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Abstract. The dispersion relation of the magnetic excitations of the hexagonal ions in DHCP Pr 
and the selection rules for the linear coupling to the phonons are determined by general 
symmetry considerations. The magnetic excitations propagating in the symmetry directions 
are considered in the cases of an external magnetic field applied along an a and a b direction. 
The magnetic excitations are approximated by pseudo-boson excitations of the spin sub- 
space, J = 4, M ,  = 0 and i. 1, and the presence of the ions on the cubic sites is neglected. 

The selection rules deduced agree with the experimental observations of Houmann’ 
et al. The experimental result for the strength of the exciton-phonon interaction is used in 
an estimate of the effects of an applied field on the elastic constants of Pr at zero tempera- 
ture. The largest effect which is predicted is a reduction of the elastic constant cS6 by approxi- 
mately 1 5 %  of its zero-field value when a field of 40 kOe is applied in the basal plane. 

1. Introduction 

The knowledge and the understanding of the magnetic behaviour of singlet ground state 
systems, of which Pr is an important example, have increased substantially during the 
last few years, as reviewed by Rainford (1971), Cooper (1972), and Birgeneau (1973). 
The experimental studies of Pr (Rainford and Houmann 1971, Houmann et aI 1975a) 
have revealed that Pr is a quite complicated singlet ground state system, and that the 
two-ion coupling between the ions on the hexagonal sites is just below the critical value 
for an induced moment system (Lebech et a1 1975, LindgArd 1975). The crystal structure 
of Pr is double-hexagonal close packed (DHCP) with the stacking sequence ABAC. The 
local symmetry of the A sites is (approximately) cubic, whereas the ions on the B and C 
sites experience a crystal field of hexagonal symmetry. The magnetic coupling between 
the two types of ions seems to be relatively weak as only the hexagonal ions appear 
to order magnetically in the Pr-Nd single-crystal alloys studied by Lebech et a1 (1975). 

The experimental studies of the magnetic excitations of the Pr ions by inelastic 
neutron scattering performed by Houmann et al, both at zero field (1975a) and in the 
presence of an external field (1976), have shown that the two-ion coupling is strongly 
anisotropic, and that the application of a field induces interactions between the excitons 
and the phonons. Because of the large value of the orbital momentum of the Pr ions 
( L  = 5) a strong coupling between spin space and real space is very likely to occur, and 
the presence of large anisotropic couplings in Pr is consistent with the observation of 
similar couplings in other rare-earth metals (Jensen et a1 1975). 
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In 6 2 we shall consider the effects of general two-ion couplings on the dispersion of 
the excitons in the presence of an external field applied in the basal plane. This section 
then serves as the basis for a systematic treatment of the exciton-phonon interaction 
given in 0 3. Here we shall consider only the ions on the hexagonal sites which are assumed 
to constitute an effective spin S = 1 system, and we utilize a pseudo-boson description 
of the excitons (Grover 1965). Both approximations limit the validity of the results to 
zero temperature (see e.g. Buyers et a1 1975). Finally, we consider in 64  the static magneto- 
elastic effects which can be predicted from the observed behaviour of the exciton- 
phonon interaction at finite wavevector in Pr. 

2. The dispersion of the magnetic excitations of the hexagonal ions in Pr 

The ions of DHCP Pr constitute two singlet ground state systems which are only weakly 
coupled. The ground state of the hexagonal ions is the singlet 1 M ,  = 0) state with the 
doublet I M ,  = f 1) as the first excited state (Rainford 1971), the crystal-field splitting, 
A,,. being equal to approximately 3.2meV (Houmann et al 1975a). If the tetragonal 
distortion of the point symmetry of the 'cubic' ions is considered to be unimportant the 
ground state of these ions is the rl singlet with the r4 triplet as the lowest lying (dipolar) 
excited state at an energy of Ac r 8 meV. 

Although the coupling between the two systems may not be entirely negligible, the 
effects of the cubic ions on the magnetic excitations of the hexagonal ions can be included 
in an effective spin Hamiltonian. This is in part because Ac 9 A,, which makes a second- 
order perturbative decoupling of the excitations of the two systems a fair approximation. 
as shown in the Appendix. Further, all the symmetry operations of the hexagonal ions 
(HCP structure) leave the system of the cubic ions invariant. 

Henceforth we neglect the presence of the ions on the cubic sites, and the general 
spin Hamiltonian is expanded in products of Racah operators (Buckmaster et al 1972, 
LindgArd and Danielsen 1974) : 

where J i  is the total moment of the ith ion. Because of time reversal symmetry only 
terms for which 1 + 1' is even may appear. The spin Hamiltonian is reduced if the crystal- 
field levels for which IM,/ > I are neglected, so that 

C I M ) ( M I = l ;  I M ) = l J = 4 , M J = M )  
M =  - 1.0.1 

which corresponds to an effective spin S = 1 system. Owing to this approximation we 
have 

1 1  

0 i . m  = 2 ( ~ 1 ' 1 . m I q ) I ~ ) ( q I ~  (1) 
- 1 4 =  - 1 

In accordance with the correspondance to an S = 1 system an arbitrary Racah operator, 
61,m (formally I ranges from 1-8 when J = 4); either vanishes identically (when Im( > 2 
and 1 is even or when Iml > 1 and 1 is odd) or is equal to a constant times 62,m or 
GI.,, according to whether 1 is even or odd. When projected on the subspace defined by 
(1) the general spin Hamiltonian is fully described in terms of the nine linear independent 
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operators a,.,, 1 = 0, 1, 2 (60.0 is the identity operator): 
2 2 1  1 

2 = c Vmb,.,(Ji) + 1 c e c [~im,(i,j)6i,m(Ji)bi.m,(Jj) 
i m = - 2  i # j i = l  m=O m ' = - 1  
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+ ( -  l)m"'K;m<(i,j)*d,, - ,(Ji)6,. - m 4 J j ) ] .  (2) 
The effective parameter KLm,(i, j )  includes the possible contributions of couplings 
oi,, m(Ji)6i , , .  m,(J j ) ,  I' or I" 3 3, for which 1' and I" have the same parity as 1. In (2) we shall 
refer to a coordinate system with the x, y, and z axis along the a, b and c direction 

The calculations are facilitated by the following transformation of the wavefunctions: 

10) = 10) 
1 

Using the symmetry properties of the matrix elements of the Racah operators it is easily 
shown that 

(4) 
Defining the 3 x 3 matrix 6wi, as the one for which the element of the ( p  + 1)th row and 
the (q + 1)th column is ( p  1 Oi. I q) we have as examples 

(P 1 61. 14) = ( -  l)""(q 1 1 PI. 

