
PHYSICAL REVIEW B 84, 104405 (2011)

Chiral spin-wave excitations of the spin-5
2 trimers in the langasite compound Ba3NbFe3Si2O14
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The inelastic scattering of neutrons from magnetic excitations in the antiferromagnetic phase of the langasite
compound Ba3NbFe3Si2O14 is analyzed theoretically. In the calculations presented, the strongly coupled spin- 5

2
Fe triangles are accounted for as trimerized units. The weaker interactions between the trimers are included
within the mean field and random phase approximations. The theory is compared with linear spin-wave theory,
and a model is developed that leads to good agreement with the published results from unpolarized and polarized
neutron-scattering experiments.
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I. INTRODUCTION

The langasite compound Ba3NbFe3Si2O14 belongs to the
space group P 321 (space group number 150), where triangles
of Fe3+ (L = 0, S = 5/2) ions are placed in a lattice as
indicated in Figs. 1 and 2. The space group contains no
improper symmetry elements and the other ions may be
arranged in two different mirrored ways as specified by the sign
of the structural chirality factor εT = ±1. The Hamiltonian for
the S = 5/2 spins of the Fe ions is assumed to be

H = 1

2

∑
i,ξ

∑
j,η

Jξη(ij ) Sξ (i) · Sη(j ) +
∑

i

HT (i), (1)

where i and j are the triangle numbers, and ξ and η = 1,2,3
denote the different spins in each triangle, as defined in
Fig. 1. The Hamiltonian for the isolated triangles is deter-
mined in terms of the intratriangle interaction J1 > 0 and an
anisotropy term assumed to be a Dzyaloshinsky-Moriya (DM)
interaction:

HT = J1(S1 · S2 + S2 · S3 + S3 · S1)

+Dc(S1 × S2 + S2 × S3 + S3 × S1) · ĉ. (2)

The system is antiferromagnetically ordered below TN =
27 K.1,2 The moments are confined to lie in the ab plane,
the property of which is in accordance with the anisotropy
introduced in Eq. (2) (independent of the sign of Dc). All
triangles in a certain ab plane are identical, and the three spins
〈Si

1〉, 〈Si
2〉, and 〈Si

3〉 in the ith triangle are making an angle of
γ = εγ (2π/3) with each other so that 〈Si

1〉 + 〈Si
2〉 + 〈Si

3〉 = 0,
where εγ = ±1 defined in Fig. 1 denotes the two possible
orientations of the ordered spin triangles. The moments along
a line parallel to the c axis rotate the angle φ = Q · c ∼=
εH (2π/7) from one layer to the next along the c axis,
where εH = ±1 denotes the helicity (chirality) of the helically
ordered moments.

The magnetic excitations at low temperatures in the heli-
cally ordered phase have been studied experimentally by two
independent groups: Stock et al.3 determined the dispersion
relations of the spin waves propagating in the a∗c∗ plane
from inelastic scattering of unpolarized neutrons, whereas
Loire et al.4 investigated the excitations by doing inelastic
scattering experiments in the b∗c∗ plane with both unpolarized
and polarized neutrons. Loire et al.4 carried through a linear
spin-wave analysis of their results from which they concluded

that the moments were all ordered in right-handed helices,
corresponding to εH = +1, in the εT = −1 enantiopure crystal
they were investigating.

The spin system in Ba3NbFe3Si2O14 is relatively strongly
frustrated, and the validity of the mean field (MF) and the
random phase approximation (RPA), on which the linear
spin-wave theory is based, may be questioned. The dominant
cause for frustration is the strong interaction J1 between the
three spins in the Fe triangles. In this paper, I have improved
the theoretical description of the system by treating the
spin triangles as trimerized units placed in a mean field due to
the interactions between neighboring trimers. The properties
of the trimers are determined accurately by a numerical
diagonalization of the mean-field trimer Hamiltonian, and
the corresponding spectrum of collective trimer excitations is
calculated by the use of standard RPA numerical techniques.5,6

Before the numerical analysis is presented in Sec. III, it is
instructive to consider the approximate but analytical behavior
of the spin system as done in Sec. II. The spin-wave theory
applied in this section is not the standard one based on the
Holstein-Primakoff transformation, but it is straightforward to
show that the present RPA approach and the standard spin-
wave theory are equivalent to leading order (see, for instance,
Ref. 5). In Sec. IV, the cross section for polarized neutrons is
calculated numerically, and the results are compared with the
experimental results obtained by Loire et al.4 The conclusions
are presented in Sec. V.

