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The dimerized S= 1
2 spins of the Cu2+ ions in TlCuCl3 are ordered antiferromagnetically in the presence of

a field larger than about 54 kOe in the zero-temperature limit. Within the mean-field approximation all thermal
effects are frozen out below 6 K. Nevertheless, experiments show significant changes in the critical field and
the magnetization below this temperature, which reflect the presence of low-energetic dimer-spin excitations.
We calculate the dimer-spin correlation functions within a self-consistent random-phase approximation, using
as input the effective exchange-coupling parameters obtained from the measured excitation spectra. The cal-
culated critical field and magnetization curves exhibit the main features of those measured experimentally but
differ in important respects from the predictions of simplified boson models.
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I. INTRODUCTION

The concept of Bose-Einstein condensation dates back
more than 80 years to the prediction of Einstein, based on
Bose’s work on the statistics of photons, that a gas of non-
interacting massive bosons would condense below a certain
critical temperature Tc. The condensation implies that below
Tc a nonzero fraction of the total number of particles occu-
pies the lowest single-particle quantum state. For dilute
atomic gases this phenomenon was realized experimentally
in 1995 for trapped clouds of alkali atoms �see, e.g., Ref. 1�.

For a uniform gas of density n the transition temperature
is given by kTc�3.31�2n2/3 /m, where m is the particle
mass. For particles trapped in a harmonic-oscillator po-
tential �trap frequencies �x, �y, and �z� one has kTc
�0.94��N�x�y�z�1/3, where N is the total number of par-
ticles. In the latter case the particle mass enters through the
trap frequencies, equal to the square root of the force con-
stants in the three directions divided by the particle mass.
When a trapped gas is dilute in the sense that the atom-atom
scattering length is much less than the interatomic distance,
the observed transition temperatures agree well with theoret-
ical expectation for a noninteracting gas. For less dilute
gases interaction effects give rise to an observable small shift
of Tc proportional to the scattering length.

The condensation of massive bosons into a single quan-
tum state is intimately connected to the conservation of par-
ticle number. For massless bosons such as phonons or mag-
nons the particle number is not fixed but depends on
temperature and there is therefore no Bose-Einstein conden-
sation in the traditional sense of the term. However, there has
been a wide use of model Hamiltonians for magnetic systems
that have features in common with those of interacting, mas-
sive bosons. The aim of the present work is to consider one
such specific system, that of the dimerized Cu2+ spins in
TlCuCl3, and compare predictions of such models with cal-
culations that are based on �approximate� solutions of the
many-body problem of interacting spins. A recent review of
experimental and theoretical developments concerning the
magnetic ordering of TlCuCl3 and related compounds has
been given by Giamarchi et al.2

Magnetization measurements3,4 and inelastic neutron-
scattering experiments5,6 demonstrate clearly that nearest-

neighboring pairs of S= 1
2 spins of the Cu2+ ions in TlCuCl3

are dimerized leading to an S=0 ground state and an S=1
excited triplet around 5.2–5.7 meV above the singlet. Due to
the exchange interactions between the dimers the excitations
become strongly dispersive, and, in the zero-temperature
limit, the minimum energy of the degenerate singlet-triplet
mode, at �001�, is only about 0.7 meV. When a field is ap-
plied, the energy of one of the three normal modes is reduced
and goes to zero at a critical field of about 54 kOe at zero
temperature. The Cu spins of isostructural KCuCl3 are simi-
larly dimerized but the interdimer interactions are relatively
weaker and the critical field is about 230 kOe at T=0 in this
system.7 The phase transition shown by TlCuCl3 at the field
where the excitation energy vanishes, has been analyzed by
Nikuni et al.8 They assumed the dimer system to be de-
scribed by an effective Hamiltonian of the form

H = �
k
��2k2

2m
− ��ak

†ak +
v0

2 �
k,k�,q

ak+q
† ak�−q

† ak�ak, �1�

where the bosonic operators a† and a denote “magnon” cre-
ation and annihilation operators and the positive constant v0
denotes the strength of the repulsive magnon-magnon inter-
action, assumed to be a delta function in real space. The
quantity � plays the role of a chemical potential, assumed
proportional to the difference between the applied magnetic
field and the critical field. Using v0 and m as fitting param-
eters, Nikuni et al. were able to give a reasonable account of
the temperature dependence of the critical field and the mag-
netization along the applied field in the ordered antiferro-
magnetic state. An extended version of their theory based on
a more realistic dispersion of the magnetic excitations was
presented by Misguich and Oshikawa.9 However, as we shall
see in detail in Sec. IV below, these simplified boson models
suffer from inconsistencies that originate in their neglect of
the highest level of the triplet. Another, more general prob-
lem with boson models is that double occupancy of a local
site should be prohibited. In this connection we mention the
work of Sirker et al.,10 who used a bond-operator approach
to map the spin system onto a model of interacting bosons by
introducing an infinite on-site repulsion between local triplet
excitations.
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In the following treatment of the dimerized spin system in
TlCuCl3 we adopt a different point of view and start from the
Hamiltonian for the spin system itself, using as input the
effective exchange coupling that has been derived from mea-
sured excitation spectra. Our approach is a generalization of
the zero-temperature theory by Matsumoto et al.,11 who used
the random-phase approximation �RPA� to calculate magne-
tization curves and excitation spectra for TlCuCl3. They also
considered the case when the phase transition is induced by
the application of a hydrostatic pressure.12,13 Here we only
address the case of a field-induced transition but the theory
of Matsumoto et al. is extended to include both the effects of
quantum fluctuations at zero temperature and the effects of
thermal fluctuations. The self-consistent version of the RPA,
which is the one applied here, is faced with the similar prob-
lem of double occupancy as the boson modeling. However,
here this problem is found to have a natural solution by a
consideration of the higher-order modifications in the
Green’s functions. The self-consistent RPA theory for the
paramagnetic phase of the dimer-spin system is presented in
Sec. II, which, in Sec. III, is followed by an analysis of the
antiferromagnetic phase. A closer examination and discus-
sion of the results obtained are referred to the last Sec. IV.