The Fourier transforms of the coupling parameters in (2) are defined as 

KL,,(q) = c KLJi ,  j )  exp [iq . (R i  - Rj)] 
j same sublattice as i 

Rfnm.(q) = c Ki,,(i,j) exp [iq . (Ri - Rj)] (6) 
j other sublattice from i 

as usual in the case of an HCP structure (two ions per unit cell). At zero temperature all 
the ions are in their ground state which in the molecular-field approximation is given 
by the wavefunction IO). The application of an external field along the x direction as 
described by the Zeeman Hamiltonian 

,.x, = - h . (JJi; h = gpBH (7) 
i 

admixes the two wavefunctions 10) and 11): 

IO') = cos e 10) + sin e 1 1) 

11') = cos8)1) - sinelo) 

12') = 12) 
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where IO’) is the modified wavefunction of the ground state. In the molecular-field ap- 
proximation the amount of admixture, 0, is determined by (at zero temperature): 

{A + sin’ O[Ki,(O) + 1?2,0(0)] + 2p’ sin’ O [ K i -  ,(O) + I?: - ’ ( O ) ] }  tan 26 

= J%h + r‘ sin 26[K: - ,(O) + I?: - ,(O)] (90) 

where p = x2d%/8 = 5$/2 and A = Ah is the crystal-field splitting determined by (2) as 

(9b) A = $Vo - +U’[K~,~(O) + Ki,(O)]. 
Defining the exchange constant 

U’ 
l (0)  = [ K :  - ,(O) + K: - 1(0)] 

then the condition for a ferromagnetic ordering of the induced moments 

is at zero field n(0) 2 1. If terms in (9) proportional to sin’ 6 are neglected we recognize 
the usual molecular-field fesult 

tan20 = $ah/A + E.(O) sin20, 

In the following treatment of the excitations of the ground state determined by the 
equations (8) and (9) we shall utilize the pseudo-boson technique of Grover (1965) and 
define the excitation operators 

a, = ~ o ’ ) i ( l ’ ~ i ;  b, = /0)i(2’li  (12) 

of the ith ion, and we shall adopt the convention 

1 l’)i(l’/i = .!ai etc. 

which by the use of the closure assumption leads to 
10‘)i(O/L = 1 - .TU, - btb,. 

In the derivation of the exciton spectrum we assume a, and bi to be orthogonal boson 
operators and we neglect terms in (2) which are not independent of or quadratic in the 
boson operators. Both approximations imply that the results derived are valid only in 
the limit of zero temperature. 

We shall consider only the excitations propagating along the highly symmetric 
x, and z directions, in which cases a number of the Fourier transformed coupling 
parameters, (6), vanish identically. For instance, only terms for which m + m‘ are 
even may contribute to the excitations propagating in the basal plane, and the three- 
fold axis implies that the excitons propagating along the c direction only depend on 
terms in (2) for which m + m’ = 0 or 3. We shall not give many more details but only 
sketch the procedure used in the derivation of the dispersion relations. The spin Hamil- 
tonian is reduced effectively by the symmetry operations of the space group. The presence 
of two ions per unit cell is accounted for by defining two equivalent sets of excitation 
operators. (12), each associated with one of the two sublattices. The expansion of the 
Racah operators, (l), in terms of the (transformed) excitation operators is introduced in 
(2) and the equations of motion are derived using the boson commutation relations. 
The dynamics of the system are characterized by four different kinds of excitation 
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operators implying that the dispersion relation in general consists of four different 
branches ,Ev, .(q), v = 1,2 and i i  = 1, 2. The excitation energies are expressed as 

(13) ‘ v .  K ( q )  = K ( q )  + BV K ( q ) l  LA, ,  K ( q )  - ’ V ,  K ( q ) ] } ’ ”  

where A v ~  %(q)  k By, .(q) are defined in terms of a new set of parameters 

A, . , (q)  F Bv..(q) = AV - . x v ~ ( 4 ) ( f ) ( - l ) ” ) 2 , 1 ( q ) / .  (14) 

The index K defines the mode Ev,  .(q) to be either acoustic or optical according to whether 
i i  is equal to 1 or 2. The other index v defines the mode to be an x mode (v = 1) or 
a y mode (v = 2). In the presence of an external field we shall refer to these modes as the 
longitudinal or the transverse mode (x and y mode respectively when the field is along the 
x direction), For the excitons propagating along the y direction (TM) we derive 

A1 = A, ,  = {A + ;sin2 8[Kg,(O) + I?iO(0)] + 2P2 sin2 8[K: - ,(O) 

+ I?; - ,(o)]]/cos 28 (1 5a) 

and 

A2 = Al = cos2 8Al  - 4pz sin’ 8[K;-  ,(O) + I?;- ,(O)] . (15b) 

An explicit field dependence of the crystal-field splittings, is removed by the use of the 
equilibrium condition (9). The q-dependent energy parameters of the longitudinal mode 
are 

.x; ( 4 )  = :4K I  - 1(4)  + K:,(q)l (164 
and 

X:(q) = a2 cos2 2 e [ q  - l(q) - K:,(q)] - sin’ 2 e { ; ~ ; ~ ( ~ )  

+ ;PK:o(q) + Pz[K;-2(4) + K;Z(q)l} (16b) 
where we use K i 0 ( q )  = K;,(q)  = Kg-z(q) .  The dispersion of the transverse mode is 
determined by 

(174  

- ~ : , ( q ) ] .  