II. LINEAR SPIN-WAVE THEORY

A coordinate system is assigned to each spin, defined so that
the local z axis is along the direction of the ordered spin, and
the y axis is along the c axis and common for all coordinate
systems. In the spin-wave limit at T = 0, where the spins
are fully polarized, the ground state of the ith triangle is |000〉.
The states are defined by Sξz|n1n2n3〉 = (S − nξ )|n1n2n3〉,
where ξ = 1,2,3. The interactions between the different
triangles lead to a mean field acting only on the z components
(neglecting any anisotropy within the ab plane)

HMF = −h(S1z + S2z + S3z) + HT . (3)

In this section, it is assumed that h � J1 and only terms to
first order in J1/h and Dc/h are included. The intratriangle
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FIG. 1. (Color online) Fe triangles are stacked on top of each other
along the c axis in the Ba3NbFe3Si2O14 crystal. The line parallel to
the c axis through the center of the triangles is a threefold symmetry
axis, and the three altitudes of one triangle are twofold symmetry
axes. The oxygen ions are placed in different positions along the
paths determining the interplanar exchange constants J3, J4, and J5.
The shortest super-superexchange path (and bond angles closest to
π ) defines (Ref. 1) the structural chirality εT = ±1. If this path is
the one determining J5 as defined in the figure, the corresponding
chirality would be εT = −1, whereas εT = +1 if this path is the one
leading to the exchange interaction J3. The right part of the figure
shows the ordered spins in one of the triangles, where the moments
rotate the angle γ = εγ (2π/3) for increasing site index. The upper
triangle shows the case where εγ = +1, whereas the orientation of
the ordered spins in the lower triangle corresponds to εγ = −1.

interactions imply that the ground state |g〉 is modified
into

|g〉 = |000〉 + λ(|110〉 + |101〉 + |011〉),
(4)

λ = 3SJ1 − 2SDc sin γ

8h
.

The first-order modification of the ground state does not affect
the ground-state energy to leading order, and it is

E(g) = −3Sh − 3
2S2J1 + 3S2Dc sin γ. (5)

FIG. 2. (Color online) The triangles within an ab plane with a
definition of the exchange parameter J2.

The presence of the DM anisotropy implies a specific sign for
γ . The product Dc sin γ has to be negative, and the orientation
of the ordered spin triangles is determined by the sign of Dc

according to εγ = −sign(Dc).
The thermal expectation value 〈Sξz〉 = 〈g|Sξz|g〉 = S −

O(λ2) and, by neglecting the second-order modification, the
exchange field is determined from the interaction parameters
defined in Figs. 1 and 2 as

h = −2S[ 2J2 cos γ + J4 cos φ

+ J3 cos(φ + γ ) + J5 cos(φ − γ )]. (6)

φ is the angle of rotation of Sα within the plane, when going
from one ab plane to the next in the positive c direction.
The value of φ is found by maximizing h (minimizing the
ground-state energy) and is determined by

tan φ = R sin γ, R = 2(J5 − J3)

2J4 − J3 − J5
. (7)

It is remarkable that a difference between J3 and J5 implies
that φ becomes nonzero with no need for an interaction
between next-nearest-neighboring spins along the c axis.
Experimentally,2 it is found that |φ| is close to 2π/7.
The relation also shows that the magnetic helicity and the
orientation of the ordered spin triangles are intimately related,
that is,

εH = sign(R) εγ . (8)

The three lowest excited states are (approximately)

|a〉 = (|100〉 + w|010〉 + w2|001〉)/
√

3,

|b〉 = (|100〉 + w2|010〉 + w|001〉)/
√

3, (9)

|c〉 = (|100〉 + |010〉 + |001〉)/
√

3 ,

where w = ei2π/3. The corresponding excitation energies

α = E(α) − E(g) are


a = 
b = h + 3
4SJ1 − 5

2SDc sin γ,
(10)


c = h + 3
2SJ1 − SDc sin γ .

The collective excitations of this system may be derived by
introducing the “bosonlike” (creation) operators for the ith
triangle: α+

i |g〉 = |α〉, where α = a, b, or c. By neglecting the
interactions between the triangles and introducing the Fourier
transforms of the operators, the single-trimer MF Hamiltonian
may be written as

HMF = E(g) + 1

N

∑
[
aa

+
q aq + 
bb

+
q bq + 
cc

+
q cq].

(11)

Within the subspace of the four lowest spin states for the ith
triangle, we may write

S1x = [
mc

x(c+
i + ci) + ma

x(a+
i + ai + b+

i + bi)
]√S

6
,

(12)

S1y = i
[
mc

y(c+
i − ci) + ma

y(a+
i − ai + b+

i − bi)
]√S

6
,

and similarly for the other spin components, except that the
(ai,b

+
i ) and (a+

i ,bi) terms are multiplied, respectively, by w
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and w2 in the expressions for the spin components of S2, and
by w2 and w in the spin components of S3. To first order in
J1/h, the relative matrix elements are

mc
x = 1 + 2λ, mc

y = 1 − 2λ,
(13)

ma
x = 1 − λ, ma

y = 1 + λ ,

in terms of the mixing parameter λ defined in (4). The next step
is to substitute these expressions for the spin components in
the exchange Hamiltonian, which leads to an effective Hamil-
tonian quadratic in the excitations operators. By introducing
the Fourier transforms of the operators, the Hamiltonian stays
diagonal with respect to the (cq,c

+
q ) operators, when q is

parallel to the c axis. We shall concentrate on this case in the
following, i.e., that q · c = qc. In the zero-temperature limit,
the only nonzero commutator relations are [αq,α

+
q′ ] ≈ δqq′ ,

where α = a, b, or c. From the equations of motion, the energy
squared of the c-mode excitations propagating along the c axis
is then found to be

E2
c (q) = (


c + S
(
mc

x

)2{[J (Q) + 2J2] cos(qc) − 2J2}
)

×(

c + S

(
mc

y

)2{[J (0) − 4J2] cos(qc) + 4J2}
)
,

(14)

where the two exchange parameters are

J (Q) = 2[J4 cos φ + J3 cos(φ + γ ) + J5 cos(φ − γ ) − J2],
(15)

J (0) = 2[2J2 + J3 + J4 + J5].

