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Abstract.From a general two ion spin Hamiltonian, we deduce an expression for the energies 
of spin waves propagating in a hexagonal solid in which the magnetic moments are ordered 
in a conical or helical structure. The spin wave dispersion relation in the c direction of Er 
in its conical magnetic phase at 4.5 K, which has been studied by Nicklow er d (1971) is 
reanalysed. In this analysis we introduce an alternative kind of anisotropic coupling between 
the total angular moments (Ji and J i )  on the sites i and j ,  proportional to the following 
combination of Racah operators: oz. -* (J , ) ,  az, -2 (J jX  expressed with respect to a coordinate 
system with the z axis along the c direction. The resulting anisotropy (both the constant 
and the q dependent part) is reduced by an order of magnitude in comparison with that 
deduced by Nicklow et a/ (1971). The constant anisotropy is found to be equal to about 
20 meV (a rough estimate from magnetization measurements gives 5-10 meV). The aniso- 
tropic part of the exchange interaction is found to be of the same order of magnitude as 
the isotropic part. 

1. Introduction 

The energies, dq) ,  for spin waves propagating in the c direction of Er at 4.5 K have been 
measured by Nicklow et al (1971) (cited as I hereafter). At this temperature, the ionic 
moments of Er are ordered in a conical configuration which is specified by a wave 
vector, Q, and a cone angle 8. Neutron diffraction studies (Cable et a1 1965) have revealed 
that Q is parallel to the c axis and equal to 0.24 x 27c/c, and 8, the angle between the 
magnetic moment on each site and the c direction, is equal to 28.5" for Er at 4.5 K. 

The magnetic excitations in Er are spin waves. On account of the conical ordering 
the basal plane is no longer a mirror plane, which implies that the energies in general 
will be different for spin waves propagating parallel, + q, and antiparallel. - q. to the 
ferromagnetic component of the magnetic moments, ie E( + q )  # E( - 4). The cone 
angle in Er is quite small, which allows the splitting between E( + q )  and E (  - q)  to be 
clearly observed as in the results of 1. 

In I the spin wave measurements are interpreted by means of the model Hamil- 
tonian generally used for describing the magnetic properties of the heavy rare earth 
metals (Cooper et al 1962, Cooper 1968. Goodings and Southern 1971). In this model 
the splitting between the two spin wave branches gives a rather direct determination of 
the isotropic part of the exchange interaction, j ( q ) .  The spin wave energies can then 
be satisfactorily reproduced only by including a very large anisotropic exchange in the 
form of an effective axial two ion coupling (Cooper er a1 1962). This result contrasts 
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with the results obtained later for the basal plane ferromagnets Tb (Jensen and Houmann 
1973) and Dy (Nicklow and Nielsen, private communication), in which the isotropic 
and anisotropic components of the exchange interaction are of the same order of 
magnitude. 

The apparent importance of the anisotropic exchange interaction in the heavy 
rare earth metals requires a more precise and systematic treatment of the influence of 
two ion anisotropy on the energy spectrum of the spin waves. In the next section we 
shall consider the case of conically (and helically) ordered spin system. 

2. Anisotropic exchange interaction 

The ionic moments in the rare earth metals are coupled indirectly through the conduc- 
tion electrons. In the simple RKKY model. this coupling takes the form of an isotropic 
Heisenberg interaction : 

where J i  is the total angula'r moment on site R,.  Various orbital effects (the spin-orbit 
coupling of the conduction electrons, electric multipole interactions. and the influence 
of the ionic orbital moment on the s-f exchange matrix element) may contribute to the 
effective Hamiltonian for the spin system and give rise to anisotropy (Wolf 1971, Levy 
1969, Elliott and Thorpe 1968). Without discussing the microscopic origins we can 
write a general spin Hamiltonian phenomenologically as 

2,, = 4 1 K f 2  ( R ,  - R j )  
i + j l , m  1 '  nr' 

x [ O i , , , ( J i ) 6 i 8 , m ~ ( J j )  + ( -  l)m+m'd,, -,,,(JJoi,, - , , , , ( J j ) ]  m 3 0  (2) 
where 01, ,(Ji) are spherical tensor (Racah) operators (Wolf 1971. Danielsen and Lind- 
gird 1972, Buckmaster et al 1972). A more general Hamiltonian should include terms 
where the coefficients depend on the spin polarization at site Ri (Levy 1969. Jensen et al) .  
The number of independent terms is limited by the general restrictions (Wolf 1971): 1 
and I' smaller than or equal to seven for f electrons, and I + I' even. For spin waves 
propagating in the c direction of a hexagonal solid (in the case of an hcp structure we 
can use the double zone representation), the effective spin Hamiltonian is reduced by 
the symmetry requirements, m + m' equal to 0 or f 6 (or i: 12), when referring to a 
coordinate system with the z axis along the c direction. The introduction of these con- 
ditions in (2) results in 102 independent parameters, Kf;' (including the four single ion 
terms). We shall here only consider the two ion terms for which the ranks of both tensors 
( I  and 1') are smaller than three. These terms, which presumably are the most important 
in (2), will reflect the behaviour of the terms of higher rank. 

