
sible because of incoherent scattering, and the results do not
show any indications of the higher-lying excited-state exci-
tation.

The RPA theory of the ordered phase is more complicated
because �� ��

0 �j� changes from one tetrahedron to the next
within one commensurable period. In this case we have to
apply the following Fourier transforms of the susceptibilities:

�� ��
0 �Qp� =

1

N
�

j

�� ��
0 �j�e−iQp·Rj ,

�� ���q,Qp� =
1

N
�
jk

�� ��j,�k�e−i�q·�Rj−Rk�+Qp·Rj�, �17�

where Qp is one of the 7�7�2 wave vectors of the higher
harmonics defined by Eq. �12�. In this case the Fourier trans-
form of Eq. �13� is

�� ���q,Qp� = �� ��
0 �Qp� + �

Qs

�
�


�� ��
0 �Qp − Qs�

�J�
�q + Qs��� 
��q,Qs� . �18�

This equation may be solved in a similar way as in the para-
magnetic case by transforming to a vector space defined by
the 3�4 spin components times the 98 different Qp compo-
nents. As the ordered structure is nearly determined alone by
the principal harmonic, the high dimension of this vector
space may to a good approximation be reduced to the one
which only involves the 14 Qp components for which the ab
components are multiple of the ab component of the order-
ing wave vector Q �modulo a reciprocal wave vector�. Solv-
ing the equation with respect to �� ���q ,Qp� the correlation
function I�q ,� is determined by the same expression as
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FIG. 4. �Color online� Scattering intensity distributions of the
excitations in the paramagnetic phase of Cu2Te2O5Cl2 calculated at
20 K, i.e., contour plots of the correlation function I�q ,� in Eq.
�16� with ��=0.15J1.
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above �Eq. �16��, with �� ���q ,� being replaced by
�� ���q ,Qp=0 ,�.

Selected contour plots of I�q ,� in the ordered phase at 2
K are presented in Fig. 5. The noninteracting susceptibility
�� ��

0 �0� contains seven different poles but is found to be
dominated by two nearly degenerated modes at 5.6 and 6.1
meV. This leads to one major branch as in the paramagnetic
case plus some additional modes, which are weak but still
visible in the calculated results. The average of the scattering
over q space is expected to be a broad peak centered at about
6 meV, which is in accordance with the experimental results
obtained by Crowe et al.19 on a polycrystalline sample. The
presence of the DM anisotropy �and the classical dipole in-
teraction� implies that the Hamiltonian does not commute
with the generator of an infinitesimal change in the absolute
phase �1 of the ordered structure. Hence, the system is not
bound to contain a Goldstone mode, a linear dispersive pha-
son mode starting out from a magnetic Bragg point.20 How-
ever, when the system is incommensurably ordered, there
should still be a diffusive elastic mode with a diverging in-
tensity at the magnetic Bragg points because of the indepen-
dence of the free energy to a change in the absolute phase of
the ordered structure. This situation has many similarities
with the conditions found in the pressure-induced ordered
phase of Pr metal.21 Because the DM anisotropy of the

present model is weak and the commensurable period ap-
plied in the model is relatively long �close to incommensu-
rability�, the calculations show that the system contains a
Goldstone-type mode, the intensity of which is strongly in-
creasing when the wave vector is approaching Q. The refined
calculation in Fig. 6 shows that the linear dispersive mode is
destroyed in the neighborhood of the magnetic Bragg point
and is replaced by a diffusive elastic mode in combination
with an inelastic “amplitude mode” with an energy gap of
about 0.6 meV �the amplitude mode is the out-of-phase ex-
citation deriving from the coupling of the modes at q�Q
and at q−2Q�. The calculations indicate that the scattering
intensities resulting from the two domains are quite similar,
in particular, the intensities and energies of the excitations
propagating along �H ,H /3,3 /2� are found to be nearly as
calculated for the excitations propagating along
�−H /3,H ,3 /2�. As discussed above, the excitations exhibit a
Goldstone-type behavior, when q approaches Q, i.e., when
H→0.422 for the �−H /3,H ,3 /2� excitations, but it is unex-
pected that the excitations should show nearly the same be-
havior when q approaches the ordering wave vector Q� of
the other domain. As mentioned in connection with the dis-
cussion of the strong tendency of the system to create a
double-Q component, the softening of the excitations close
to Q� indicates that the system is close the borderline of the
double-Q phase. The refined results for the scattering inten-
sities in Fig. 6 show that there is one difference between the
two cases, as there is only a low-energy inelastic mode—no
diffusive elastic scattering near Q�. Notice that the excita-
tion gap at Q� is actually smaller than the gap displayed by
the amplitude mode at Q.