J (Q) is also the parameter determining the exchange field h =
−〈Sξz〉J (Q). The remaining part of the excitation Hamiltonian
leads to two w modes with mixed |a〉 and |b〉 state characters,
and the squared energies of these modes are

E2
w1(q) = [


a + S
(
ma

x

)2
Jx(q)

][

a + S

(
ma

y

)2
Jy(q)

]
,

E2
w2(q) = [


a + S
(
ma

x

)2
Jx(−q)

][

a + S

(
ma

y

)2
Jy(−q)

]
,

(16)

where

Jx(q) = 2J4 cos φ cos(qc) + 2J3 cos(φ + γ ) cos(qc + γ )

+ 2J5 cos(φ − γ ) cos(qc − γ ) + J2, (17)
Jy(q) = 2J4 cos(qc) + 2J3 cos(qc + γ )

+ 2J5 cos(qc − γ ) − 2J2.

In general, Jx,y(−q) 
= Jx,y(q), which means that the two
modes are not symmetric around q = 0, and instead we have
that Ew1(q) = Ew2(−q).

Introducing the expressions for 
α and the relative matrix
elements into Eqs. (14) and (16), the squared excitations
energies are, to leading order in λ,

E2
c (q) = S2[1 − cos(qc)][−J (Q) − 2J2]

× [3J1 − 2Dc sin γ − J (Q)

+ 4J2 + {J (0) − 4J2} cos(qc)] (18)

and

E2
w(q) = S2[Jy(q) − J (Q) − 2Dc sin γ ]

× [
3
2J1 − 3Dc sin γ + Jx(q) − J (Q)

]
. (19)

Equation (18) shows that the energy of the c mode Ec(q)
vanishes linearly with q, when q → 0. This Goldstone mode,
which appears because the rotational symmetry in spin space
around the c axis is broken in the ordered phase, reflects that
it costs no energy to rotate the ordered structure around the
c axis. In the case of a c excitation propagating along the c

axis, all the c components of the spins in a certain ab plane are
moving in phase, whereas the w modes imply that the plane
of the spins in a certain triangle is oscillating out of the ab

plane, and this oscillation is affected by the DM anisotropy.
Because of this anisotropy, the w modes show an energy gap
at q = ±Q:

Ew(Q) � S(−Dc sin γ {3J1 + 2Jx(φ/c) − 2J (Q)})1/2. (20)

The transverse (x,y) components of the spins are defined
in a coordinate system for which the x axis rotates the angle
φ around the y or c axis from one ab plane to the next. In
a neutron experiment with the scattering vector k along the c

axis, modulo a reciprocal lattice vector, the excitations detected
are those described above at q = k, when the scattering derives
from the y or c component of the spins. If the scattering
is instead due to the x component, the experiment detects
the excitations at q = k + Q and q = k − Q. The c mode
behaves similarly to the spin waves in a simple helix, where
the c component reflects the branch for which the Goldstone
mode starts out from k = 0, whereas an ab scattering vector
component reflects the two branches, where the Goldstone
modes emerge from the two magnetic Bragg peaks at k = ±Q.
The situation is different for the w modes. The excitations
detected by the c component are those determined above at
q = k, i.e., a w1/w2 mode emerging (subjected to a small gap)
from the Bragg point at +Q and a w2/w1 mode emerging
from the other Bragg point at −Q. When the w modes are
detected via the component in the ab plane, the wave numbers
of the c-component branches are translated by Q or −Q. Two
of those become pseudo-Goldstone modes starting out from
k = 0, whereas the two other branches are placed with their
starting points at k = 2Q and −2Q. The intensities of the extra
±2Q branches are, however, always going to be weak.