II. EXCITATIONS IN THE PARAMAGNETIC PHASE

A. The self-consistent RPA theory

The TlCuCl3 crystal is monoclinic �space group P21 /c�
and the lattice parameters are a=3.9815 Å, b=14.144 Å,
c=8.8904 Å, and �=96.32° at room temperature.14 The
crystal is constructed from layers with configuration Cu2Cl6
stacked on top of each other so as to form two chains of Cu
ions parallel to the a axis. The chains are separated by Tl
ions and pass through the center and corners of the b-c plane
in the unit cell. There are four Cu ions or two dimer pairs per
unit cell. The dimer pair in the unit cell belonging to the
chain through a corner is located at site 1: �x ,y ,z� and site 2:
�x̄ , ȳ , z̄�, and the pair belonging to the other chain is placed at
site 3: �x , ȳ+ 1

2 ,z+ 1
2 � and site 4: �x̄ ,y+ 1

2 , z̄+ 1
2 �. Here x

=0.2338, y=0.0486, and z=0.1554, and the numbering of the
sites from 1 to 4 defines the four different Cu sublattices.

The Hamiltonian is assumed to be

H = −
1

2�
ij

J�ij�si · s j − g�B�
i

H · si, �2�

where si is the spin variable of the Cu ion at the ith site. The
most important exchange parameter is �=−J�i1i2�, where
�i1i2� are the nearest-neighbor Cu pairs �the 1-2 or the 3-4
ions in the unit cell�. The Fourier transform of the Heisen-
berg exchange interactions between spins on sublattices �
and � is defined in terms of the remaining coupling param-
eters

J���q� = �
j��-subl.

�J�ij�e−iq·�Ri−Rj�, i � �-subl . , �3�

where Ri is the position of the ith dimer and the prime indi-
cates that the dominating interaction � is excluded from the
sum, �ij�� �i1i2�.

When the interactions between the dimers are neglected,
the Hamiltonian may be diagonalized exactly in terms of
independent products of single-dimer eigenstates. The total
spin of the ith dimer is Si=si1

+si2
, where si1

and si2
denote

the Cu spins belonging to, respectively, the sublattices 1 and
2, or 3 and 4. The total spin defines the basis �SSz�, and when
the field is along the z axis, the eigenstates of the noninter-
acting dimer are

state �3� = �1 − 1� at the energy � + h ,

state �2� = �10� at the energy � ,

state �1� = �1 + 1� at the energy � − h ,

state �0� = �00� at zero energy

with h=g�B�H� and � positive. When h�� the ground state
is the nonmagnetic singlet �00�. In the present section we
focus on this condition and we shall assume that the system
stays paramagnetic also in the presence of the interdimer
interaction J���q�. The original Hamiltonian �2� may be re-
written in terms of two dimer-spin variables, the sum Si
=si1

+si2
and the difference Si=si1

−si2
. The sum operator

only has nonzero matrix elements between the three excited
S=1 states. We consider the case where the populations of
these levels are small �at sufficiently low temperatures in the
disordered phase�, in which case the dynamical effects due to
Si are negligible. When Si is neglected, the Hamiltonian in-
volves only a single effective q-dependent exchange term
− 1

2�qJ�q�Sq ·S−q with

J�q� =
1

4
	J11�q� + J22�q� − J12�q� − J21�q�


	
1

4
	J13�q� + J24�q� − J14�q� − J23�q�
 . �4�

The presence of two equivalent dimers per unit cell yields
two values for the effective interaction for each value of the
wave vector within the first Brillouin zone. Alternatively, one
may use an extended zone scheme with an effective basis of
one dimer per unit cell, in which case only the upper sign
applies.

In order to study the spin dynamics of this Hamiltonian
we introduce the standard basis operators15–17 for the jth
dimer

a�

j = �����
�� j, �,
 = 0,1,2,3. �5�

It follows from this definition that the Hermitean conjugate
of a�


j is �a�

j �†=a
�

j . In the present case of a dimer system
with stationary bonds, these operators serve the same pur-
pose but are of more general use than the “bond operators”
applied by Matsumoto et al.11 In terms of the standard basis
operators the components of S j become

S̄jx =
1
�2

	a30
j − a10

j + a03
j − a01

j 
 ,

S̄jy =
i

�2
	a30

j + a10
j − a03

j − a01
j 
 ,
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S̄jz = a20
j + a02

j �6�

and the Hamiltonian may be written

H = �
i

	�� − h�a11
i + �a22

i + �� + h�a33
i 
 − �

ij

J�ij�	a01
i a10

j

+ a03
i a30

j − a01
i a03

j − a10
i a30

j + a02
i a20

j + 1
2 �a20

i a20
j + a02

i a02
j �
 ,

�7�

when only the Fourier transform J�ij� of the effective inter-
action, Eq. �4�, is included. Next we define a 6�6 matrix of
Green’s functions18

G� �ij,�� = −
i

�


−�

�

�t��	ai�t�,a j
†�0�
�ei�tdt . �8�

A single bracket �¯ � denotes the thermal expectation value
and ai�t� is a vector operator of site i at time t with compo-
nents

ai = �a01
i ,a10

i ,a02
i ,a20

i ,a03
i ,a30

i � . �9�

With the short-hand double-bracket notation G� �ij ,��
= ��ai ;a j

†��, the equations of motion for the Green’s functions
are �see for instance Ref. 17�

����ai;a j
†�� − ��	ai,H
;a j

†�� = �	ai,a j
†
� , �10�

where the new higher-order Green’s functions introduced by
the second term are determined by the Hamiltonian �7� by
the use of the commutator relation

	a�

i ,a��
�

j 
 = �ij��
��a�
�
i − ��
�a��


i � . �11�

By using an RPA decoupling of the higher-order Green’s
functions, a�


i a��
�
j �a�


i �a��
�
j �+ �a�


i �a��
�
j , one finds that

the equations of motion are reduced to a closed set of equa-
tions, which are solvable by a Fourier transformation. Fur-
ther, the 6�6 matrix equations decouple into three sets of
2�2 matrix equations, and one of these is

��� − E1 − J1

J3 �� + E3
��G11 G16

G61 G66
� = �n01 0

0 − n03
� .