The calculated results show many similarities with the
experimental observations.18 The experiments have resolved
the presence of a linear dispersive mode approaching zero
energy at the ordering wave vector, but the intensity of this
Goldstone mode is weak and is dominated by a mode with a
gap of about 2 meV at q�Q, much larger than the energy
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FIG. 5. �Color online� Calculated intensity distributions of the
excitations in the ordered phase of Cu2Te2O5Cl2 at 2 K. The reso-
lution, intensity scale, and wave vectors are the same as in Fig. 4.
The wave vector �H ,H /3,L� is the equivalent of �−H /3,H ,L�
within the Q� domain. If both domains are equally populated in the
sample, the experimental scattering intensities would be the average
of the two cases.

0.35 0.40 0.45 0.50
0.0

0.5

1.0

1.5

(-H/3,H,1.5)

E
ne
rg
y
(m
eV
)

0.35 0.40 0.45 0.50
0.0

0.5

1.0

1.5

(H,H/3,1.5)

FIG. 6. �Color online� The figure shows parts of the same results
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close to the ordering wave vector Q= �− 1
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gap of about 0.6 meV predicted by the present model. In
principle, the RPA theory is capable of reproducing the ex-
perimental energy gaps of 2.5 meV at Q and about 1.9 meV
at Q� by assuming a much stronger DM interaction. In the
case of the modified model with D1=0.4J1, plus minor
changes in some of the other parameters �D=65°, Jc=0.2,
Jd=−0.24, Jf =Jh=0, and Jk=−0.38, the only important
modification of the calculated ordered structure is that the
tilting angle ��1� �but not ��3�� now becomes of an appre-
ciable magnitude of about 15°. The intensity of the third
harmonic is increased but is still 300 times smaller than the
main peak. In most cases, the modified model predicts nearly
the same inelastic-scattering intensities as shown above. The
only distinct change is that the low-energy modes in the or-
dered phase near Q and Q� are now predicted to occur at
about 2.1 and 1.4 meV, respectively, i.e., approaching the
experimental values. Within RPA, the large gap at Q may
only occur if the system is strongly anisotropic, however, the
large magnitude of the DM interaction in the modified
model, being of the same order of magnitude as the exchange
integral, seems unrealistic. Except for this low-energy phe-
nomenon, the RPA theory in combination with the MF model
derived in Sec. II produces results which agree reasonably
with the observations. There are a number of clear quantita-
tive deviations with respect to the energies of the excitations
which are also outside the near neighborhoods of the mag-
netic Bragg points. I have tried to reduce these discrepancies,
but the conditions set by the fitting of the ground-state prop-
erties do not leave much room for improvements of the RPA
spectra.

The Raman spectra of Cu2Te2O5Cl2 were recently mea-
sured by Choi et al.16 The magnetic part of the Raman-
scattering cross section is dominated by non-spin-flip scatter-
ing from longitudinal excitations at zero wave vector. The
magnetic Raman scattering of the present model has been
calculated using the procedure developed in Ref. 8, and in
the ordered phase it is found to be dominated by peaks at 3.8
and 7.9 meV �31 and 64 cm−1� of about equal intensities.
The lower peak is lying too low in energy whereas the posi-
tion of the upper one agrees with the experimental low-
temperature observations,16 which show two equal-sized
peaks at 49 and 67 cm−1 plus an extra one only appearing in
the �cc� scan at 39 cm−1.