Although the c mode shows similarities with the spin waves
in a simple helix, there is one important difference, namely,
that the cross section of the c mode vanishes when the total
scattering vector is parallel to the c axis. In this case, the
excitations are detected exclusively via the spin components
perpendicular to the c axis. For the c modes propagating along
the c axis, all the locally defined spin components within one
ab plane oscillate in phase, and this means that the sum of
the ab components for a spin triangle stays zero during the c-
mode oscillations. The two w branches starting out from ±2Q

have no cross section either, which leaves the two pseudo-
Goldstone w branches starting out from k = 0 to be the only
ones appearing in a scan along (0 0 q). Such a scan would,
effectively, only show a single spin-wave branch (see Fig. 7
in the next section), in strong contrast to that expected in the
case of a simple helically ordered system. In general, Jy(q) =
Jy(2φ/c − q), whereas Jx(q) 
= Jx(2φ/c − q), which means
that there are actually two branches in the plot along (0 0 q)
shown in Fig. 7, but the energy difference is small, about
0.06 meV at maximum around q = 1.25.
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In addition to the DM anisotropy included in Eq. (3), the
symmetry of the system also allows the following term7:

Dab(r̂12 · S1 × S2 + r̂23 · S2 × S3 + r̂31 · S3 × S1), (21)

but this interaction does not affect any of the quantities
considered above to leading order in Dab/h. The numerical
analysis presented below shows that this coupling may weakly
perturb the ordered structure by inducing a small oscillating
c component on top of the spiraling ordered moments lying
in the ab plane. The ordered c components have a constant
magnitude within an ab plane, the magnitude of which varies
sinusoidally along the c axis with the same period as the helix.
Using a Dab with the same magnitude as Dc = 0.0038 meV
considered in the next section, the scattering intensity due to
the oscillating c-axis moment is found to be a factor of 106

smaller than the intensity due to the a or b component. Hence,
we may safely neglect any influences from Dab. Finally, I
may add that the simple anisotropy term Dz(S

2
1z + S2

1z + S2
1z),

with Dz � 0.005 meV, may replace Dc in the explanation
for the confinement of the moments to the ab plane and for
the presence of the energy gap Ew(Q). In contrast to the
DM term, the Dz anisotropy would affect the susceptibility
components in the paramagnetic phase, but the value of Dz

indicated by the energy gap Ew(Q) is too small to make
any observable difference. However, this interaction has no
influence on the choice of sign for γ , and is therefore unable
to explain why the system prefers one of the two choices as
found experimentally.1

III. NUMERICAL MODEL CALCULATIONS

In the numerical analysis, the cluster MF Hamiltonian (3),
with the self-consistent condition that h = −〈Sξz〉J (Q), is di-
agonalized precisely, and the excitation spectra are calculated
without making any further approximations than the basic
random phase approximation (see Refs. 5 and 6). The best
MF/RPA trimer model obtained from fitting the susceptibility
and the excitation data obtained by Stock et al.3 is (in units of
meV)

J1 = 1.25, J2 = 0.2, J3 = 0.1,
(22)

J4 = 0.064, J5 = 0.29, Dc = 0.0038.

The anisotropy is very small, and I have chosen the sign to
be positive. This means that γ = −2π/3, and introducing the
exchange parameter given above into the equilibrium condition
(7) leads to tan φ = 1.257 or φ = 2π/7.

The calculated results for the susceptibility components
as functions of temperature are compared with experiments in
Fig. 3. The dashed line in this figure shows the MF susceptibil-
ity for the same model given by (22), but with the intratriangle
interaction J1 included as a mean-field contribution. This
simple MF model leads to a Néel temperature that is 70.1 K,
whereas the present cluster-MF model predicts TN = 36.7 K in
reasonable agreement with the experimental value TN = 27 K.
The calculated Curie temperature is θ = −190 K, and the one
derived from the experimental paramagnetic susceptibility in
Fig. 3 is θ = −188 K (using the data within the whole interval
between TN and 300 K), hence, the experimental frustration
factor f = −θ/TN (Ref. 9) is about 7 for this system. Because
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FIG. 3. (Color online) The calculated susceptibility components
as functions of temperature compared with the experimental results
of Marty et al. (Ref. 8). The red line and the red crosses denote,
respectively, calculated and experimental results, when the field is
applied along the c axis. The green symbols denote the results
obtained when the field is applied perpendicular to the c axis. The
dashed line shows the MF behavior for the corresponding simple
S = 5/2 system. The difference between the dashed and solid lines
indicates the importance of correlation between the three spins in the
triangle clusters.

of the relatively strong intratriangle interaction J1, the system
is frustrated, which invalidates the simple MF approximation.
Within the cluster-MF approximation, the spin triangles are
treated as correlated units, implying that the main source for
frustration J1 is accounted for in an exact way. The results
above and the comparison in Fig. 3 show that the MF method
is substantially improved when choosing the basis to be the
spin triangles instead of the individual spins.

The parameters given by (22) lead to an exchange interac-
tion J (Q) = −0.821 meV. The self-consistent diagonalization
of the cluster-MF Hamiltonian in (3) with h = −〈Sξz〉J (Q)
predicts the moment 〈gμBSξz〉 to be 4.71 μB/Fe in the
zero-temperature limit. The moment is reduced from its fully
polarized value of 5 μB/Fe because |000〉 is not an eigenstate
for the J1 part of the Hamiltonian (3). By introducing
the model parameters in the expression (4) for the mixing
parameter, the result turns out to be λ = 0.57. Hence, λ is
not small compared to 1, and the approximate expressions
for the spin-wave energies given by (18) and (19) would not
be expected to apply. Nevertheless, the analytic spin-wave
theory leads to useful results both when applying directly
the final results [Eqs. (18) and (19)] or when using instead
the correct cluster-MF values for the energy differences and
matrix elements in the expressions (14) and (16), as shown,
respectively, by the dashed and the solid lines in Fig. 4. The
numerical diagonalization of (1) predicts 
a = 3.486 meV
and 
c = 4.751 meV, and the relative matrix elements are
found to be mc