(17b) 

X ;  (4) = :e2 cosz e[K;  - l ( q )  - K:,(q)]  - 4sin2 6 KAo(q) 

,XX:(q) = ct2 cos2 e [ K :  - l ( q )  + K:,(q)] - 4p2 sin2 q K ; -  

and 

The expression for 2 z ( q )  is obtained from Xxf(q)  by replacing Kkm.(q) in (16) and (17) 
by Iff,,,(q). The dispersion relations deduced above are only strictly valid for the excitons 
propagating along the y direction (the ambiguity of the sign in front of ( -  1)” in equation 
(14) is removed by a consideration of the modes in the long-wavelength limit). Subject 
to slight modifications we can use the same expressions for the dispersion of modes 
propagating in the two other symmetry directions. In the case of the excitons propagating 
along the x direction (TK) the right-hand side of (14) is to be replaced by 

AV - W.x:(q) - ( - 1 ) ” 2 : ( 4 ) ) .  

The imaginary part, Im { . X : ( q )  - (-  1)”2:(q)}, gives rise to an interaction between 
the acoustic x mode, El,  l (q) ,  and the optical y mode, E 2 ,  2(q),  and the equivalent coupling 
of El. 2(q )  and E z ,  l (q) ,  which will prevent the dispersion relations of the coupled modes 
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from crossing each other. Im (Xv'(q)}, which is zero when q is parallel to the y axis, 
may be nonzero when q is along the x direction only in the presence of antisymmetric 
two-ion couplings (within a sublattice). When q is parallel to the z direction (TA) (and 
at zero wavevector) the dispersion relations are simplified by the vanishing of the 
coupling parameters KL,,(q) in (16) and (17) for which m + m' 7 0. In equation (14) 
(k)( - 1)" 1 2 r ( q ) 1  is replaced by +( - l y 2 * ( q )  implying the usefulness of the double- 
zone representation. In the presence of the external field this representation is not exact 
as K : , ( q )  = -K i1 ( - -q )  introduces an acoustic-optical coupling between E,,, l(q) and 
Ev.2(q) proportional to sin28. However, in spite of this coupling, the modes remain 
doubly degenerate at the Brillouin zone boundary (A). At zero field the x and y modes 
are degenerate and the double-zone representation is valid. 

The dispersion relations derived above are entirely general in so far as the excitations 
can be approximated by boson excitations of an effective spin S = 1 system. The dis- 
persion relations derived previously (Lindglrd and Houmann 1971, Rainford 1971) do 
not include the effects of the terms Kk,,(q) for which I = 2. Here we find that K:f,(q) 
causes a q dependence of AV. .(q) - BV. .(q) (without contributing to the molecular-field 
equilibrium condition (9)) and that the application of an external field introduces 
contributions from two-ion couplings which do not affect the dispersion at zero field. 
The simple random-phase result for the temperature dependence of the exciton energies 
(Houmann et a1 1975a) is easily generalized to include the quadrupole contributions 
K: l(q). Both these terms and K i  ~ l ( q )  are multiplied by the temperature renormaliza- 
tion factor R(T) defined by Houqann et a1 (1975a). 

If the external field is applied along the J' direction then the mixing of the wave- 
functions IO) and I2), as given by (8) when interchanging 1 and 2, is determined by the 
same equilibrium equation, (9), as before. The dispersion relations in this case of the 
x-transverse mode (v = 1) and the y-longitudinal mode (v = 2) are given by the ex- 
pressions above using the following prescription: the index v of the right hand side of 
equation (14) is replaced by v' where v' = 1 when v = 2 and vice versa. KL,,(q) in the 
equations (16) and (17) are replaced by ( -  l)"''~2K~,~(q). The acoustic-optical 
coupling of the excitons propagating in the c direction is now between the modes 

The response of the system when applying the field along the c direction is very small. 
In this case the field mixes the wavefunctions 1 1) and 12) implying that the x and y modes 
can no longer be eigen-excitations of the system. 

El .  1(4) and E2,2(q) and between E2,1(4) and El .  2 k ) .  

3. Exciton-phonon interaction 

The apparent importance of two-ion magnetic anisotropy in Pr suggests the presence of a 
strong coupling between the excitations of the spin system and of the lattice, as has 
been observed in the magnetic heavy rare-earth metals (with the exception of Gd). 
Although the heavy rare-earths are characterized as being spin-wave systems at low 
temperatures, these systems (especially the basal-plane ferromagnets Tb and Dy) 
have many features in common with the one formed by the hexagonal ions in Pr. We 
shall therefore employ an almost identical method in the following account of the 
exciton-phonon interaction in Pr as that used in the treatment of the magnon-phonon 
interaction in To (Jensen 1971, Jensen and Houmann 1975). 

Both the crystal-field and the two-ion coupling parameters in (2) depend on the 
relative positions of the ions. Ri - Rj .  and to first order in the Cartesian components 
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of the displacement, bRa(ij), the coupling between the spin system and the lattice is 
expressed by 

2 
2,- = c bRa(ij)D;A:'i(ij)61. ,(Ji)6,,, ,Uj) + hermitian conjugate (18) 

i + i  a I . l ' = O n t . m '  

where Dfz',(ij) are phenomenological coupling parameters. As in (2) I + I' is even owing 
to time reversal symmetry, and single-ion terms are included as those for which either 
1 or I' is zero. The Cartesian 1,2 and 3 axes are chosen to be along the x, y and z direction 
respectively. In (18) we have utilized the S = 1 basis, (l), by considering only terms for 
which I and I' are both smaller than 3. 

In the treatment of the magnetic excitations of the hexagonal ions in Pr we could. 
in principle, neglect the presence of the ions on the cubic sites. In a determination of the 
selection rules for the coupling between these excitations and the phonons we may still 
make use of this assumption. This simplification is possible because the cubic sites are 
the centres of inversion symmetry of the total crystal. The selection rules of the coupling 
to one of the 2 x 3-phonon branches of the HCP lattice are the same as those to the two 
equivalent ones (with respect to the displacement vectors of the hexagonal ions) of the 
2 x 2 x 3-phonon branches of the real crystal. We shall add that when q is along the 
x or J' directions one of the optical phonon modes is not coupled to the hexagonal lattice 
or to the hexagonal excitons. 