The notation is simplified by defining the Fourier transforms as 

K , ,  (4) = K !,;"(Iti - R j )  exp [iq . ( R i  - R j ) ]  (3) 
i 

Formally the single ion Hamiltonian is included in (2) (Go, = 1) by defining 

J 

The spin Hamiltonian (2) is now treated by a conventional spin wave technique (Cooper 
et al 1962, Cooper 1968, Goodings and Southern 1971). The Racah operators are trans- 
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formed (Danielsen and Lindgird 1972, Buckmaster et al 1972) into a coordinate system 
in which the ordered moment (of the cone) is always along the local z axis. The Racah 
operators are then expanded in spin deviation operators (Danielsen and Lindgird 1972). 
and only those terms which are either independent of or quadratic in the spin deviation 
operators are retained. If the planar anisotropy, VSS, is neglected, the Hamiltonian is 
diagonalized by a Fourier transformation followed by an appropriate canonical trans- 
formation of the spin deviation operators to magnon operators (a,) 

where the reduced equilibrium energy ( N  is the number of ions in the crystal) is given by 

where we have used the abbreviation 

J ,  = ( J  - :)U - 1 ) .  , . ( J  - f.). ( 7 )  

The stability of the cone structure requires the partial derivatives of E with respect to 
Q and 8 to be zero. Using the last condition we can write the energy of spin waves 
propagating in the c direction as follows : 

4 q )  = C(q) + [ F , ( q ) F , ( q ) ] '  (8) 
where the first term, C(q), changes sign when q is changed to - q 

which then is equal to half the splitting between the two magnon branches. Both C(q) 
and F , ( q )  go to zero when q goes to zero, and they are both independent of terms in (2) 
in which m is equal to zero : 
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where L is a q independent constant composed of single and two ion contributions 
L = 3J1T/2, + 9 ~ ~ , ( 7  cos2 e - 1) + +4v6,(33 cos4 e - 18 cos2 e + 1) 

+ 2JK,,(0) + JKll(Q) + 3JJ:K2,(0) (9 cos2 8 - 1) 

+ 3JJ:K2,(Q)(6 cos2 8 - 1) + $JJ:K2,(2Q)(3 cos2 8 - 1). (12) 

Equations (5H12) also account for the case of a helically ordered system as the special 
case of a cone structure where 0 = n/2 (in this particular case C(q) vanishes identically). 

In I the spin wave dispersion relation was analysed using an expression for the 
energies which corresponds to (5)-412) when K 2 , ( q )  and K 2 2 ( q )  are neglected. However, 
the behaviour of the K, ,  and K,, terms differs essentially from the behaviour of the 
K ,  term. The K,,  term differs by the e dependence (notice that F , ( q )  still depends on 
K,,(Q k q )  for a helix), and the K,, term by the wave vector argument, 2Q k q .  
These differences imply that a simple relation between C(q) and F , ( q )  does not exist 
when K 2 , ( q )  or K , , ( q )  are introduced in the spin Hamiltonian 

In general all wave vector arguments, m Q  k q,  may occur in all three magnon 
energy parameters (9t(11) arising from the Kf'" term in (2). Kfbo will be present only 
in F, (q ) .  In the particular case of a helical structure we have a simple selection rule: 
Kf'" will contribute to F , ( q )  when l + m is even and m # 0, and to F , ( q )  when 1 + m 
is odd. 

The terms Kfif-" can (in this context) be taken into account by introducing a 
q dependent hexagonal anisotropy, J 5  v66(q). The effect of this term has been considered 
in some detail by Cooper et al(1962). When J5V66(q) is weak in comparison with F , ( q )  
and F, (q ) ,  this term will give rise to a mixing of the magnon modes with wave vector q 
and q f 6Q. This mixing may result in energy gaps at crossing points of the unperturbed 
dispersion relations, 4 4 )  and E ( q  f 6Q). 

