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AC Losses in Bi2Sr2Ca2Cu3O10+x Tapes and a
3.15-m-Long Single-Phase Cable
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Abstract—The alternating-current losses in superconducting
multifilament BiSCCO-2223 tapes and a 3.15-m single-phase test
cable were measured at 77 K using an electrical transport method.
The cable had an inner diameter of 42 mm; it was composed of a
single layer of 31 multifilament tapes and had a critical current of
Ic = 4.1 kA. The measured losses of the tapes were found to be
in good agreement with the Norris ellipse (NE) model. The losses
of the cable were, for high currents, found to be bounded by the
monoblock and independent NE models.

Index Terms—High-temperature superconductors (HTSs), loss
measurement, magnetic losses, multifilamentary superconductors.

I. INTRODUCTION

S INCE the first high-temperature superconductor (HTS)
was discovered in 1986, scientists have worked to im-

prove the quality of industrial superconductors, making them
technologically and economically competitive with copper con-
ductors. HTS cables are strong candidates for ac-power trans-
mission cables [1], and in several places, superconducting
cables have been introduced on a trial basis [2]–[4].

The reduction of ac losses is critical for the commercializa-
tion of superconducting cables [5]. To reduce the ac losses, it
is necessary to understand the processes governing them. So
far, no satisfying general theoretical model for calculating ac
losses in cables has been established, although several models
for estimation of the loss for certain geometries have been
published [6]–[9].

In this paper, the ac losses were measured on both supercon-
ducting single tapes and on a 3.15-m-long cable constructed
from similar tapes. The superconducting tapes were Bismuth-
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based multifilamentary HTS wire encased in a silver matrix and
laminated with brass. The cable critical current was calculated
to 4.1 kA based on measurements done on individual tapes.

II. MEASUREMENTS OF AC LOSSES IN A SINGLE TAPE

The critical current of the tapes used in the cable was mea-
sured by a standard four-probe direct-current method averaging
both current directions and using the standard criterion defining
Ic at a voltage drop of 1 μV/cm. Thirty one tapes from the
same batch of tapes were used to construct the cable. From this
batch of tapes, 13 samples were selected to be tested in detail in
single tape configuration. The Ic of the tapes was found to be
132 ± 6 A.

The ac losses in the tapes were measured using the electrical
method, being faster and more accurate than calorimetric ones
[10], [11], using a 60-Hz ac. A lock-in amplifier extracted
the first harmonic I(t) = Ip sin(ωt) from the signal, giving a
voltage drop over the tape of

U(t) =RIp sin(ωt) +
[
LIpω − Ip

Cω

]
cos(ωt) (1)

=UR(t) + UL(t). (2)

Here, R is the electrical resistance, C the capacitance, and L
is the inductance of the tape. In the second line, UR(t) is the
sine term, and UL(t) is the cosine term.

The loss per unit time can now be calculated as

P =
1
T

T∫
0

Ip sin(ωt) (UR(t) + UL(t)) dt (3)

= IRMSUR,RMS. (4)

This holds for T � (2π/ω).
The experimental setup is shown in Fig. 1 and is similar

to the one used in [12]. A Rogowski coil (i.e., RC 1) [13]
with an integrator was used to measure the RMS value of the
ac through the superconductor. The phase of the current was
measured by another Rogowski coil (i.e., RC 2) connected to
a lock-in amplifier that also received a reference signal from
the ac source. The phase shift given by RC 2 was used to
calibrate the reference signal such that the lock-in amplifier
could compare this to the actual voltage characteristic and
extract UR,RMS from the in-phase voltage drop. We carried
out this measurement for different currents and determined the
losses per unit length from (4) by dividing by the distance �
between the voltage contacts.
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Fig. 1. Experimental setup for the measurements of ac loss in an HTS tape.
The RMS current was measured with Rogowski coil RC 1, whereas its phase
was measured using RC 2, as explained in the text. The resistive part of the
voltage drop UR,RMS was measured with the lock-in amplifier.