The procedure used in the derivation of the selection rules for the exciton-phonon 
interaction in Pr is the same as used by Jensen and Houmann (1975) in the case of Tb. 
The number of non-vanishing coupling parameters in the spin-lattice Hamiltonian, 
(18), is reduced by symmetry operations (corresponding to those of the HCP lattice). 
The spin part is expanded in the excitation operators introduced in the preceding section. 
Only the direct coupling of the excitons and the phonons is of interest in the present 
context, and all terms in (18) which are not linear in the exciton operators are neglected. 
The components of the displacement vector are expanded in terms of normal phonon 
coordinates. The selection rules deduced in this way are given in table 1. The excitations 
propagating in the highly symmetric x, y and z directions are considered in both the 
cases of a field applied along the x and the y direction. Because of the approximate 
description of the magnetic excitations, the selection rules are valid only in the limit 
of zero temperature. We remark that the selection rules for the coupling between the 
transverse excitons ( y  modes in case the field is applied along the x axis) and the phonons 
are the same as those deduced for the magnon-phonon interaction in a basal plane 
ferromagnet (Cracknell 1974, Jensen and Houmann 1975). 

At zero field only the transverse phonons which have their wavevector or their 
polarization vector parallel with the c axis are allowed to couple to the excitons. There 
were no indications of these couplings in the neutron scattering experiments by Houmann 
et al(1975a). By the application of a field in the basal plane it is possible to induce other 
kinds of exciton-phonon interactions. Such couplings, which are marked by H, or H, 
in the table, should appear as energy gaps at the crossing points of the unperturbed 
exciton and phonon dispersion relations, and these energy gaps should be proportional 
to sin 8 (plus possible corrections of the order of sin3 0). This kind of field induced 
exciton-phonon coupling was observed by Houmann et a1 (1976) in their studies of the 
field dependence of the exciton spectrum in Pr. Some of their experimental results are 
shown in figure 1 (here the wavevector is parallel to the y axis and the field is applied 
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along the x direction). In this configuration the experiments revealed a strong, field 
dependent interaction between the EA, exciton mode and the TA, phonon mode (the 
labelling of the modes is the one introduced in the caption to table 1). A coupling 
between the EO, and the TA, modes is also evident. wlicreas the possible coupling of the 
EA, and the LA modes is only weakly indicated. Although the polarization vector of the 
transverse phonon mode which couples to the excitons was not determined in the neutron 
experiment the energy difference between the TA, and TA, modes (10% as determined 
by Greiner et al (1973) in the long-wavelength limit) is sufficiently large to allow the 
specification above of the phonon mode Houmann et al also observed that the EA,-TA, 

Table 1. The selection rules foi the linear coupling between the magnetic excitations and the 
phonons propagating on the hexagonal ions of Pr. The results are given for the modes 
propagating along the x. y and z directions (TK. TM and TA) corresponding to the tables 
l(a). l (b )  and l(c) respectively. The different modes are labelled in accordance with their 
characters at small wavevectors considering the crystal to be an HCP lattice. EA, denotes the 
acoustic exciton polarized along the x axis, E , , ( q ) ,  etc. The subscript of TA (TO) defines the 
direction of the polarization vector of the acoustic (optical) transverse phonons (the eigen- 
vectors of the modes propagating in the x (a) direction labelled LA and TO,, may be of a mixed 
character, and similar for LO and TA,.). 0 marks the interactions which may be present a t  zero 
field, whereas Hx(Hy)  designates a coupling proportional to the field applied along the 
x ( y )  direction (H:,, are couplings proportional to the field squared). In the DHCP crystal of 
Pr there are twice as many phonon branches as appearing in the table. One set of the nine 
optical branches and the acoustic phonons will behave in accordance with the acoustic 
phonons appearing in the table. The two other sets of the optical branches correspond to the 
optical phonons in the table. 

coupling of the modes propagating in the x direction in a field applied along the J’ 

direction is just as strong as the equivalent EA,.-TA, interaction in figure 1. No coupling 
appeared between the magnetic and elastic excitations propagating in the c direction. 

The amplitude of the exciton-phonon coupling at finite wavevector (reasonably 
close to r) may be utilized for a prediction of the magnitude of magnetoelastic effects 
(at zero wavevector). The magnetostriction coefficients are directly related to the linear 
parts of the q dependences of the couplings between the acoustic magnetic and elastic 
excitations in the long-wavelength limit. These relations are most easily obtained con- 
sidering only the single-ion part of the magnetoelastic Hamiltonian which then includes 
the long-wavelength contributions of two-ion couplings in an effective fashion : 

+ B,,[E@,. + ( E ’ ) * O 2 ,  J4]). (19) 

Eij = ;[au/3xj + au,/ax,1 

The Cartesian strains, eij, are defined in the usual way in terms of the elastic displacements. 
u(x ,  t ) :  

(20a) 
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J-.-1 I 

Wavector (8") 
0 0  0 4  0 8  0 0  0 4  0 8  

Figure 1. Experimental field dependence of the excitation energies and of the exciton- 
phonon interactions for excitons propagating in the (100) directions in Pr at 4 2 K The 
field IS applied along the (1 10) direction (after Houmann et al 1976) The values of HE are 
( U )  0 kOe, (b) 14 5 kOe, (c) 29 0 kOe, (6) 43 5 kOe 

and the strains appearing in (19) are 
€2.1 - l e a .  1 - el + + e2.2 = - ,E" = e I 3  + iE23, €7 = :(el1 - e Z 2 )  + k12. 