x = 1.520, mc
y = 0.618, ma

x = 0.655, and ma
y =

1.275. The dispersion relations along the c axis shown in
Fig. 4 have been calculated when introducing these values
in the spin-wave expressions (14) and (16). The results are
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FIG. 4. (Color online) The calculated spin-wave dispersion rela-
tions along the c axis compared with the experimental results obtained
at 2.5 K by Stock et al. (Ref. 3) along (2 0 q). The calculated energies
of the two w modes and the two branches of the c mode are shown
by, respectively, the blue and orange lines, and the spectrum includes
only the two times two branches observed in the experiments. The
solid lines show the results obtained when introducing the calculated
values of the energy splittings and the matrix elements in Eqs. (14)
and (16), whereas the dashed lines are the results obtained using the
linear spin-wave expressions (18) and (19).

in good agreement with experiments and with the scattering
intensity maxima obtained numerically. The only difference
between the numerical RPA calculations (see below) and the
spin-wave results given by Eqs. (14) and (16) and shown by
the solid lines in Fig. 6 is that the simplified model neglects
the possible influences of the higher-lying MF levels. This
minor inaccuracy is the reason why the calculated c mode
shows a small energy gap at Q and that Ew(Q) is too large
in comparison with the numerical RPA result. The analytical
spin-wave theory is valuable not because it is nearly able
to reproduce the numerical results, but because it allows a

precise interpretation of the numerical RPA calculations. It
is possible to extend the analytic theory to cases where the
wave vector also has a component in the ab plane. This
is a more complex situation because all three levels are
being mixed with each other.10 The most important change
is that J2 in the spin-wave energies is being replaced by
J2[cos(q · a) + cos(q · b) + cos(q · a + q · b)]/3. I have not
found it necessary to carry through these more demanding
calculations, and neither have I tried to work out the analytical
results for the spin-wave scattering intensities because all these
extra complications are handled in a satisfactory and more
accurate way by the numerical RPA calculations.

The numerical RPA results derived for the spin-wave
scattering intensities are presented in Figs. 5 and 6. In all
the calculations, the intensity variations due to the magnetic
form factor of the Fe ions are neglected. The calculations of
the logarithmic intensities are done with a narrow resolution
(a Lorentzian with  = 0.05 meV), whereas a Gaussian
resolution width and an intensity scale factor have been used
as fitting parameters in the direct comparisons shown in Fig. 6.
The two fitting parameters are the same for all the results shown
by the blue lines, and both parameters have been increased
by 20% in the results shown by the red lines in the right
part of Fig. 6. These calculated results are compared with the
experimental cross sections obtained by Stock et al.3

As discussed in the preceding section, a scan along
(0 0 q) should show only two nearly degenerate w branches
starting out from the crystallographic Bragg point at q = 1
(in reciprocal lattice units) with the energy Ew(Q), and the
calculated scattering intensities obtained for such a scan are
shown in Fig. 7. Preliminary measurements by Stock et al.11

are consistent with this prediction. The structural parameters
determined by Marty et al.1 show that the distance d between
the ions in the Fe triangles is very close to be equal to (

√
3/4) a

and, thereby, that a∗d = π . This means that the structure
factor of the spin triangles is unchanged if 4a∗ or 4b∗ is
added to the scattering vector. Hence, when neglecting any
form-factor effects, the only difference between a (0 0 q) and

FIG. 5. (Color online) Logarithmic contour plots of the calculated spin-wave scattering intensities along different scattering vectors in
reciprocal lattice units. The black squares indicate the experimental energies determined at T = 2.5 K by Stock et al. (Ref. 3). The logarithmic
scale shown to the right is common for all three cases shown here and also applies to Fig. 7 and to the left figure in Fig. 8. The use of the
logarithmic scale may be slightly misleading in the sense that the low-intensity branches (light green and light blue), which are easily identified
in these plots, are probably not visible under realistic circumstances.
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FIG. 6. (Color online) Detail comparisons between the experi-
mental (Ref. 3) and calculated cross sections for a selection of the
scattering vectors considered in Fig. 5.

a (4 0 q)/(0 4 q) scan is that scattering due to the c-axis spin
components, which cancels out in a (0 0 q) scan, contributes
at (4 0 q)/(0 4 q). A scan along (4 0 q) or (0 4 q) is expected
to show not only the two w modes, but also the c mode, all
starting out from q = 1 as illustrated by Fig. 7. The w modes
starting out from the magnetic Bragg point do (nearly) not
appear in this scan because the total c component of the spin
triangles is zero for these modes. The experimental results
shown in the figure are the same as those presented in Fig. 5,
but now translated so that they all fall on the two branches seen
in this scan. The energy gap of the w modes, appearing in this
plot at q = 1, has been determined in the neutron-scattering
experiments by Stock et al.3 and by Loire et al.4 to lie between

FIG. 7. (Color online) The logarithmic scattering intensities
calculated along (0 0 q) and (4 0 q)/(0 4 q). The experimental results
included in the (4 0 q)/(0 4 q) figure are the same as those appearing
in Fig. 5 and obtained by Stock et al. (Ref. 3), but the results have
been translated by wave vectors (0 0 � ± Q).