�12�

The Green’s functions depend on the Fourier variables, G��

=G���q ,��, where the matrix indices � and � run from 1 to
6 and we have introduced the following parameters

E1 = � − h − J1, J1 = n01J�q� ,

E2 = � − J2, J2 = n02J�q� ,

E3 = � + h − J3, J3 = n03J�q� . �13�

Here n� is the average population of the �th dimer level

n� = �a��
i �, and the difference, n� − n
 = n�
.

�14�

Inversion of the first matrix in Eq. �12� results in

�G11 G16

G61 G66
� =

− 1

�Eq
− − ����Eq

+ + ���

� �n01�E3 + ��� − n03J1

− n01J3 n03�E1 − ��� � . �15�

The poles of the Green’s functions determine the excitation
energies Eq

	, which are given by

Eq
	 = Eq 	 	h − 1

2n13J�q�
, where

Eq
2 = �2 − �n01 + n03��J�q� + 	 1

2n13J�q�
2. �16�

The �2,5� part of G� �q ,�� is given by the same expression as
the �1,6� part in Eq. �15�, except that � is replaced by −�.
The �3,4� part of the matrix equations is

��� − E2 J2

− J2 �� + E2
��G33 G34

G43 G44
� = �n02 0

0 − n02
� �17�

and the solution of this equation is equivalent to the result
given by Eq. �15� with poles at the energies 	Eq

z , where

Eq
z = ��2 − 2n02�J�q� . �18�

Next we introduce the following matrix of equal-time cor-
relation functions:

A� �q� =
1

N
�
ij

�aia j
†�e−iq·�Ri−Rj�, �19�

where N is the number of dimers. According to the
fluctuation-dissipation theorem �see, e.g., Ref. 17�

A� �q� = −
1

�


−�

� 1

1 − e−���G� ��q,��d���� , �20�

where G� � denotes the imaginary part of the matrix Green’s
function and �=1 /kT. By definition, the average value of,
for instance, the 11-component is

Ā11 =
1

N
�

q
A11�q� = �a01

i a10
i � = �a00

i � = n0. �21�

Hence, by calculating the q averages of the correlation func-
tions, the Green’s functions may be used for determining the
populations of the dimer levels. From the diagonal part of the

Ā matrix, we get straightforwardly

n0 + n1

2n01
+

n0 + n3

2n03
=

1

N
�

q

E1 + E3

Eq
+ + Eq

− �1 + nq
− + nq

+� ,

n0 + n1

2n01
−

n0 + n3

2n03
=

1

N
�

q
�nq

− − nq
+� �22�

and

n0 + n2

n02
=

1

N
�

q

E2

Eq
z �1 + 2nq

z� , �23�

where
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nq
	 =

1

e�Eq
	

− 1
, nq

z =
1

e�Eq
z

− 1
. �24�

The three equations determine the four population numbers,
when they are supplemented by the exact relation

n0 + n1 + n2 + n3 = 1, �25�

which is the thermal expectation value of the completeness
relation ����������i=1.

The RPA decoupling is valid in the mean-field �MF� ap-
proximation, where the thermal averages are determined by
the Hamiltonian HMF for the noninteracting system, i.e.,
within the approximation �a�
��Tr	a�
 exp�−�HMF�

=��
n�

MF. In the case of strong dispersion, this approximation
certainly underestimates the populations of the excited lev-
els. Anticipating that the correlation effects predicted by the
RPA theory are reasonably trustworthy, the self-consistent
equations above should lead to a more accurate determina-
tion of the population numbers than that offered by the MF
approximation. Unfortunately, the present theory also pre-

dicts that the off-diagonal components of the Ā matrix are

nonzero contradicting that, for instance, Ā16= �a01
i a03

i �
= ���0��1��0��3��i� should vanish identically. Phrased differ-
ently, this inconsistency implies that the RPA result for the
occupation numbers is not unique but depends on the par-
ticular choice of correlation functions used in the calculation.
A nonzero value of �a01

i a03
i � is the equivalent of a double

occupancy of bosons at a single site. Instead of introducing
an arbitrary repulsive potential, we are here going to consider
possible improvements of the RPA-decoupling procedure ap-
plied above.

The present system is in many ways similar to the singlet-
doublet system encountered in praseodymium metal. Im-
provements of the RPA for this system have been derived in
Ref. 19 and this theory has been applied to the calculation of
the line widths and the energy renormalization of the excita-
tions in two other dimer systems Cs2Cr2Br9 and KCuCl3 for
the case of zero field.20,21 It is straightforward to generalize
the singlet-doublet theory so as to account for the presence
of a third level. Here, we are going to extend the theory to
the case where the field is nonzero, and, in the next section,
to consider the modifications produced by an ordered mo-
ment. The presence of the interdimer interactions J�ij� im-
plies that a00

i does not commute with the Hamiltonian.
Hence, the assumed ground state, the product state of �0�i, is
not an eigenstate of the interacting system. The situation
compares with the simple Heisenberg antiferromagnet,
where the mean-field Néel state is not the true ground state.
In this case the RPA theory predicts a zero-temperature re-
duction in the antiferromagnetic moment from its saturated
Néel state value. Equivalently, the RPA results above imply
that n0 is smaller than its saturation value 1 at zero tempera-
ture. The single-dimer population numbers are subject to
quantum as well as thermal fluctuations.