(20b) 

This general single-ion Hamiltonian, ( 1  9), adequately* describes most features of the 
dynamic phenomena. The inhomogeneous parts of the strains are expanded in phonon 
operators using the local strain theory of Evenson and Liu (1969). The spin part is treated 
as above. In this way it is possible to predict all the exciton-phonon couplings appearing 
in table 1. The energy gap in figure 1 occurring at the crossing point of the dispersion 
relations of the E A ,  and the TA, modes (wavevector q and energy E 2 ,  is determined 
from (19) by 

(214  de, = @2,1(q)[E2,1(4) + 2 w ) l } 1 ~ z  - { E 2 ,  1(4XE,, l(4) - 2 w l ) l ) 1 : 2  

z 2V(q) 

where 



120 Jens Jensen 

M is the mass of the ions and f ( q )  is a factor depending on the wavevector and on the 
differences in phase of the modes on the four sublattices. An estimate of these phase 
factors indicates that the expression for f ( q )  in the long-wavelength limit 

f ( q )  = f,(d = 26- sin (qb/2) (224 
(b is the lattice parameter) is still applicable at the wavevector of interest ( q  r 0.35 A -  I). 
The energy gap of the acoustic-optical interaction (EO,-TA,) is determined by (21) if 
(v, K) = (2, 1) is replaced by ( v ,  K )  = (2,2) and f ( q )  by 

f ( 4 )  = f O ( 4 )  = b-  sinZ (qb/4) (22b) 
f , ( q )  is also given roughly by (22a) in the presence of two-ion couplings, because f , ( q )  
is constrained to be equal to q in the long-wavelength limit if B,,  is considered as an 
effective magnetostriction parameter (in which case two-ion couplings only introduce 
corrections to the order of (qb)3), whereas fo (q)  may deviate substantially from that 
determined by (22b). The combination of (224 and (22b) predicts the energy gap, EO,-TA,, 
to be approximately ten times smaller than the acoustic energy gap, EA,-TA,, which is a 
factor of two smaller than the observed value (figure l), indicating the importance of 
magnetoelastic two-ion couplings. 

The exciton-phonon energy gaps in figure 1 are roughly proportional to the applied 
field as expected by the factor sin 0 in (21b) (two-ion y-strain couplings may introduce 
deviations proportional to sin3 0). In the estimate of an effective value of B,, we neglect 
quadrupole contributions (K im, (q ) )  to E", .(q) and assume sin 0 to be determined by 
equation (11) and the experimental value for the field dependence of the magnetic 
moments of the hexagonal ions, p = gpB(O 1 J ,  I O'), as measured by Lebech and Rainford 
(1971). Using A = A,, = 3.2 meV we find that the energy gap, EA,-TA,, and the equivalent 
one observed in the x-direction (EA,-TA,) are reproduced by the single-ion Hamiltonian, 
(1 9), when 

B,,  = +30 meV. 

We remark that the present choice of parameters does not fulfill the equilibrium condi- 
tion, (9). Using this equation instead of the experimental value of the magnetic moment, 
we find that sin 0 is approximately $of that used above (and consequently lB,,l ~ 4 5  meV). 
This inconsistency may partly be due to the presence of quadrupole couplings and of the 
crystal-field levels which are neglected, but these corrections do not seem to be sufficient 
(see the Appendix). 

If the system is magnetoelastically isotropic (%me, (1 9), independent of a coordinate 
transformation) the coupling parameters are related as follows 

If (23) suggests the right order of magnitudes the 1)-strain coupling, B,,, is the dominating 
one also for the interaction between the longitudinal phonons and the excitons, and the 
energy gap of the EA,-LA coupling in figure 1 should be of the order of half the energy gap 
of the EA,-TA,. interaction. Whether this is the case or not is not clearly resolved in the 
experimental results. 

The absence of the E coupling in the experimental exciton spectrum implies that the 
€-strain parameter IB211 is at least a factor of three smaller than lB,,I, in contrast to the 
condition for magnetoelastic isotropy, (23). The unimportance of the E coupling means 
that the two-ion anisotropy, which is observed in Pr at zero field (Houmann et a/ 1975a). 
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is not connected to the phonon field. The phonon-induced interactions appear as quad- 
rupole couplings in the effective spin Hamiltonian. The only quadrupole interaction 
which may affect the dispersion of the excitons at zero field is K: l(q), and the €-strain 
interaction is the only phonon-induced coupling which may contribute to this term. 

4. Magnetoelastic effects 

In this section we shall discuss the implications of magnetoelastic coupling on the 
behaviour of the excitons and the phonons in the long wavelength limit in Pr. The single- 
ion magnetoelastic Hamiltonian, (19). is sufficiently general when considering the 
main effects, but we shall occasionally include phenomena which are of two-ion origin. 

At equilibrium the derivatives of the free energy with respect to the strains must be 
zero, implying e.g. 

- 
E’/ = B”(o’~62,’ )0’)/2cy. (24) 

cy = c6,/4N, C~ = c4,/4N, c1 = c l l / N ,  c3 = c 3 J N  

We shall be using the reduced, Cartesian elastic constants 

(25) 
where N is the total number of ions per unit volume (twice the number of the hexagonal 
ions). In the paramagnetic region only dz,o has a nonzero expectation value at zero 
field, and consequently only the a strains may differ from zero. The a strains preserve 
the symmetry of the crystal, and the effect of these strains on the excitons may be de- 
scribed by introducing an effective crystal field splitting, A(9b), which then becomes field 
(and temperature) dependent. The E strains also vanish identically in the case of a field 
applied in the basal plane, and we shall be concerned mostly with the y strains which 
describe distortions of the hexagonal symmetry of the basal plane. 

In the case of an effective spin S = 1 system only the 1’ strains may give rise to mag- 
netic anisotropy in the basal-plane, and this only if the y strain Hamiltonian includes the 
pure two-ion term : 

= -; 1 B:2:( i j ) [€G2.  ’(Ji)O’. 2(5 ,  + (€’)*d2, -’(J,Mj2, -’(Jj)]. (26) 
i+j 

Defining the coupling parameter at zero wavevector 

this parameter corresponds to the magnetostriction parameter c,A considered in the 
case of Tb (Houmann et a1 1975b). When the field is applied along the x direction the 
1’ strains are determined by (19) and (26) as 

and if the field is applied along the y direction 

The B,, term introduces an anisotropy in the basal plane, but, besides being of pure 
two-ion origin, the effect is of higher order in sin 8. 