0.35 and 0.4 meV. This value of the gap is here used for
determining the numerical value of Dc. This way of plotting the
experimental results also shows that the energy of the c mode at
(4 0 1 + Q), the upper peak in the (2 0 0) scan shown in Fig. 6,
is distinctively higher than the value suggested by a sinusoidal
interpolation of the other c-mode results. The difference might
be caused by special effects related to this particular wave
vector (2 0 0), or it may be an indication of a weak interaction
between spins in next-nearest-neighboring layers. The fit to
the two dispersion relations may be improved by including
a ferromagnetic interaction J12(2c) ∼= −0.01 meV (between
sublattice 1 and 2 at a distance of 2c along the c axis), however,
the improvements are not really significant and this possible
modification is abandoned.

The experiments of Stock et al.3 were all performed
in the a∗c∗ plane, whereas Loire et al.4 did choose the
b∗c∗ plane as scattering plane, and they observed a clear
asymmetry between the intensities of unpolarized neutrons
scattered at (0 1 q) and (0 1 − q) caused by J3 being different
from J5. The branches starting out from zero energy at
(0 1 � − Q) were found to be much more intense than the
(0 1 � + Q) branches [see also the left figure showing S(0 1 q)
in Fig. 8 below]. This is in agreement with the theoretical
predictions, if J5 is the dominant interplanar interaction, or,
more accurately formulated, the theory becomes in accord
with these experimental results if the sign of R in Eq. (7)
is chosen to be negative, the choice of which is already
made with the model parameters introduced by Eq. (22).
The experiments of Loire et al.4 were done on a crystal for
which the structural chirality was determined to be εT = −1
from the anomalous part of the x-ray scattering function.1

This means that the unpolarized neutron experiments of
Loire et al.4 show that the strongest interplanar interaction
J5 is, as expected,1,3 the one determined by the shortest
super-superexchange path. The conclusion that sign(R) = εT

and, therefore, according to Eq. (8), εH = εT εγ or εγ = εH εT

is the same one derived by Marty et al.1 from their unpolarized
neutron-diffraction experiments. The elastic and the inelastic
unpolarized neutron experiments independently show that the
relation εH = εT εγ = −εT sign(Dc) applies, but are unable to
decide on the helicity of the magnetic structure εH and, thereby,
on the sign of Dc or the orientation of the ordered spin triangles.
The unpolarized neutron scans in the a∗c∗ plane should show
the similar asymmetry except that the high-intensity branch
is the one starting out from (1 0 � + Q). Preliminary results
by Stock et al.11 show a pronounced asymmetry between the
scattering at (1 0 � + Q) and (1 0 � − Q), but the branch with
the largest intensity is the one emerging from (1 0 � − Q),
which indicates that their crystal has εT = +1, i.e., the
opposite structural chirality to that of the crystal investigated
by Loire et al.4 The coincidence that the distance between the
Fe ions in the triangles is close to (

√
3/4)a implies that the

asymmetry disappears around Bragg points (h k �), when for
example h + k = 2, as in the case considered in Fig. 5.

IV. HELICALLY POLARIZED SPIN WAVES

Loire et al.4 have performed a series of inelastic scattering
experiments in the b∗c∗ plane with polarized neutrons. In
these experiments, they determined the spin-flip scattering
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FIG. 8. (Color online) Contour plots of the calculated spin-wave scattering intensities along k = (0 1 q). The left figure shows the logarithmic
intensities S(k,ω) derived for unpolarized neutron scattering. Notice that the intensities of the branches starting out from zero energy at
(0 1 � − Q) are much higher than the intensities of the (0 1 � + Q) branches. The figure in the middle shows the calculated polarization
function C(k,ω) using a linear scale. The calculated intensities are compared with the experimental results obtained by Loire et al. (Ref. 4),
which are shown by the green and blue squares lying in the interval between 1 and 6 meV. The figure to the right shows the calculated dynamic
scattering ratio C(k,ω)/S(k,ω).

intensities I±/∓ corresponding to the differential cross sections
(within the terminology of Moon, Riste, and Koehler12)

dσ±/∓

d�
=

∑
ij

eik·rij pip
∗
j [S⊥i · S⊥j ∓ iẑ · (S⊥i × S⊥j )].

(23)

In their experiments, Loire et al. did choose the neutron-spin
polarization vector ẑ to be parallel to the scattering vector
k = kinitial − kfinal, i.e., ẑ = k/|k|, and extracted the following
inelastic scattering functions4:

S(k,ω) = I±(k,ω) + I∓(k,ω)

2
,

(24)

C(k,ω) = I±(k,ω) − I∓(k,ω)

2
.