One of the terms neglected in the RPA Eq. �12� involves
the Green’s function ���a00

i −a11
i −n01�a01

j ;ak
†��. Since a00

i and
a11

i are not true constants of motion, this Green’s function
may modify the RPA result. The equations of motion for the

Green’s functions neglected in Eq. �12� have been analyzed
in Ref. 19. The consequences are that the RPA parameters
are being replaced by effective ones and that the excitations
become damped. One of the effective parameters Jxy�q� re-
places J�q� in J1 and J3 in all of the equations above and is19

Jxy�q� = J�q� − axy + �xy	bxy��� − axy
 , �26�

where

�xy = � 2

n01 + n03
�2

− 1. �27�

The renormalization parameter axy is a q-independent param-
eter, which is calculated from the requirement that Eq. �30�
below should be fulfilled. The most important modification
in J�q� is the constant shift introduced by axy but first we
want to discuss the other term denoted by bxy���, which is
given by

bxy��� =
1

N
�

k
	J�k�
2�xy�k,�� , �28�

where �xy�k ,�� is a generalized susceptibility.19 The imagi-
nary part of bxy��� determines the damping effects, which
are, however, small at low temperatures. The renormalization
of Jxy�q� produced by the real part of bxy��� is somewhat
smaller than the constant shift due to axy but it is not entirely
negligible. Because of its moderate importance we have sim-
plified the expression for the bxy��� term as follows:

bxy��� � Re	bxy�Eq/��
 � �n01 + n03

n01
0 + n03

0 �3

Bq,

Bq =
1

N
�

k

	J�k�
2	J�q� − J�k�

	J�q� − J�k�
2 + �0

2 . �29�

We include only the real part and neglect modifications pro-
duced by the field. The quantity �0 is due to the finite lifetime
of the excitations and we take it to be a constant, �0
�0.1 meV at zero temperature and field. The line widths are
going to increase rapidly when the temperature becomes
comparable to � /k. We have accounted for this effect in a
rough manner by scaling the result Bq at zero temperature
and field by the population-dependent factor in front, where
n�

0 is the value of a population number at zero field and
temperature. A closer examination indicates that this simple
scaling accounts for the increase in the line widths in a rea-
sonable way. The scale factor is unimportant for the analysis
of the low-temperature properties but the power of 3 used in
this expression ensures that the scale factor times �xy van-
ishes in the high-temperature limit.

Finally, the most important renormalization effect, the
constant term �1+�xy�axy in Jxy�q� in Eq. �26�, is determined
implicitly by

1

N
�

q

Jxy�q�
Eq

+ + Eq
− �1 + nq

− + nq
+� = 0. �30�

The renormalized value of Ā16 is equal to this sum over q
times n01n03, and since the sum now vanishes, the condition
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�a01
i a03

i �=0 is satisfied. The parameters J1 and J3 in Eqs.
�12�–�16� are replaced by, respectively, n01Jxy�q� and
n03Jxy�q�, and, similarly, J2 in Eq. �17� is replaced by
n02Jz�q�, where the effective exchange coupling is

Jz�q� = J�q� − az + �z	bz��� − az
 . �31�

Here �z=1 /n02
2 −1 and bz�����n02 /n02

0 �3Bq. The constant
term �1+�z�az is determined by the condition that �a02

i a02
i �

=0 or

1

N
�

q

Jz�q�
Eq

z �1 + 2nq
z� = 0. �32�

Besides the modifications in the exchange couplings, the en-
ergy splitting � in E1 and E3, or in E2, is replaced by,
respectively,19

�1 = �3 = � + �axy + az�/2,

�2 = � + axy . �33�

The renormalization of the energy-level separations has not
much influence on the final calculations and the small addi-
tional modifications derived in Ref. 19 might have been ne-
glected. However, the leading-order effects of these extra
terms are actually included above by assuming 1+�xy to be a
factor n0+ �n1+n3� /2 smaller than derived in Ref. 19, and,
similarly, 1+�z has been divided by n0+n2.

In the paramagnetic case, the final result of this theory is
that the single-site population numbers are determined by
Eqs. �22�–�25� with

E1 = �1 − h − n01Jxy�q� ,

E2 = �2 − n02Jz�q� ,

E3 = �1 + h − n03Jxy�q� , �34�

and where the excitation energies in these equations and in
the Eqs. �30� and �32� are determined self-consistently by

Eq
	 = Ẽq 	 	h − 1

2n13Jxy�q�
, where

Ẽq
2 = �1

2 − �n01 + n03��1Jxy�q� + 	 1
2n13Jxy�q�
2,

Eq
z = ��2

2 − 2n02�2Jz�q� . �35�

Notice, that the exchange contributions to E1, E2, and E3 in
Eq. �34� cancel out of the Eqs. �22� and �23� because of the
conditions �30� and �32� fulfilled by Jxy�q� and Jz�q�.

B. Comparison with experiments

Cavadini et al.5 and Oosawa et al.6 have measured the
dispersion of the magnetic excitations in TlCuCl3 at zero
field in the zero-temperature limit �1.5 K�. The two sets of
results agree where they overlap and the combined experi-
mental results are most closely reproduced by the dispersion
parameters derived by Oosawa et al. The parameters used
here �in units of meV� determine the effective exchange cou-
pling according to

Jeff�q� = 0.46 cos�q · a� − 0.05 cos�2q · a�

+ 1.53 cos	q · �2a + c�


� 0.86 cos	q · �a + 1
2c�
cos� 1

2q · b� . �36�

These are the parameters derived by Oosawa et al. except
that their coupling between the two chains ��0.98 cos	q�a
+ 1

2c�
−0.12 cos� 1
2q ·c��cos� 1

2q ·b� has been approximated by
a single term. The three modes are degenerate at zero field
and the dispersion relation assumed by Oosawa et al. in their
analysis is determined from Eq

2=�eff
2 −2�effJeff�q�, which im-

plies that

�eff
2 =

1

N
�

q
Eq

2 = �� + a0��� + a0 + 2a0/n01
0 � ,

Jeff�q� = n01
0 	J�q� + �xy

0 Bq

� + a0

�eff
. �37�

Here a0 is the value of axy or az at zero temperature and field.
The quantity Bq is roughly proportional to J�q� and its aver-
aged value with respect to q is zero. The RPA equations
above have been solved numerically by an iterative proce-
dure. The calculations benefit from the fact that all q sum-
mations may be parameterized in terms of Jeff�q� 	we neglect
the minor difference between J�q�+�xy