As in the case of Tb (Houmann et a1 1975b) the presence of a homogeneous y strain 

I1 
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modifies the energies of the magnetic excitations. If we neglect two-ion contributions to 
the 1' strain these modifications appear only in A, and A', (15), as 

2Cy(E')2 . C~",~(A,) = -(1 - 3 sin2 0)dme(Al). (29) 
sin2 0 cos 20 ' 4 n e ( A i )  = - 

In the general case of q-dependent ]'-strain couplings, the contribution to A,,, ,(O) 
+ B, ,(O) is correctly given by (29) to first order in sin2 8, but the coupling: E'dl, - l(Ji) 
x G I ,  - , (JJ  introduces a different ]'-strain term in A,,, ,(O) - B,,, ,(O) to first order in sin2 8. 

The contributions to the exciton energies of the dynamic exciton-phonon coupling 
vanish in the long-wavelength limit, corresponding to the 'frozen lattice' model of Tb 
(Houmann et al 1975b). The two-exciton-one-phonon interactions may cause a zero 
point correction to this result equivalent to a perturbative modification of the dispersion 
relations, (1 3)-(17), due to higher-order exciton-xciton interactions. The two-exciton- 
one-phonon interactions are of greater importance at elevated temperatures and may 
perturb appreciably the temperature dependence of the elastic constants (Jensen 1971). 
The direct one-exciton-one-phonon interaction is of most interest at zero temperature. 
and it gives rise to a change of the velocity of the sound waves which we shall express as 
modifications of the corresponding elastic constants. We consider the case of a field 
applied along the x direction and magnetoelastic two-ion contributions are neglected 
except in the case of c66. The notation is simplified using A Y  t- BY instead of A,,,(O) 

The velocities of the longitudinal sound waves in the three symmetry (1, 2, and 3) 
+B,, l(0). 

directions are changed according to 

Acll/cll = (c;, - cl1)/cl1 = -(16c1)-'(3Bk12 - B f J  + /3B,,)'sin220/(A1 + B,)  

A c ~ ~ / c ~ ,  = -(16c1)- '(3B~~ - BY; - PB,,), sin' 20/(A, + B,)  (30) 
A c ~ J c ~ ~  = -(16c3)-l(3BF2 + 2BfJ), sin228/(A, + B,). 

The transverse sound waves propagating or polarized along the c direction are described 
by 

3 r2  
16c, 

A c ~ J c ~ ~  = - __ B i ,  COS, 0 / ( A 2  - B2)  

(3 1) 

according to whether the propagation or polarization vector in the basal plane is along 
the x or the y direction. The transverse sound waves propagating along the x or the y 
direction which have their polarization vector in the basal plane are represented by 

P' B:, sin2 0 / ( A 2  + B,). 

If we generalize the equation (28) for the ;' strain so as to include all possible couplings, 
by allowing B,, to depend on sin20, then we deduce the following general relation 

(32b) 

when the field is applied along the x axis, and in the case of a field applied in they direction 

P2 = - - ( B 2 ,  - 2PB4, sin2 sin2 B/(A, + B,), 
C 
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(324 
8, A c ~ ~ I c , ,  = - - (B,, + 2PB,, sin2 0), sin’ O/(A1 + Bl). 

The numerators of the two expressions are simply related to ;’ in (28). Notice that A ,  +B,  
in (32b) and A ,  + B,  in (32c) are equal except for the anisotropy term proportional to 
B,,B,, sin4& The equations (30) and (31) are easily generalized to the case of a field 
applied along the y-direction ( A ,  & B,  and A ,  & B, are interchanged, PB,, is replaced 
by -PB,,, and A c ~ ~  and A c ~ ~  are interchanged). 

The case of a ferromagnetic ordering in the basal plane is of greatest interest and we 
shall discuss it briefly. As mentioned in 6 2 the quadrupole interactions do not alter the 
condition that 11(0), (lo), has to exceed 1 to produce a ferromagnetic ordering of the 
magnetic moments, which also holds true when the y-strain couplings are introduced 
(but the quadrupole interactions themselves may be strong enough to induce an ordering 
of the quadrupole moments corresponding to sin 6 = 1). The ct strains are only of interest 
as far as they contribute to the effective A. At the critical value of A(0) (= 1) A,,, ,(O) + 
B,,,(O) are both zero (v  = 1 or 2) and hence the energies of the two uniform exciton 
modes vanish. The velocity of the transverse sound waves which have their polarization 
and propagation vectors both lying in the basal plane will also be zero (Ac66/c66 = - l), 
whereas the velocities of the longitudinal sound waves will stay finite. If 3.(0) is greater 
than 1 the exciton energies and the velocity of the transverse sound waves are all finite. 
The energy of the uniform transverse exciton mode is only non-zero because of the 
magnetoelastic :)-strain contribution, (29). If only one of the two :,-strain parameters B,, 
(effective) and B,, are different from zero it is not possible to define a magnetically 
easy or hard planar axis, and the velocity of the transverse sound waves will agam be 
zero. If this is not the case then the application of a field along the hard planar axis, of a 
magnitude corresponding to the anisotropy field, will produce the Goldstone mode in 
the phonon spectrum. These features of the 11-strain coupling are entirely equivalent to 
those of the basal-plane ferromagnet Tb (Houmann et al 1975b). 