IV. MF/RPA THEORY FOR Cu2Te2O5Br2

The MF/RPA model for the Br compound has been con-
structed by following the same steps as used above. The
intratetrahedral interactions are

J1 = 47.5 K, J2 = 0.7J1, D1 = 0.03J1, �D = 33.2 ° ,

�19�

whereas the intertetrahedral exchange-interaction parameters
are somewhat smaller than in the Cl case,

Ja = 0.17, Jb = 0.33, Jc = 0.1, Jd = − 0.35,

Jf = − 0.1, Jh = 0.1, Jk = − 0.22, �20�

in units of J1 for the Br compound. This model produces
susceptibility and high-field magnetization curves in reason-

able agreement with experiments �see Ref. 8�. The ordering
wave vector is Q= �−0.172,0.356,0.5� and in the calcula-
tions this wave vector is approximated by the commensu-
rable value �− 1

6 , 1
3 , 1

2 �= �−0.167,0.333,0.5�. The calculated
ordered structure is described by Eq. �10�, and the character-
istic parameters calculated at 2 K are compared with the
experimental ones of Zaharko et al.6 in the lower part of
Table I. The calculated spin structure in the Br compound is
slightly closer to the “nonfrustrated” helix ��1=�2=0, �2
=0, and �3=�4= �180°� than it is in the Cl system, whereas
the experimental results show the opposite trend. The
neutron-diffraction measurements indicate that the angle �34
between the spins of the Cu-3 and Cu-4 ions in the Br system
at 2 K is as large as 120°, whereas the calculated value is
�34	30°. This major discrepancy indicates that the present
Br model should be considered as a preliminary one, the
predictions of which may not be entirely reliable.

The intertetrahedral spin interactions produce an ex-
change field which is only about 15% larger than that re-
quired for inducing the ordered state and the amplitude of the
ordered spin is only 0.2 at 2 K. As in the Cl case, this am-
plitude depends on the ratio r=J2 /J1 and once more the spin
amplitude is indicating a value of r �=0.7 in this case�, which
is in agreement with that estimated by the previous analysis.8

The paramagnetic excitation spectra of the Br compound
are calculated to be qualitatively similar to the results shown
in Fig. 4 for the Cl model. The differences are that the
singlet-triplet splitting determined by J1 is increased by 15%,
but the bandwidth determined by the intertetrahedral interac-
tions is nearly a factor of 2 more narrow. The noninteracting
susceptibility of the Br system in the ordered phase at 2 K
�and 7 K� is completely dominated by a single pole at 4.3
meV. The position of this pole is in agreement with that the
scattering intensities integrated over q space is showing a
peak centered at 4.2 meV at 7 K or at about 5 meV at 8
K.19,22 The single-pole dominance implies that the calculated
excitation spectra show fewer extra branches than found in
the Cl system. In most other respects, the calculated scatter-
ing intensities in the ordered phase of the Br system behave
nearly as in the Cl case �see Fig. 7�. The fine resolution
results for the Goldstone-type modes in the neighborhood of
Q and Q� compare closely to the results shown in Fig. 6 for
the Cl model. The calculated energy gap of the amplitude
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FIG. 7. �Color online� Calculated intensity distributions of the
excitations in the ordered phase of Cu2Te2O5Br2 at 2 K. The reso-
lution is ��=0.15J1.
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mode is about 0.75 meV slightly larger than the 0.6 meV of
the Cl system. The energy gap at Q� is nearly the same; not
smaller like in the Cl compound. In the present system the
similarities of the two spectra along �−H /2,H ,1.5� and
�H ,H /2,1.5� are mostly due to the small amplitude of the
ordered moments �the two wave vector directions become
identical in the limit of zero amplitude�. In contrast to the
model for the Cl system, the present one does not show any
tendency toward a double-Q ordering.