0 Bq and J�q� in Eq.
�29� determining Bq
. Hence all summations may be ex-
pressed as integrals with respect to Jeff�q� times a corre-
sponding “density of states” calculated once and for all from
Eq. �36�. The value of �eff used in the calculations is 5.671
meV, �almost� equal to the value of 5.68 meV derived by
Oosawa et al.6 Besides this parameter and those defining
Jeff�q� we have assumed that g=2.06, which is the generally
accepted value for g in the case where the field is applied
along the b axis.3,4,22 Finally, we have added the mean field
from the parallel component to the applied field so that
g�BH=h0 in Eq. �2� is replaced by h=h0+JF�0��Sz�. The
ferromagnetic coupling JF�0� determined from Eq. �2� is es-
timated to be about −1.9 meV by Dell’Amore et al.4 and on
the order of −2.8 meV by Oosawa et al.6 �as obtained from
their parameters determined by a cluster series expansion�.
Here we assume JF�0�=−2.4 meV. The moment per Cu2+

ion parallel to the applied field is

mz =
1

N
�

i

g�B
1

2
�Siz� = g�B

n1 − n3

2
. �38�

It is worthwhile to notice that although the population num-
bers of the excited levels are predicted to be nonzero at T
=0, Eq. �22�–�25�, the quantum fluctuations do not give rise
to any difference between n1 and n3, i.e., mz=0 at zero tem-
perature as long as the system stays paramagnetic. This is
consistent with the condition that �iSiz=�i�a11

i −a33
i � com-

mutes with the Hamiltonian.
Using the model defined here we have calculated the sus-

ceptibility as a function of temperature. The result is com-
pared with experiments in Fig. 1. The calculated critical field
at which the paramagnetic phase becomes unstable is com-
pared with experiments in Fig. 2. The induced magnetic mo-
ment mz at various values of the field has been calculated as
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a function of T. These results are shown in Fig. 3. This figure
also includes results obtained in the ordered phase, which is
considered in the following section.

III. EXCITATIONS IN THE ANTIFERROMAGNETIC
PHASE

The paramagnetic phase becomes unstable when the en-
ergy of the lowest excitation vanishes. The lowest-energy
mode is the one with the energy Eq

− at q=Q= �001� and be-
low the transition the expectation value of the dimer-spin
variable Si becomes nonzero. The ordering is antiferromag-

netic in the sense that �Si� have opposite signs on the two
chain sublattices. The antiferromagnetic ordering may be
transformed to the uniform one by an interchange of the two
spins in the definition of Si for the dimers belonging to, for
instance, the 3-4 sublattices. The only effect of this transfor-
mation is that the interchain coupling between the 1-2 and
3-4 dimers changes sign, i.e., the 	 in front of the second
term of J�q� in Eq. �4� is being replaced by �, and J�Q� and
J�0� are being interchanged within the extended zone
scheme. That the ordering is antiferromagnetic instead of
being uniform does not introduce any further complications.
�Si� is perpendicular to the z direction of the field but its
direction within the x-y plane is arbitrary �as long as any
anisotropy is neglected�. For convenience we shall make the
choice that the ordered moment is along the x axis and we
define

mxy = g�B
�S̄x�

2
, �S̄x� =

1

N
�

i

�S̄ix�eiQ·Ri. �39�

When �S̄x� is nonzero, the MF Hamiltonian for the “non-
interacting” ith dimer becomes

HMF
i = �� − h�a11

i + �a22
i + �� + h�a33

i

− J�Q�
1
�2

	a30
i − a10

i + a03
i − a01

i 
�S̄x� �40�

in terms of the standard basis operators of the paramagnetic
system. We shall continue to label the eigenstates by ���,
where �=0,1 ,2 ,3, and the ground state of this MF Hamil-
tonian may then be written
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FIG. 1. �Color online� The susceptibility of TlCuCl3 determined
experimentally with a field of 10 kOe along the b axis. The pluses
show the data of Oosawa et al. �Ref. 3� and the open circles are the
results of Dell’Amore et al. �Ref. 4�. The experimental results are
compared with the calculated ones obtained by assuming g=1.97 or
g=2.33. In all other calculations we use g=2.06.
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FIG. 2. The solid line is the theoretical result for the critical field
as a function of temperature using the exchange parameters intro-
duced by Eq. �36�. The dashed line is the result obtained if using
instead the exchange parameters of Oosawa et al. �Ref. 6�. The
critical field is here defined to be the one at which the paramagnetic
phase becomes unstable. The experimental points are those obtained
when the field is applied in the b direction by Oosawa et al.�Ref.
23� and Shindo and Tanaka �Ref. 24�.
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FIG. 3. �Color online� The parallel magnetic moment per Cu
ion, mz, as a function of temperature calculated at various values of
the field applied along the b direction. In the case of H=53 kOe the
system is predicted to stay disordered all the way to zero tempera-
ture. The experimental points are a selection of those obtained by
Oosawa et al. �Refs. 3 and 8�.

JENS JENSEN AND HENRIK SMITH PHYSICAL REVIEW B 80, 224419 �2009�

224419-6



�0� = cos �00� − sin 	cos�� − �
4 ��1 + 1�

+ sin�� − �
4 ��1 − 1�
 . �41�

The two angles  and � minimize �0�HMF
i �0� or may be de-

termined by demanding the off-diagonal terms of the MF
Hamiltonian to vanish and we get

tan � =
h cos 2

� cos2  − h sin2  sin 2�
�42�

and

sin 2 =
2J�Q�cos �

� cos 2�
�cos 2 + 2 sin2  sin2 ���S̄x� .

�43�

By calculating the state vectors of the excited MF levels to
order 2, we find that the order parameter is

�S̄x� =
n01 + n03

2
sin 2 cos � − n13 sin  sin � + O�3� ,

�44�

where the higher-order terms O�3� vanish if n0=1, and,
likewise, the ferromagnetic component is

�Sz� = n13 cos  +
n01 + n03

2
sin2  sin 2� + O�4� . �45�

By hc we denote the critical field at which these equations

have a nonzero solution for �S̄x� in the limit of →0 and this
field is found to be determined by

1 − �hc

�
�2

=
J�Q�

�
�n01 + n03 −

hc

�
n13� . �46�

If we replace J�Q� by Jxy�Q� and � by �1 this condition is
the same as that derived from the requirement that the energy
of the lowest paramagnetic excitation EQ

− , within the self-
consistent RPA, should vanish at the transition. The results
above are more general but coincide with those derived in
the zero-temperature mean-field theory of Matsumoto et
al.,11 when n0=1. 	Their angle � corresponds to our �

4 −�. In
our notation h=h0+JF�0��Sz�, whereas in their notation h in
Eq. �42� should read h−J�Q��Sz� corresponding to the re-
placement of h0 by h with their implicit assumption that the
ferromagnetic interaction JF�0� is equal to −J�Q�
.