The elastic constants of Pr have been measured as functions of temperature by Greiner 
et a1 (1973). Using their value for cS6 and B,, estimated in $ 3 we find 

- i(:ll - E , , )  = k8.13 x l o w 3  sin2 8 

If BfJ and Bi2J are of the same order of magnitude as B , ,  (as suggested by the condition 
of magnetoelastic isotropy, (23)) then the 1)-strain contribution to F l l  is a factor of 10 
larger than the a-strain contributions. El ,(H) - ;ll(0) has been measured by Ott 
(1976) at a field of 10 kOe applied alo,ng the x axis and found to be equal to 1.6 x lo-,. 
Using i(:ll - F , , )  % ;IFll + E , , /  and B,, = +30meV we get FI1 = 1.44 x in 
fair agreement with the experimental result. 

The relative changes of the elastic constants as functions of field (at zero tempera- 
ture) are estimated to be negligible <Acll /c l l  = -0.01 at a field of 40kOe) with the 
exception of Ac66/c66. c66 is found to be reduced by approximately 15 of its zero field 
value when a field of 40 kOe is applied in the basal plane. This reduction should reach a 
maximum of about 19% at a field of the order of 6G80 kOe. In this estimate we have 
used the same assumptions as in the calculation of B,, ( = 30 meV) in $3. 

The ])-strain contributions to the longitudinal and transverse exciton energies, (29), 
are found to be equal - 5 7; and 2.5 respectively at a field of 40 kOe. The application 
of an external stress may induce a magnetic ordering of the spin system (at zero field). 
The largest effect is attained by a uniaxial pressure along a planar axis, and assuming 
B,,(eff) to be roughly independent of q we find that a uniaxial pressure of 0.9kbar 
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applied along an a direction should be sufficient to induce an antiferromagnetic ordering 
of the b-axis components of the magnetic moments in Pr. 

The presence of the cubic ions and the crystal field levels which are neglected may 
influence considerably the field dependence of the strains and the elastic constants. 
The field induced mixing of the crystal-field levels rl and r4 of the cubic ions may en- 
hance the y strain, ?, by about 25% (assuming B,,(cubic) = B,,(hexagonal)), which 
is the only correction to lowest order in the field. An order of magnitude estimate of the 
effects of the crystal field levels which are neglected, shows that the field dependence of 
c66 may deviate by 10-20% from the result deduced above. 

5. Summary 

The dispersion of the magnetic excitations of the hexagonal ions in Pr was deduced 
from a general spin Hamiltonian. In the calculations were used the simple pseudo- 
boson technique and the hexagonal ions were assumed to constitute an effective spin 
S = 1 system. Within this framework the selection rules for the linear coupling between 
the magnetic excitations and the phonons were determined. The excitation spectrum 
was considered in both the cases of an applied field along an a and a b  direction. 

The field induced exciton-phonon interactions in Pr observed by Houmann et al 
(1 976) behave in accordance with the present account. The acoustic-optical magnon- 
phonon interaction in the c-direction of Tb (Jensen and Houmann 1975), which violates 
the selection rules for a simple basal-plane ferromagnet, does not seem to have its 
counterpart in Pr. The abnormal magnon-phonon interaction in Tb is explained by a 
small deviation of the spin polarization of the conduction electrons from the direction 
of the localized moments (due to the spin-orbit coupling). This complication of the 
ground state (in the presence of an external field) does not appear to be of any importance 
in Pr. 

The amplitude of the exciton-phonon coupling observed by Houmann et al was 
extrapolated to zero wavevector, and the value of the ?-strain parameter, B,,  , obtained 
in this way was utilized in a prediction of the effects of magnetoelastic couplings in 
Pr. The most pronounced effect was found to be a strong field dependence of c66 
which may be reduced by as much as 19 of its zero field value when a field of the order 
of 60 kOe is applied in the basal plane (at zero temperature). 

The large 1’-strain coupling, B,,, present in Pr, further, raises the possibility of forcing 
the nearly critical system to order by the application of a uniaxial pressure of 1 kbar 
along an a direction. 
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Appendix 

We wish to discuss here the possible effects of a magnetic coupling between the two 
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types of ions in DHCP Pr. Because of the complications introduced by such a coupling 
we shall consider only the simplified two-ion Hamiltonian : 

XIl = -4 &"(i,j)JYJj" 
izj v 

< is the v t h  component (v = x, y or z) of the angular moment on site i. The summation 
includes both the hexagonal and the cubic ions. The excitations of the 'cubic' ions are 
assumed to arise from the r1-r4 transition, and we define the effective two-ion coupling 
parameters : 

CI = 4 2 0  and ;' = JW. Phh(q) is the Fourier transformed coupling between the 
hexagonal ions (the two-sublattice structure of the HCP lattice is neglected), &;,(q) 
is the coupling between the two types of ions and &,",(q) the coupling within the cubic 
lattice. 

Using the same approximations as in $2 the normal excitations are pure x, y and z 
modes. If Ahc(q) is zero the dispersion relations are 

('4.3) 

If Al,(q) is different from zero the excitations of the hexagonal and cubic ions are coupled, 
and the energies of the normal modes are the positive roots, E,  of the following equation 

':h(q) = Ah[1 - &(q) ] lJ2 ,  = x, y 

&z,(q) = Ac[l - A ~ c ( q ) ] 1 i 2 ,  v = X, y ,  z 

L E 2  - ('ll~(q))~] - ( ' g ~ ( q ) ) ~ ]  - (AcAhAlc(q))2 = O, = x, y -  (A.4) 
Because A, $ A, the excitations of the hexagonal ions (and the cubic ions) may still 
be considered as normal modes only A;(,(q) in (A.3) is to be replaced by an effective 
coupling parameter 

I";,. e f f ( q )  = ';h(q) + (Acnl,(q))2//[('ac(q))2 - (E&(q))2] 

'"lh(q) + (A;c(q))2/[ - 3 " z c ( q ) ] .  (A.5) 
If we assume #;,(q) z f : , (q)  then A;,, ,Jq) is of the order of larger than A;lth(q) 
( ~ 0 . 5 )  showing that the perturbative decoupling of the two spin systems should work 
reasonably well when considering the excitation spectrum. 