3. Spin waves in Er 

We have analysed the spin wave measurements in I on the basis of the expressions 
( 6 H  12) deduced above. The isotropic exchange interaction ( 1)  is introduced in ( 6 H  12) 

As shown in I, it is not possible to obtain any reasonable fit to the experimental dis- 
persion relation without introducing two ion anisotropy. The spin wave energies 
can be reproduced equally well with any one of the three possibilities: K2,(q) identical 
to zero unless m is equal to 0, 1, or 2 (the ambiguity of the fit if more than one anisotropy 
parameter is introduced leaves us with those three alternatives). However. the use of the 
information obtained from the neutron intensities observed at a given constant q scan 
(figure 1 in I) combined with magnetization measurements (Rhyne et al 1968) enables 
us to conclude that K , , ( q )  is the most important two ion anisotropy term in Er. 

Without knowing the crystal field parameters, V,,, we can estimate the magnitude of 
L (and V,,) from the critical fields necessary to pull the spins into ferromagnetic align- 
ment parallel with the field when the field is applied along the c direction, H , , , c ,  and 
in the basal plane, H l ,  (assuming the transitions to be of second order) 

L = sin2~{2gpB(H,., + H,,.,cot4@ - 2J[K1,(Q) - K,,(O)] 

+ 6JJ:[K,,(Q) - K2I(O)] + 3JJ:[K,,(2Q) - K22(0) ] } .  (14) 
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The two critical fields (Rhyne et a1 1968) are both of the order of 200 kOe and. using 
the final values for the exchange parameters (which in (14) contribute with - 0.8 meV) 
we obtain L equal to about 7 meV. In the same approximation we find that J,V,, is 
equal to  about 008 meV, which is in fair agreement with the value of 0.05 meV deduced 
by Chikazumi et a1 (1971) from torque measurements on a dilute alloy of Er in Gd. 
When a field is applied in the basal plane, the cone collapses into a fan structure at a 
field of 17 kOe: when the field is further increased to H,, f  5 45 kOe. the fan phase is 
converted into a ferromagnetic state with the moments lying at an angle near that of the 
original cone (Rhyne et a1 1968). This implies that 

which gives a value K = 0.63 meV. The effects of magnetoelastic interaction (in general 
the effects of terms in the spin hamiltonian (2)  where Kliy'depends on the spin polariza- 
tion) have been neglected in (14H15) so that the values obtained for L and K are only 
representative. 

The analysis in I, in which K 2 1 ( q )  and K2, (q )  are neglected, leads to values of L 
and K ( L  = 104 meV and K = 0.08 meV) which are wrong by an order of magnitude 
compared with those deduced from magnetization measurements. Furthermore. the 
theoretical ratio between the neutron intensities (Baryakhtar and Maleev 1963) of the 
magnon branches + q and - q does not behave in agreement with the observed intensi- 
ties (for q larger than Q)  as stated in I. 

In the present work most of these discrepancies have been removed by introducing 
K, , (q)  instead of K,,(q) .  The exchange couplings were expressed in terms of cosine 
series with interplanar exchange constants as coefficients ; 

J [ f ( O )  - fF(q)] = f,[l - cos (inn)] 
,, 

and we define an effective anisotropy by 

(16) 

J [ x 2 , ( 0 )  - x 2 2 ( q ) ]  = - 3JJ:[K,2(0)  - K22(q)] = 1 ,Ky,[1 - COS ( i r l n ) ]  I1 7 )  

where < = qc/2n. These exchange constants and L were used as variables in a least 
squares fitting to the measured dispersion relation. The final fit and the experimental 
magnon energies are shown in figure 1 .  The results of the interplanar exchange con- 
stants, f ,  and X,,, and L are given in table 1 together with their uncertainties. In figure 2 
is shown the q dependence of the isotropic exchange interaction, J 2 ( q ) ,  and of the two 
ion anisotropy, JX,,(q). The values obtained for L and K ( L  = 20 meV and K = 0.98 
meV) are comparable with the values deduced from ( 14) and (1  5). The exchange energy, 
( 6 )  has its minimum at q = Q as should be the case. The behaviour of the calculated 
intensities is in agreement with the neutron groups shown in figure 1 in I except in the 
neighbourhood of q = Q. We calculate a 4.5:1 intensity ratio for the magnons at 
q = + 2Q and - 2Q : at larger q this ratio increases to 7.5 : 1. The experimentally 
observed intensity ratios are 4 : 1 and approx. 10 : 1 respectively. 