When the MF Hamiltonian of the antiferromagnetic phase
has been diagonalized we may proceed as in the paramag-
netic case for calculating the correlation functions. The po-
sitions of the four different levels and the matrix elements of
Si may be calculated analytically if only terms to leading
order in 2 are included. We are not going to present these
results since in the final calculations we chose the more
accurate approach of diagonalizing the MF Hamiltonian
numerically. In terms of the standard basis operators of the

final MF Hamiltonian, S̄jx is now 	m3�a30
j +a03

j �−m1�a10
j

+a01
j �
 /�2, where m1 and m3 are different from 1 and from

each other. Here we neglect the extra complication that the
matrix elements between the excited states, as for instance,

�1�S̄jx�3��, become nonzero. These excited-state contribu-
tions to the correlation functions get multiplied by n13 hence
they are unimportant not only when the ordered moment is
small but in most of the regime where the RPA modifications
in the MF behavior are of importance.

The final Hamiltonian may be written in the same way as
in the disordered case, Eq. �7�. The positions of the three
excited levels are being shifted and J�ij� is being multiplied
by different factors depending on which operator product is
considered, and, finally, the remaining off-diagonal products,
a01

i a01
j , a01

i a30
j , etc., now appear. The new off-diagonal con-

tributions are all of order 2 and affect the diagonal correla-
tion functions only to order 4. Hence, to leading order these
extra contributions may be neglected. In this case the matrix
equations once again decouple into three sets of 2�2 equa-
tions, which may be solved analytically. The result for the
population numbers is the same as that given by Eqs.
�22�–�25�, except that � and �	h are being replaced by the
energies of the three corresponding MF levels and that J1, J2,
and J3 are being multiplied by matrix-element factors, which
are slightly different from 1 and from each other. The equiva-
lence implies that the modifications in the RPA correlation
functions may be calculated as in the paramagnetic case, and,
for instance, axy is still determined by Eq. �30� except that
the expressions for Eq

	 are being modified. We used this ap-
proximation, valid in the limit of 2 being small, for calcu-
lating the magnetization curves. The results were close to
those shown in Fig. 3, however, in the final calculations we
included the higher-order modifications.

For a given set of population numbers the MF Hamil-
tonian was diagonalized numerically, determining all pos-
sible matrix elements and the four energy levels. The knowl-
edge of the population numbers and the matrix elements is

used for determining the two expectation values �S̄x� and
�Sz�, and for constructing the total Hamiltonian expressed in
terms of the standard basis operators. When the interactions
between the excited states are neglected, the equations of
motion lead to a 4�4 set of matrix equations for the xy part
and a 2�2 set for the longitudinal Green’s functions. The
two sets of equations were inverted analytically �utilizing
MATHEMATICA for handling the set of 4�4 equations�. In
this way we derived an explicit expression for the correlation

function matrix A� �q�. The averaged values of the diagonal
components were used for calculating the population num-
bers as in the paramagnetic case. The renormalization param-

eter axy and az are determined by, respectively, Ā16=0 and

Ā34=0. The condition Ā16=0 also implies that Ā25=0 but not
necessarily that the new off-diagonal components vanish. We
have neglected the possibility that the renormalization of the
additional off-diagonal exchange terms might be different
since the new terms are small whenever the renormalization
effects are important. Except for the matrix-element modifi-
cation in the exchange terms we use the same approximate
expression, Eq. �29�, for the renormalization parameter
bxy��� and similarly for bz���. When the renormalization
parameters have been determined we may calculate the
renormalized value of J�Q� in the MF Hamiltonian �40�,
which is being replaced by Jxy�Q� determined from Eq. �27�.
Similarly �	h and � in Eq. �40� are replaced by, respec-
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tively, �1	h and �2 given by Eq. �33�. The MF Hamiltonian
is then consistent with the renormalized RPA expressions and
the whole procedure has been carried out in a self-consistent
manner so that the population numbers assumed as a start are
the same as those derived.

This theory was used for calculating the properties of the
dimer system in the ordered phase. The temperature depen-
dence of the parallel moment in a constant applied field is
shown in Fig. 3. In Fig. 4 we show the calculated energies
for the three modes at �001� as functions of field at 1.5 K
compared with the neutron-scattering results of Rüegg et
al.25,26 We remark that the calculated results for the two up-
per levels show small jumps at the critical field because the
theory predicts the transition to be �weakly� of first order.
The experimental results indicate that � for the longitudinal
mode, the energy of which is nearly unaffected by the field in
the paramagnetic phase, is slightly larger than for the two
other modes, and we have accounted for this effect by adding
0.03 meV to �2 in Eq. �33�. This modification does not affect
the xy-polarized modes and as discussed by Matsumoto et
al.,11 the lowest-energy xy-polarized mode becomes the
Goldstone mode in the ordered phase, the energy of which
depends linearly on �q-Q� and is zero at the ordering wave
vector.26 The spin-resonance experiments of Glazkov et al.22

indicate that the Goldstone mode develops an energy gap for
fields larger than the critical one corresponding to the pres-
ence of a small anisotropy within the x-y plane of the same
order of magnitude as the anisotropy considered above. The
two anisotropy terms are unimportant for the renormalization
effects and are neglected elsewhere in the present calcula-
tions. The final figure, Fig. 5, shows the field dependencies
of the squared primary order parameter mxy

2 and of the par-
allel magnetization mz in the zero-temperature limit. The
comparison with experiments shows that the self-consistent
RPA accounts reasonably well for the field dependence of mz
whereas the order parameter is calculated to increase rather
faster with field than observed. The corresponding MF
model, on the other hand, underestimates the value of mz, but
predicts an order parameter which is close to the one ob-
served.