In the case where the spins of the incident neutrons are
polarized parallel to the scattering vector k, I±(k,ω) is
the intensity of the scattered neutrons with the opposite
polarization. Since ẑ is reversed by definition, when k is
replaced by −k, it is found that C(k,ω) = C(−k,ω) as well
as S(k,ω) = S(−k,ω). The expression given by Eq. (16) in
Ref. 6 is straightforwardly generalized so to include C(k,ω):
the products of spin components appearing above in Eq. (23)
are translated into the corresponding tensor components of
the correlation function in Eq. (16) of Ref. 6, but notice
that the sign convention for the wave vectors applied in this
reference is the opposite of that used above. For a simple
right-handed (εH = +1) helix with ordering wave vector Qc∗
(0 < Q < 1/2), the elastic response I∓ is nonzero, and I±
is zero, for the magnetic Bragg peaks at k = (0 0 |�| + Q)
and (0 0 − |�| − Q), whereas the opposite is the case for the
remaining Bragg points along c∗. The ratio between the static
scattering functions C(k) and S(k) for a simple helix with
helicity εH is in general found to be

C(k)

S(k)
= 2 cos θ

1 + cos2 θ
[δ(G − Q − k) − δ(G + Q − k)] εH ,

(25)

where cos θ = k · Q/|k||Q| and G is a reciprocal lattice
vector.

The polarized inelastic neutron-scattering experiments per-
formed by Loire et al.4 on a crystal with εT = −1 showed
that C(k,ω) is positive and very nearly equal to S(k,ω) at the
lowest energies observed (1 meV) close to the Bragg point
at (0 1 6/7), and that this is also the case for the c mode at
(0 1 1.3) as shown in Fig. 9. The behavior of C(k,ω) was
measured along (0 1 q), and the results shown by Loire et al.
in their Fig. 3(e) are very similar to the calculated results as
indicated by the comparison shown in the middle figure in
Fig. 8 (the calculated weak, light-green branches included in
this figure were not detectable). The sign of C(k,ω) determines
the sign of the helicity of the helically ordered moments, and, as
concluded by Loire et al.,4 their results show that the helicity
εH = +1. This result, in combination with the unpolarized
result εT = sign(R) = −1 and the maximization of −J (Q)
[Eq. (8)], implies that εγ = −1 corresponding to a positive
value of Dc.

For a simple helix, the spin-wave theory13,14 predicts the dy-
namic ratio between the scattering functions C(k,ω)/S(k,ω)
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FIG. 9. (Color online) Comparison between theory and experi-
ments for two of the scattering vectors considered in Fig. 8. The
experimental results are obtained by Loire et al. (Ref. 4) from
inelastic scattering of polarized neutrons. The intensity scaling factor
and the resolution width are kept constant in all the calculated
results.
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to be a purely geometric quantity, such as the static one in
Eq. (25):

C(k,ω)

S(k,ω)
= ± 2 cos θ

1 + cos2 θ
εH . (26)

This expression applies to the modes emerging from the
magnetic Bragg points, which scatter the neutrons via the
planar spin components. The sign to be chosen for the ± sign in
front is the same as the sign in front of the corresponding delta
function in the magnetic Bragg scattering ratio in Eq. (25),
i.e., the + sign applies to the modes starting out from the
Bragg points at G − Q. In contrast to this, the cross section
deriving from the c component of the spins is not affected by
the helicity, and C(k,ω) = 0 for the branches emerging from
the nuclear Bragg peaks. With the restriction that we shall only
consider spin waves propagating along the c axis, this simple
description applies almost unchanged to the present ordered
system consisting of three sublattices of coupled helices.
C(k,ω) = 0 for the c modes emerging from the nuclear Bragg
peaks at G and for the w modes starting out from the magnetic
Bragg peaks at G ± Q. The c modes detected via the spin
components in the ab plane are the branches emerging from
the magnetic Bragg points G ± Q, and the chiral scattering
ratio for these modes is determined by Eq. (26). In principle,
the w modes starting out from a nuclear Bragg point or from
G ± 2Q should show a dynamic scattering ratio, which is also
determined by Eq. (26). However, the ±2Q branches are weak,
and the two w modes emerging from the same Bragg point are
not easy to separate, and since the chiral scattering ratios have
opposite sign for the two branches, they are going to appear
like a single mode with a chiral polarization factor close to
zero. In the scan along (0 0 q) shown in Fig. 7, the upper one
of the two nearly degenerate w modes, the −Q branch, has
C(k,ω)/S(k,ω) = +1, whereas C(k,ω)/S(k,ω) = −1 for the
other +Q mode. These results are valid in the case where the
spin waves are propagating along the c axis, and they agree
in most details with the dynamic scattering ratios calculated
numerically using the RPA model. One example is shown in
the right of Fig. 8. In principle, the colors in this figure should
become more and more blue [C(k,ω)/S(k,ω) = +1] or more
and more red [C(k,ω)/S(k,ω) = −1] for increasing values of
q, however, this systematic behavior is going to be disturbed
whenever intensities from modes with different helicity factors
overlap each other [notice that |C(k,ω)/S(k,ω)| is predicted
to be 0.967, nearly 1, already at q = 6/7]. The inelastic cross
section is readily calculated numerically in the general case,
but the result becomes less transparent due to the complication
that the c and w modes are coupled whenever the propagation
vector has a nonzero component in the ab plane.