Fig. 2. AC losses of HTS tapes per second normalized by length L and I2
c .

The NE model is seen to fit the data best, particularly at high currents.

The procedure was repeated for three HTS tapes of different
critical currents. The resistive part of the measured voltage drop
was much smaller than the inductive part, particularly at low
currents. The relative uncertainties of the measurements are
therefore largest in the low-current domain, as is seen from the
obvious deviations among measurements in Fig. 2.

III. MEASUREMENTS OF AC LOSSES IN THE

SUPERCONDUCTING CABLE

A 3.15-m single-layer single-phase superconducting cable
was constructed from 31 multifilament tapes taken from several
different spools wound around a 42-mm diameter fiberglass
former with a pitch of θ = 11.2◦ (see Fig. 3). Assuming that
the current in the cable was evenly distributed among the tapes
and neglecting the change in critical current from the magnetic
field, we determined the cable Ic = 4.1 kA by multiplying the
average critical current of an individual tape, i.e., 132 ± 6 A, by
the number of tapes in the cable.

Using a method similar to the one for single tapes, the ac
losses of the cable were measured for different currents at a
frequency of 50 Hz. The results are displayed in Fig. 4.

Inhomogeneities in critical current densities of tapes, contact
resistances, and local cable geometry will lead to systematic
errors in the losses. These can be reduced with the use of
voltage taps and wires regularly distributed around the cable,
as described in [14] and [15].

Again, the resistive part of the voltage drop over the cable
was much smaller than the inductive, particularly for small
currents; thus, the uncertainties are most significant in the low-
current domain.

Fig. 3. Cross section of the superconducting cable used (for values of the
parameters in the figure, see Table I).

Fig. 4. AC losses of the HTS cable in units of loss per time normalized by
length and I2

c . The error bars are the uncertainties of the individual measure-
ments. It is seen that the MB model has approximately the same dependence on
F as the data but underestimates the values. The NEs give values closer to the
data but changes much faster with F . Therefore, the models cannot accurately
estimate the loss but only give upper and lower bounds for the loss at high
currents.

The normalized ac loss in the cable at a relative peak current
of F = 0.995 was measured to be 0.166 μW/A2. This is around
twice than that found in [12] on an eight-layer single-phase
cable with a critical current of 3240 A but significantly lower
than the losses measured on triaxial cables with critical currents
of 6 and 4 kA in [16] and in [17], respectively. Note that
the losses should not be compared directly due to significant
differences in the cable geometries.

IV. MODELING AC LOSSES IN SINGLE HTS TAPES

In 1970, Norris presented models for calculating ac losses
in superconductors with different geometries [6]. Today, these
models are still widely used when ac losses are estimated using
explicit expressions.

For a single HTS tape, the “Norris strip” (NS) and the “Norris
ellipse” (NE) can be used to estimate the ac loss per length per
cycle of the current

LNS =
I2
c μ0

π

(
(1−F ) ln(1−F )+(1+F ) ln(1+F )−F 2

)
(5)

LNE = I2
c

μ0

π

(
(1−F ) ln(1−F )+F

(
1−F

2

))
(6)
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where Ic is the critical current of the tape and F = Ip/Ic, where
Ip is the peak current.

In both models, the tape is treated as if it were made up of
solid superconducting material instead of individual filaments.
Physically, this means that no magnetic field is allowed to
circulate between the filaments in the silver matrix. This ap-
proximation agrees well with experiments [7].

Refined models have been developed based on other geome-
tries, e.g., [8] and [9], but no analytical models have been as
successful as the NS and NE models.

In Fig. 2, the measured losses for HTS tapes are plotted
against the normalized NS and NE models. For peak currents
larger than 0.3Ic, the NS model predicts a loss much lower
than experimentally measured. The NE model, on the other
hand, agrees very well for peak currents larger than 0.3Ic.
For industrial purposes, high currents are the most interesting;
furthermore, the uncertainty of the data is lowest for high
currents. It is therefore concluded that the best estimation of
the ac loss of a multifilament BiSCCO-2223 tape is obtained
using the NE model.