When an external field is applied along the v axis in the basal plane the expectation 
values of the moments on the hexagonal ions (equation (1 1) with 8 = 8,) and on the cubic 
ions 

('4.6) 
Y (J")), = - sin 28, 

v 2  
are determined by the coupled equations (molecular-field approximation) 

JZG? 
tan 28h = - h + &(O) sin 28, + J(A,/A,)A,~(O) sin 28, 

'h 

$1' 
A C  

tan 28, = - h + &c(0) sin 28, + J(A,/A~)R,,(O) sin 28,. ('4.7) 

The condition for an induced magnetic ordering described by a wavevector Q is 

(1 - &(Q))(1 - AI,(Q)) - (Ag,(Q))z = 0 ('4.8) 
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in which case the energy of one of the normal v modes at q = Q, (A.4), will be zero (con- 
sistent with the approximations involved). 

In the limit of small fields the equation determining 8, may be written 

tan 28, = JZah/A, + A,,, MF(0) sin 28, 

where 
(A.9) 

(A.lO) 

z is a constant equal to yJ=/a z 0.5. A comparison of (AS) and (A.lO) shows that 
the effective Ahh(0) determined from the excitation energy at zero wavevector (Ahh, eff(0) = 
0.4 using A, = 3.2 meV) deviates from the effective two-ion contributions to the MF- 
equilibrium equation to first order in Ahc(0). The field dependence of the moments on the 
hexagonal sites, as measured by Lebech and Rainford (1971), suggests %hh,MF(0) = 0.6 
(in the limit of zero field). (A.lO) also shows that the value of the magnetic moments of the 
hexagonal ions (as used in 53) is a more reliable measure for the mixing of the wave- 
functions IO) and 1 1) than the equilibrium equation. The crystal-field levels of the hexa- 
gonal and the cubic ions, which are neglected above, are unimportant in the limit of 
small fields because these states are coupled only indirectly to the ground state. The 
presence of these states and the coupling between the cubic and hexagonal ions will 
both introduce corrections of the order of sin2 8 to the field dependence of the hexagonal 
excitation energies, equations ( 1 3 H  17) (where the coupling parameters are the effective 
ones defined as in (A.5)). 

In the neutron diffraction studies of the Pr-Nd system by Lebech et a1 (1975) the 
appearance of an ordered moment on the hexagonal ions was not accompanied by any 
detectable moments on the cubic ions (in pure Nd the cubic moments order at a lower 
temperature than the hexagonal moments). This behaviour does not necessarily imply 
that the coupling between the two types of ions, dg,(q), is small. Only $i,(Q), where Q 
is the wavevector of the ordered moments on the hexagonal ions, has to be small. It is 
very plausible that this is the case, because the ordering is antiferromagnetic along the c 
direction (Q z n/2b and parallel to the b axis, corresponding to the minimum in the 
energy spectrum of Pr attained by the optical mode at this wavevector (figure 1)). An 
estimate of &,,(Q) gives #i,(Q) 2 &,,(O)/lO (including the effect of an estimated phase 
factor for the coupling between the two hexagonal sublattices) and, assuming &hc(0) 2 
&,,(O), this implies that the ordering of the moments on the hexagonal sites only induces 
a magnetic moment on the cubic ions which is a factor of about 30 times smaller. A 
magnetic coupling between the two types of ions in Pr of this order of magnitude may 
account for at least half the difference between i,,,, eff(0) and A,,, MF(0) and will introduce 
important contributions to the susceptibility of the cubic ions which has been observed 
to be relatively large (Lebech and Rainford 1971). 

References 

Birgeneau R J 1973 Magnetism and Magnetic Materials: A IP  Conf Proc. No. 10 eds C D Graham Sr and .I S 

Buckmaster H A. Chatterjee R and Shing Y H 1972 Phys. S fa t .  Solidi A 13 9-50 
Buyers W J L, Holden T M and Perrault A 1975 Phys. Ret.. B 11 266-77 
Cooper B R 1972 Magnetic Properties of Rare Earth Metals ed R J Elliott (London: Plenum Press) pp 17-79 
Cracknell A P 1974 J .  Phys. F: Metal Phys. 4 466-83 

Rhyne pp 166488 



Exciton-phonon interaction in Pr 127 

Evenson W E and Liu S H 1969 Phys. Rev. 178 783-94 
Greiner J D, Schilts Jr R J, Tonnies J J, Spedding F H and Smith J F 1973 J .  Appl.  Phys. 44 3862-7 
Grover B 1965 Phys. Rev. 140 A 1944-51 
Houmann J G, Chappelier M, Mackintosh A R, Bak P, McMasters 0 D and Gschneider Jr K A 1975a Phys. 

Houmann J G, Jensen J and Touborg P 197510 Phys. Rev. B 12 33244 
Houmann J G, Mackintosh A R, Rainford B D, McMasters 0 D and Gschneider Jr K A 1976 unpublished 
Jensen J 1971 Int. J .  Magn. 1 271-5 and Rise Report No 252 (Denmark: Atomic Energy Commission) 
Jensen J and Houmann J G 1975 Phys. Rec. B 12 320-31 
Jensen J, Houmann J G and M$ller H B 1975 Phys. Rea. B 12 303-19 
Lebech B, McEwen K A and Lindgird P A 1975 J .  Phys. C:  Solid St. Phys. 8 164-96 
Lebech B and Rainford B D 1971 J. Physique 32 C 1-370-1 
Lindglrd P A 1975 J.  Phys. C: Solid St. Phys. 8 L178-81 
Lindgird P A and Danielsen 0 1974 J .  Phys. C:  Solid St .  Phys. 7 1523-35 
Lindglrd P A and Houmann J G 1971 Proc. Con$ Rare Earths and Actinides, Durham ed E W Lee (London: 

Ott M R 1976 unpublished 
Rainford B D 1971 Magnetism and Magnetic Materials: AIP ConJ Proc. No. 5 eds C D Graham Jr and J J 

Rhyne pp 591410 
Rainford B D and Houmann J G 1971 Phys. Rev. Lett. 26 1254-6 

Rev. Lett. 34 587-90 

Institute of Physics) pp 192-5 