IV. DISCUSSION

The present dimer system is unique because it clearly ex-
hibits the importance of quantum fluctuations. The system is
close to a quantum-critical point and a zero-temperature
phase transition may be achieved either by the application of
a modest magnetic field of 54 kOe �Ref. 3� or a hydrostatic
pressure of 1.1 kbar.12,13 Here we have considered the case
where the transition is approached by applying a magnetic
field at ambient pressure. The field removes the degeneracy
of the S=1 triplet states of the dimers and the collective
singlet-triplet excitations separate into a longitudinal,
z-polarized wave and two transverse modes. The collective
transverse modes are linear combinations of propagating
modes due to transitions between the ground state and the
lowest and the highest excited states of the single dimers. In
the paramagnetic phase, the two transverse modes are subject
to the same renormalization effects because the rigid energy
shift of the excitations, Eq

+−Eq
−=2h does not influence the

quantum fluctuations and n13=0 at T=0. At nonzero tem-
peratures, the thermal fluctuations imply that n13 is nonzero
but the renormalized exchange interaction Jxy�q� is still the
same for the upper and lower transverse modes in the para-
magnetic phase �within the present approximation scheme�.

The RPA renormalization parameters are determined to be
rather substantial in the zero-temperature limit at zero field
because the system is close to the critical point. The occupa-
tion number of the dimer ground state is calculated to be
n0

0=0.935 and a0=0.393 meV. The constant reduction in the
exchange interaction is �1+�xy

0 �a0=0.472 meV, which is
about 17% of the maximum value of the effective exchange
interaction Jeff�Q�=2.8 meV. The effective singlet-triplet
splitting is about �+a0=5.26 meV in the temperature range
of the maximum in the susceptibility. As indicated by the
comparison in Fig. 1, this is in good agreement with that
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FIG. 4. �Color online� The minimum energies of the three dif-
ferent dimer excitations as functions of field at 1.5 K. The calcu-
lated results �the solid lines� are compared with the experimental
results of Rüegg et al. �Refs. 25 and 26�.
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FIG. 5. �Color online� The squares are the experimental results
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derived from a MF analysis of the experimental data.3,4

Hence, the present theory is able to account for the differ-
ence found experimentally between the �effective� energy
gap of 5.68 meV, derived from the excitation spectrum in the
T=0 limit,6 and the smaller value of the gap determined from
the susceptibility measurements. At zero temperature the
renormalization parameters are independent of the field as
long as it stays smaller than the critical one. At nonzero
temperature the lower branch Eq

− is much more easily popu-
lated than the corresponding MF level. For comparison, the
bulk magnetization at 53 kOe predicted by the corresponding
MF model is about a factor of fifty times smaller at 6 K. At
a constant nonzero temperature Eq

− decreases and the thermal
population of the Eq

−-branch increases, when the field ap-
proaches the critical one. This also implies that the renormal-
ization parameter axy increases with increasing field. When
the field becomes larger than the critical one, axy is reduced
as the field is further increased. This reduction is so large that
it is able to stabilize the ordered moment also at fields
smaller than the critical one, i.e., the transition is so strongly
modified that it becomes a first order one. This behavior of
the renormalization parameters at the phase transition is il-
lustrated in Fig. 6. The unphysical enhancement of the renor-
malization effects near a phase transition is a quite general
feature of the self-consistent version of RPA. In the close
neighborhood of the critical point the renormalization effects
show a pronounced sensitivity to small modifications in the
model, and the rather good agreement between theory and
experiments obtained here for the critical field and for the
parallel magnetization, see Figs. 2 and 3, is somewhat fortu-
itous. Even the minor change introduced by using the ex-
change parameters derived by Oosawa et al.6 rather than
those defined by Eq. �36� leads to a relative increase in axy by
about 10% and to corresponding changes in the magnetiza-
tion curves and the critical field �see Fig. 2�.

Focusing our attention on the zero-temperature limit, then
n13 is zero when the field is smaller than the critical one but
becomes nonzero in the ordered phase. As long as the or-

dered moment is small, the contributions due to n13 may be

neglected and the equations determining �S̄x� and �Sz�, Eqs.
�44� and �45�, predict

�Sz� =
h

��n01 + n03�
�S̄x�2, �47�

when terms on the order of 4 and �22 are omitted. The
equation is only weakly influenced by the renormalization
effects since n01+n03�2 at T=0. Nevertheless, the experi-
mental low-temperature results are far from obeying this re-
lationship, which circumstance makes it difficult to repro-
duce the field dependencies of the two magnetization
components simultaneously, as illustrated by Fig. 5.

In their modeling of the excitations by bosons, Nikuni et

al.8 find that �Sz�� 1
2 �S̄x�2 at T=0 	in this expression we have

neglected the small difference ñ, between n= �Sz� and nc,
derived by Nikuni et al., which approximation corresponds
to a replacement of n01+n03 in Eq. �47� by 2
. Hence, the
theory of Nikuni et al. does not include the factor h /� ap-

pearing in our relation between �Sz� and �S̄x�2. If this factor is
included, the results for mxy of Nikuni et al., i.e., m� in their
Fig. 4, should be multiplied by �� /h�2.6 leading to a slope
of mxy

2 with respect to field, which is nearly twice the one
derived by the present theory, i.e., a factor of three to four
times larger than the experimental one �see Fig. 5�. In the
paramagnetic phase, the lowest excited state of a single
dimer is the �1+1� state with Sz=1 and Nikuni et al. are
assuming that this state is the one determining the wave
functions of the lowest-lying mode of collective excitations
and hence the one which defines the condensate in the or-
dered phase. This corresponds to assuming �=� /4 in our
Eq. �41�. However, as also stressed by Matsumoto et al.,11 it
is crucial to include the presence of the �1−1� level in order
to get a consistent description of the excitations and of the
condensate. In the paramagnetic phase, the matrix element of

S̄x between the ground state �00� and the lowest excited state
�1+1� is numerically the same as its matrix element between

�00� and �1−1�. The same applies to S̄y and this means that
the collective transverse excitations transmitted via these two
operators are mixed Sz= 	1 excitations. Being proportional
to J�q�, the degree of mixing depends on the wave vector and
is at its maximum at the ordering wave vector. In correspon-
dence to this, the MF ground state in the ordered phase, Eq.
�41�, involves �1−1� as well as �1+1�. The two states are of
equal importance in the limit of zero field and the relative
weight of the two states is shifted from 1 in the presence of
a field as described by the angle ��h /�. The two compo-

nents depend differently on �, e.g., �Sz�=0 whereas �S̄x� has
its maximum at �=0 and the factor h /� in Eq. �47� is a
simple consequence of this difference.