V. MODELING AC-LOSS IN HTS CABLE

When the individual superconducting tapes are assembled to
form a cable, the ac loss can be estimated in two different ways.

First, the N individual tapes can be considered to be inde-
pendent. From (6), we derive that the total ac loss LN will be

LN =
μ0I

2
c

Nπ cos θ

[
(1 − F ) ln(1 − F ) + F

(
1 − F

2

)]
(7)

where Ic and F refer to the entire cable and cos θ is the relation
between the length of the tapes and the length of the cable.

Alternatively, the tightly packed tapes can be considered to
be a seamless tube. Then, the cable can be regarded as a thin
shell of superconducting material carrying a relative current F
along the cable on the outer surface. This is the monoblock
(MB) model giving the loss [18]

LMB =
μ0I

2
c

πh2

[
(1 − Fh) ln(1 − Fh) + Fh

(
1 − Fh

2

)]
(8)

where Ic and F again refer to the entire cable and h is defined
from the diameter of the former D and the effective thickness
of the tapes d as follows:

h =
(D + 2d)2 − D2

(D + 2d)2
≈ 4

d

D
� 1. (9)

The relevant values of D and d can be found in Table I.
Since h is small, we can use Taylor expand equation (8)

around Fh = 0; this gives to the following leading order:

LMB ≈ μ0I
2
c

6πh2
(Fh)3. (10)

In contrast with the case of individual tapes in (7), the loss
in an MB depends explicitly on the effective thickness d of
the superconducting tapes. This dependence indicates that the
comparison with the MB model is going to depend sensitively
on the quality of the superconducting tapes and, in particular,
on the effective thickness of the superconducting layer.

TABLE I
PHYSICAL CHARACTERISTICS OF THE CABLE. HERE, D AND L ARE THE

DIAMETER AND THE LENGTH OF THE FORMER, RESPECTIVELY; � IS THE

DISTANCE BETWEEN THE VOLTAGE CONTACTS; θ IS THE PITCH ANGLE;
a AND db ARE THE WIDTH AND THICKNESS OF THE BRASS LAMINATE;
d IS THE EFFECTIVE THICKNESS OF THE SUPERCONDUCTING LAYER;

AND Ic IS THE EXPECTED CRITICAL CURRENT BASED ON THE

AVERAGE CURRENT OF THE INDIVIDUAL TAPES

Because the tapes are actually pitched, there will be a tan-
gential component of the current, which according to the model
in [19], will flow on the inner surface to expel the magnetic
field from the superconducting material. Since this current is
factor tan(θ) less than F , the resulting loss will be on the order
of (tan(θ)Fh)3 and thus negligible for the angle θ in question
here.

In Fig. 4, the measured losses of the cable are plotted against
the normalized LN and LMB losses. The MB model has the
right dependence on F but gives a loss approximately a factor
of 2 lower than that measured. The model consisting of N
independent tapes predicts for F ≈ 0.35 a loss close to that
measured, but for higher currents, it gives a loss approximately
a factor of 1.5 higher than that measured.

This shows that the ac loss cannot be correctly calculated
either using the MB model or a model of 31 independent tapes.
However, these models give a lower and an upper bound to the
actual loss, corresponding to the fact that the tapes in a real
cable is neither independent nor completely adjoined.

Because measurements and models are all normalized by
I2
c , the comparison is independent of the value of the critical

current of the cable. However, differences in critical currents
of the individual tapes will result in an uneven magnetic field
distribution around the cable. This will result in slightly higher
measured losses than if all tapes had the same critical current.

VI. CONCLUSION

For currents higher than F = 0.3, the ac loss of supercon-
ducting Bi2Sr2Ca2Cu3O10+x tapes are best estimated from
the NE model. A 3.15-m-long superconducting cable with a
critical current of Ic = 4.1 kA was constructed from 31 tapes,
and the ac loss was measured. For peak currents close to Ic,
the measured value was two thirds of the loss arising from
31 independent tapes and twice the loss predicted by the MB
model.
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