The calculated Raman-scattering cross section of the Br
system at 2 K agrees qualitatively with the one derived from
the simple model in Ref. 8 by showing a strong peak at 1.7
meV and a weak but strongly field dependent one at 2.7 meV
�14 and 21 cm−1�. This result is in good agreement with
experiments3,7,8 except that the two peaks are observed at
slightly higher energies �16 and 24 cm−1�.

V. DISCUSSION

The present analysis is based on the simplest approxima-
tions, MF and RPA, but starts out from a cluster unit com-
prising four 1/2 spins. This means that the local effective
spin has as many degrees of freedom as in the case of, for
example, Dy3+. The present RPA is the equivalent of linear
spin-wave theory. The nonlinear quantum corrections to the
theory are important for S=1 /2, but, because they scale with
the factor �2S�−1, they should not disqualify the present ap-
proach where 2Seff+1=16. It was originally anticipated that
the interactions between the tetrahedral spins in this com-
pound should have a low-dimensional character. This is not
the case as the tetrahedral units are strongly coupled with
each other not only in the ab plane but also along the c axis.
One may argue that this conclusion is an artifact of the sim-
plified analysis. However, the experimental behavior of the
susceptibility and the heat capacity indicates that the effec-
tive J�Q� of Cu2Te2O5Cl2 has to be of the order of 2J1 and
the ordering wave vector is incommensurable, all of which
may only be achieved by an interaction scheme similar to the
one derived in the present analysis. The interacting system
must be characterized as a three-dimensional one with a co-
ordination number which is comparable to that of an hcp/fcc
lattice. An equivalent conclusion is reached by Jagličić et
al.,23 who did not find any sign of broken-ergodicity proper-
ties of Cu2Te2O5Cl2.

The large effective S of the tetramerized cluster spins and
the three-dimensional interaction scheme make the present
magnetic systems similar to that of a rare-earth metal for
which the magnetic properties are well described in terms of
the diagrammatic 1 /z expansion.11,17 The leading order ap-
proximation in this expansion is the MF/RPA theory, and the
most important higher-order corrections are the line broad-
ening of the excitations due to single-site fluctuations plus a
10%–15% renormalization of the bare interaction param-
eters. This theory gives an adequate description of the exci-
tations in the slightly undercritical Pr metal.11,21,24 In this
singlet-doublet system, the excitations remain reasonably
well defined up to a relative temperature t=T /T��1, where
T� is the temperature corresponding to the noninteracting
energy gap of the excited state. The inelastic-scattering ex-

periments of Prša et al.18 show that the singlet-triplet excita-
tions are still visible in the two Cu systems at t	0.5
�T=20 K�, but that they more or less disappear above this
temperature �at least close to the ordering wave vector�. In
these systems the higher multiplicity of close lying excited
states �a singlet and three triplets� is going to increase the
linewidths and to reduce the intensities and the dispersion of
the paramagnetic singlet-triplet excitations in comparison
with Pr metal at the same relative temperature t. Hence, al-
though the renormalization effects are stronger in these tet-
ramerized singlet-triplet systems than in Pr metal, it is likely
that most of their paramagnetic properties may be explained
by the 1 /z expansion to first order in z.

The spin cluster units are distorted tetrahedra, neverthe-
less, the analysis indicates that J2 /J1�1 in the case of
Cu2Te2O5Cl2 suggesting that the ground state of the isolated
clusters is, accidentally, nearly doubly degenerated. This de-
generacy does not compare with the one occurring in the
geometrically frustrated pyrochlore antiferromagnets,2 where
the tetrahedra are sharing corners. In the present system the
interactions between the different tetrahedral clusters should
imply that there is a unique magnetic ground state with the
reservation that the model calculations suggest—that the free
energies of the single- and double-Q structures are nearly
equal in the Cl system. The Br system does not share the two
degeneracies. J2 /J1=0.7 and the model calculations do not
show any tendency toward a double-Q ordering of the Br
compound. The magnetic properties of the two systems only
differ to the extent expected from the different strengths of
the interactions, which circumstance indicates that the two
accidental degeneracies of the Cl system do not cause any
additional frustrationlike effects of importance.