The self-consistent RPA theory accounts reasonably well
for the paramagnetic properties of the dimer system. Within
the MF model, the bulk susceptibility vanishes exponentially
in the zero-temperature limit, whereas the present RPA
model predicts a power law mz /H�T� with �=1.8 at H
=53 kOe. This is consistent with experiments and the RPA
theory also predicts the right critical field for the phase tran-
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FIG. 6. �Color online� The renormalization parameters axy and
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functions of temperature at an applied field of 70 kOe, where the
transition occurs at 3.34 K.

BOSE-EINSTEIN CONDENSATION AND THE… PHYSICAL REVIEW B 80, 224419 �2009�

224419-9



sition. In contrast to the boson model of Eq. �1�, the present
theory does not rely on any free parameters. Note, however,
that if we use the effective exchange parameters, which
Oosawa et al. determined from their measurements of the
dimer excitation spectrum,6 the critical field is derived to
increase slightly faster with temperature than observed, as
shown in Fig. 2. This minor discrepancy was neutralized by
the small adjustment of Jeff�q� given by Eq. �36�. Actually, it
would have been a surprise if the self-consistent RPA theory
had been able to predict the right critical field without any
adjustments. In all circumstances, it is clear that the theory
needs to be corrected due to critical fluctuations since the
self-consistent RPA predicts the phase transition to the anti-
ferromagnetic phase to be of first order in contradiction with
experiment.

The dimer system has a number of unusual magnetic
properties. The most outstanding one is that the system is
driven into the phase of antiferromagnetic order by the ap-
plication of a uniform field. Another unusual property shown
by the ordered phase is that the bulk magnetization increases,
when the temperature is lowered at a constant field, as this
happens in spite of the fact that the “degrees of freedom” are
being reduced because of the accompanying enhancement of
the antiferromagnetic order parameter. This behavior is not
in accordance with the MF model whereas the self-consistent
RPA theory accounts, at least, qualitatively for this observa-
tion. The self-consistent theory of the ordered phase is com-
plicated and we have been forced to neglect a number of
effects. One of the complications, which has not been men-
tioned above, is that the matrix elements of Si between the
ground state and the excited states are no longer zero in the
ordered state implying additional modifications in all normal
modes of the system �the two classes of modes may mix
because the Cu sites lack inversion symmetry�. We may also

add that the nonzero values of the diagonal elements of S̄x in
the ordered phase effectively give rise to additional contribu-
tions to �1 and �3. Fortunately, these extra complications
should be unimportant within the regime of low temperatures
and small order parameter, where the theory is applied.

Rüegg et al.28 have measured the energies and the line
widths of the zero-field triplet excitations up to the high tem-
perature of 40 K. The temperature dependencies of the exci-
tation energies derived by the present theory agree with their
results below 10 K. Above this temperature discrepancies
appear but one can get a good description of the low-energy
part of the spectrum by increasing the scale-factor exponent
3 in Eq. �29� to 5. Above 10 K, the experimental line widths
increase drastically28 and the imaginary part of bxy��� in Eq.
�29� can no longer be neglected. Furthermore, when the ther-
mal population of the triplet levels becomes noticeable, the
dimer-spin-sum operator Si may begin to affect the dynam-
ics. The approximations made for bxy��� in Eq. �29� and the
corresponding ones for bz��� are only acceptable as long as
the renormalization effects due to these terms are small. The
two terms are handled in a more rigorous way by a diagram-

matic high-density expansion.29 To first order in 1 /z �where z
is the number of interacting neighbors�, the diagrammatic
theory may be formulated in a self-consistent, “effective-
medium” fashion, which is the equivalent of the present,
self-consistently improved version of RPA.17,30 This 1 /z
theory has been applied to the Ising systems HoF3 and
LiHoF4,31,32 and in these cases the phase transitions are pre-
dicted to remain of second order. Therefore, we expect that
the use of the 1 /z expansion theory, to first order in 1 /z, is
going to reproduce the self-consistent RPA results derived
here for the paramagnetic phase, and should lead to an im-
proved description of the ordered phase.

The present RPA theory establishes a classification of the
renormalization effects, which affect the properties of this
quantum-critical dimer system. The most important one
is the constant reduction in the exchange interaction by
�1+�xy�axy. This term is equivalent to that produced by an
on-site repulsive interaction Jxy�ii� and is here found to be
determined directly from the higher-order modifications in
the RPA Green’s functions. Our analysis of the spin model
also predicts the presence of other renormalization effects,
such as the �-dependent correction bxy��� to Jxy�q� and the
increase in the effective splitting between the single-dimer
energy levels by axy or az. The q-independent reduction in
the exchange interaction has its parallel in the phenomeno-
logical repulsive interaction, v0 in Eq. �1�, in the boson
model of Nikuni et al.,8 whereas the two other renormaliza-
tion effects have no counterpart in their theory. A more prob-
lematic simplification made by Nikuni et al. is their assump-
tion that the low-temperature properties of the system are
dominated by one type of bosons, whereas, in reality, the
system contains three different kinds, where those corre-
sponding to Sz=1 and Sz=−1 are mixed. The degree of mix-
ing depends on wave vector and on field, and is important for
the characterization of the bosons in the condensate.

One basic difficulty in the many-body theory of localized
spin systems is that the operators describing the dynamics of
the single spins are not bosonic but more complicated opera-
tors as indicated by Eq. �11�. This complication is respon-
sible for the need to renormalize the simple RPA theory.
Although the present self-consistent theory includes the
leading-order renormalization effects, the comparison be-
tween theory and experiments within the ordered phase of
TlCuCl3 is not satisfactory. The diagrammatic 1 /z
theory,17,29,30 represents a more systematic approach and
should be able to give a more acceptable description of the
ordered phase. We expect, however, that the pronounced ex-
perimental violation of the MF/RPA relation Eq. �47�, be-
tween the bulk magnetization and the ordered antiferromag-
netic moment, will remain a challenge to future theory.
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