V. CONCLUSION

The intratriangular interaction J1 > 0 is the dominant cause
for the relatively strong frustration shown by the present spin
system, and it is important to account for this interaction
primary to the interactions between the Fe triangles. The MF
approximation, when applied to the trimerized clusters, leads
to a much improved description of the system in comparison
with the single-spin approximation. The susceptibility just
above TN is being reduced by 15%, the transition temperature

by 50%, and the paramagnetic Curie temperature is derived
to be −190 K, not −142 K as predicted by the simple
theory. The analysis of the spin waves in terms of the five
exchange constants, plus the DM anisotropy, leaves one
exchange constant as a nearly free variable. In the present
analysis, this degree of freedom has been fixed by a fitting
to the susceptibility implying that a precise description of the
ground state is essential for a trustworthy determination of
the exchange constants. The present model accounts very well
for the susceptibility, whereas the use of, for instance, the
exchange parameters proposed by Loire et al.4 leads to values
for the susceptibility, which are about 25% larger than the
experimental ones (40% in the single-spin MF approximation)
at temperatures close to TN . The MF-cluster calculation also
predicts a quantum reduction of the ordered moment, from
5 to 4.7 μB . This reduction is less pronounced than the
one derived from experiments, as the value of the ordered
moment determined from neutron-diffraction experiments at
2 K by Marty et al.1 was found to be as small as about
4 μB .

Although the trimerized states of the Fe spin triangles
deviate substantially from that determined by fully polarized
spins, the linear spin-wave theory [Eqs. (18) and (19)] works
surprisingly well. The energies predicted by the linear theory
(the dashed lines in Fig. 4) only differ by about 5% at
maximum from that predicted by the more accurate numerical
RPA calculations. This effectiveness of the boson repre-
sentation obtained by, for instance, the Holstein-Primakoff
transformation is of similar significance for the analysis of
an anisotropic ferromagnet such as terbium metal discussed
at length in Refs. 5 and 15. A comparison with this theory,
which utilizes systematically 1/S as an expansion parameter,
suggests the corrections to the present linear theory to be of
order (λ/2S)2 rather than λ2. The particular model derived by
Loire et al.4 based on the linear spin-wave theory is questioned,
but their theoretical results are found to agree closely with
the predictions of the present theory. Their characterization
of the different spin-wave modes may be imprecise, but their
main conclusions are the same as derived here. In the crystal
they investigated, the crystallographic chirality is εT = −1,
the ordered moments in the triangles have the orientation
specified by εγ = −1, and the spiraling ordered moments
along a line parallel to the c axis are making a right-handed
helix corresponding to εH = +1.

The mirroring of the present system with respect to, for
instance, the ac plane through S1 would change the structural
chirality εT from −1 to +1, and the helicity εH from +1 to
−1, whereas the sign of Dc(> 0) and εγ = −1 would remain
unchanged. The choice between the two possible orientations
of the ordered spin triangles is determined by the local
surroundings, not by the structural chirality. By definition,
chirality should be invariant with respect to time reversal but
have odd parity with respect to inversion.16 Based on this
definition, the orientation of the spin triangles denoted by εγ

can not be characterized as a chiral property.
To summarize: The asymmetry between the inelastic inten-

sities of magnetic scattered unpolarized neutrons at (0 1 � − q)
and (0 1 � + q) or at (1 0 � − q) and (1 0 � + q), as observed,
respectively, by Loire et al.4 and by Stock et al.,11 is alone
a consequence of the structural chirality. εT is equal to −1
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in the crystal studied by Loire et al., whereas εT = +1 is
the preliminary result for the crystal investigated by Stock
et al. The DM anisotropy term Dc in Eq. (2), due to the
spin-orbit interaction, couples chirality in spin space to the
crystallographic chirality εH = εγ εT . The sign of the DM
anisotropy determines the choice between the two possible
orientations of the ordered moments in the Fe triangles, and
it is found that εγ = −sign(Dc) = −1. The combination of
an enantiopure crystal and a nonzero DM anisotropy implies
that the system only contains ordered moments with a single
sense of helicity, and that εH = −εT in this system where Dc

is positive. The dynamics of the present system is unique, not
because the spin waves have chiral properties, but because the
presence of only one domain of helicity has made it possible to
observe this intrinsic dynamic property. It may be concluded
that the three different modes of spin waves propagating along

the c axis in the Ba3NbFe3Si2O14 crystal investigated by
Loire et al.4 should all possess, depending on their effective
propagation vector q = k − G, the same or the opposite sense
of helicity as the ordered structure. The observed behavior of
the c mode is in agreement with this conclusion, whereas the
near degeneracy of the w modes starting out from the nuclear
Bragg points prevents an experimental determination of the
chiral properties of these modes.
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