The neutron intensities obtained experimentally at q = + Q and - Q suggest a 
ratio equal to 1.2 : 1 (whereas we calculate a ratio of 5 : 1 ). This discrepancy indicates 
that some other couplings are present, otherwise F2(Q) should be 3 0 0  times larger than 
F , ( Q ) ,  which seems very unlikely. This disagreement between the theoretical and the 

n 



1070 J Jensen 

experimental intensity ratio may be due to several mechanisms. Antisymmetric exchange 
interaction (Levy 1969) may modify the simple relation between the intensitits and 
F l ( q )  and F , ( q ) .  The magnon (at a wave vector q )  may no longer be a pure mode owing 
to the interaction with the phonons (Nayyar and Sherrington 1972) at wave vectors 
q nQ and with the magnons at wave vectors q f n6Q where n is equal to 1 .  2. . . . 
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Reduced wave vector ( 2 n / c )  

Figure 1. Spin wave energies E( + q )  and E( - q)  (open and closed symbols respectively) in 
the c direction of Er at 4.5 K (after Nicklow et a/ 1971). The solid lines are the result of the 
least squares fit to equations (8H11) in the text. The arrows mark the points where d q )  = 

4 4  f 6Q). 

Using the point charge value for the hexagonal anisotropy (J,V,, = - 0.08 meV) we 
obtain energy gaps equal to about 0.05 meV in the magnon spectrum at points where 
4 4 )  = E ( q  f 6Q) (these points are marked by arrows in figure 1). The amplitude of 
this interaction may be even larger, and some of the irregularities of the measured 
magnon energies may be due to this coupling. Because E ( q  + 6Q) 2: E (  - q )  when q is 

Table 1. The interplanar exchange constants and L. All values are in meV 

Isotropy constants Anisotropy constants 

f 1  + 0.901 0.16 XI  - 0.423 i. 0.42 
j z  - 0.265 0.02 X2 - 0408 i 0.16 
f 3  - 0.036 2 0.04 X ,  - 0.476 0.14 
f 4  - 0.167 0.20 X ,  + 0.204 f 0.68 

$6 - 0.038 i 0.02 L + 20.0 6.0 
d s  - 0.162 i 0.06 X ,  - 0.616 0.18 
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close to Q, this interaction will enhance the apparent intensity of the - q branch at 
the expense of the intensity of the + q branch and may thus be part of the explanation 
of the abnormal intensity ratio observed at q = Q. 

‘I‘ 

I 1 I 1 I 

0 0.4 0.8 
Reduced wave W o r  ( ‘ Ink )  

Figure 2. The p dependence of the isotropic and the anisotropic components of the exchange 
interaction in the c direction of Er. 

The constant L could be constrained to be equal to 7 meV with the consequences of 
a slight worsening of the fit to the dispersion relation, of an unreasonably large K value, 
and of a poor agreement with the observed intensity ratios. Nor if K, , (q )  and K , , ( q )  
are both set equal to zero is a satisfactory fit obtained, because the minimum in the 
exchange energy occurs at q = Q/2 instead of at q = Q. and because of a drastic change 
of the isotropic part of the exchange interaction, which takes a form quite different 
from that observed in the other heavy rare earths. 

4. Conclusion 

The replacement of the effective axial two ion coupling, K,,(q) ,  by the two ion anisotropy, 
K,,(q) ,  yields a substantial improvement in the description of the properties of the 
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spins in Er. The present analysis does not exclude the existence of other kinds of aniso- 
tropic exchange interactions ; however, we conclude that K J q )  is the most important 
coupling. A more definite conclusion can be drawn only on the basis of additional 
information about the spin system, eg the spin wave energies as function of field applied 
along the symmetry directions. The q dependence of the isotropic part of the exchange 
interaction, $(q), is close to that obtained in I, except that the maximum near the 
wave vector of the conical structure is much more pronounced. Apart from this maximum 
which is essential for stabilizing the periodic magnetic structure in Er, the appropriately 
scaled function, [ $YO)  - %(q)]/(g - l)’, is very similar, both in magnitude and q 
dependence, to that deduced for Gd (Koehler et a1 1970), where the exchange presumably 
only has an isotropic component. The exchange anisotropy is reduced by a factor of 
20 compared with the result in I; however, it is still rather substantial. J X , , ( q )  agrees 
both in sign and in absolute magnitude with the axial anisotropy deduced in Tb (Jensen 
and Houmann 1973), which indicates some systematic behaviour of the anisotropic 
exchange couplings in the heavy rare earth metals analogous to the scaling of the 
isotropic exchange energies with respect to the de Gennes factor (g - l ) ’ J ( J  + l), 
which still appears as an adequate scaling. 
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