The intratetrahedral exchange parameters, J1 and J2, de-
rived from the analysis of the two tetramerized Cu systems
are trustworthy. Experimental uncertainties combined with
the difficulties in reproducing all details of the ordered struc-
tures and of the excitation spectra, particularly in the case of
the Br compound, imply that the intertetrahedral exchange
parameters are much more uncertain. The magnetic struc-
tures in the two Cu systems are close being simple tilted
helical structures and if the DM anisotropy is neglected the
systems should show a Goldstone mode. In principle, the
DM anisotropy is expected to be weak of the order of a few
percent of the isotropic interaction. The diffraction experi-
ments do not reveal any strong scattering from higher
harmonics,6,12 which is indirectly verifying that the aniso-
tropy is small. This is also indicated by the incommensurable
values of the ordering wave vectors. The MF models devel-
oped here are in accordance with these conditions and they
predict a strong Goldstone-type mode and a weak-intensity
amplitude mode at rather low energy. The inelastic-scattering
results18 contradict this picture by showing a strongly gapped
amplitude mode of large intensity and only a weak indication
of the phason mode close to the magnetic Bragg point.

It is difficult to explain this discrepancy. Experimentally, a
high level of defects may be of importance since anything
that tends to clamp the ordered structure is going to increase
the gap at Q. That the quality of the crystals is no trivial
matter is indicated by, for instance, the observation5 of two
different ordering wave vectors in one of the Cu2Te2O5Cl2
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crystals, at Q=k�= �−0.15,0.42.0.5� and at k
= �0.15,0.42.0.5�. It is unlikely that the DM anisotropy is
much stronger than the value of 0.03J1 assumed in the
present models. As discussed by Zorko et al.25 the DM an-
isotropy of �two-dimensionally �2D� frustrated� Cu systems
is found to lie in the range of 4%–16% of the exchange. An
increase in the DM anisotropy of the present systems by
about a factor of 5, D1	0.16J1 instead of 0.03J1, does not
remove the discrepancy. The energy gap of the amplitude
mode at the ordering wave vector is still a factor of 2 smaller
than observed, and the intensity of this mode remains weak
compared to that of the phason mode. The anisotropy due to
orbital modifications of the S= 1

2 state of the 3d9 configura-
tion of the Cu++ ions is also expected to be moderate. Torque
magnetometric measurements of the anisotropy of the sus-
ceptibility by Miljak and Herak26 show that the anisotropy is
zero within the ab plane in the paramagnetic phase. The
difference between the c axis and a or b axes susceptibility
components of Cu2Te2O5Cl2 is about −1.3�10−3 emu /mol
at TN, and, when the system is heated, the difference de-
creases in proportion to the reduction in the averaged suscep-
tibility and is about −0.42�10−3 emu /mol at 200 K. This
behavior is accounted for by a constant g factor anisotropy,

gc
2−ga

2�−0.12geff
2 , with no need for introducing any further

axial spin anisotropy.
The two systems are frustrated due to the competition

between the intra- and intertetrahedral spin interactions. This
frustration is reflected in that the spin configuration of the
single tetrahedra deviate from the optimal one of �S1� and
�S2� being parallel and antiparallel to �S3� and �S4�. The
MF/RPA approximations may not be trusted in the case of
strong frustration, however, the most important parts of the
frustration effects are those originating from the strong in-
tratetrahedral interactions, which are included in an exact
way in the theory.
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