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Solutions to the problems in Chapter 17

17.4 or 17.5 AC conductivity

In the presence of a time-dependent (uniform) electrical field

�E = �E0e
−iωt (1)

we may use the general solution of the Boltzmann equation given by (17.24), before
the integration with respect to t′ is performed:

g = f −
∫ t

−∞
dt′ e(t

′−t)/τεe−iωt′�v�k · �E0 e
∂f(t′)
∂µ

(2)

Including only effects which are linear in the applied field – the linearized Boltz-
mann equation – then �v�k

(t′) and f(t′) may be replaced by their time-independent

equilibrium values at zero field (the time-dependent changes of these quantities are
∝ E). The integration is then performed straightforwardly, and

g = f − τε
1− iωτε

�v�k · �E0 e
∂f

∂µ
e−iωt = f − τε

1− iωτε
�v�k · �E e

∂f

∂µ
(3)

Introducing this expression into (17.43)-(17.44) we get the frequency-dependent
conductivity (valid in the limit of �E0 → �0)

σαβ(ω) = e2
∫
[d�k]

τε
1− iωτε

vαvβ
∂f

∂µ
(4)

or in the case of a cubic or an isotropic (free electron) system:

σ(ω) =
ne2

m∗
τ

1− iωτ
=

ne2τ

m∗
1 + iωτ

1 + (ωτ)2
(5)

17.5 or 17.6 Current driven by thermal gradient

We shall consider a metal subject to a constant temperature gradient

∇T =

(
∂T

∂x
, 0, 0

)
and ε�k = εk = 1

2m
∗�v2�k (1)

According to (17.60), (17.62), and (17.68) the electrical current, in the case of
G = 0, is

�j = L12
(
−∇T

T

)
, L12 = −1

e
L(1) = −1

e

π2

3
(kBT )

2 σ ′(εF) (2)

The assumption of an isotropic mass, (1), implies σ(ε) to be diagonal, and accord-
ing to (17.64) the diagonal element is

σαα(ε) = e2τ

∫
d�kD�k

v2�kα δ(ε − ε�k) = e2τ

∫
dεkD(εk)

1
3�v

2
�k
δ(ε − εk) (3)

The integration of v2�kα
over all solid angles, at a constant |�k|, is 1/3 of the result

deriving from Tr v2�kα = �v2�k and using �v2�k = 2εk/m
∗, we get

σαα(ε) = e2τD(ε)
2ε

3m∗ ⇒ σ′
αα(ε) =

2e2τ

3m∗
[
D(ε) + εD′(ε)

]
(4)
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This result is introduced in (2)

�j =
1

e

π2

3
(kBT )

2 2e
2τ

3m∗ D(εF)

(
1 + εF

D′(εF)
D(εF)

)
∇T

T
(5)

In terms of the heat capacity cV = (π2/3)k2BTD(εF), (6.77), we finally get

jx =
2eτcV
3m∗

∂T

∂x

(
1 + εF

D′(εF)
D(εF)

)
=

eτcV
m∗

∂T

∂x
(6)

where the last equality sign is valid only if D(ε) ∝ √
ε.

17.8 or 17.9 Hall effect – elementary argument

The Hall effect geometry: The applied field �E is along the x axis leading to a current �j in

this direction, i.e. an electron (hole) current in the minus (plus) x direction. The magnetic

part of the Lorenz force �F ∝ �j × �B is in the minus y direction, when �B is along z, leading

to opposite signs of the resulting charge distributions in the electron and hole cases.

(a) The equation of motion, when assuming the Drude model, is

m�̇v = −e

(
�E +

�v

c
× �B

)
− m�v

τ
(1)

in the case of electrons with charge −e. Using �B = (0, 0, B), then we get �v × �B =
(vyB,−vxB, 0) and since the current, by geometry, is constrained to be along x,
the steady state is characterized by vx being constant and vy = 0. These conditions
imply

mv̇y = −e

(
Ey −

vx
c
B

)
− 0 = 0 ⇒ Ey =

vx
c
B (2)

(b) The current is �j = (jx, 0, 0) with jx = −nevx, and the Hall coefficient is

R =
Ey

B jx
=

vx
c
B

1

B(−nevx)
= − 1

nec
, Ey = RB jx (3)

The electric field in the x direction may be determined from v̇x = 0, or

mv̇x = −eEx −
mvx
τ

= 0 ⇒ Ex = −me

τ
vx = −me

τ

jx
(−ne)

=
mjx
ne2τ

=
jx
σ

(4)

i.e. Ex is determined by the Drude resistivity σ−1 as in the case of B = 0.
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17.9 or 17.10 Hall effect – Boltzmann equation

The Boltzmann equation in the relaxation-time approximation is given by (17.17)
and (17.18)

dg

dt
=

∂g

∂t
+ �̇r · ∂g

∂�r
+ �̇k · ∂g

∂�k
= −g − f

τ
(1)

When the state is uniform in space and steady in time, this equation reduces to

�̇k · ∂g
∂�k

= −g − f

τ
(2)

The semiclassical equation of motion is

��̇k = −e

(
�E +

1

c
�v�k × �B

)
, �v�k = �̇r =

1

�

∂ε�k
∂�k

=
��k

m∗ (3)

where the second equation expresses that the mass tensor is assumed to be isotropic
for simplicity. Like in Problem 17.4 we are only interested in the response (current)
which is linear in the electric field. This means that g may be replaced by f in
products on the left hand side of (2) which already involve �E. The linearized
version of the Boltzmann equation (2) is therefore

− e

�

�E · ∂f
∂�k

− e

�c
�v�k × �B · ∂(g − f)

∂�k
= −g − f

τ
(4)

when using that �v�k × �B · ∂f
∂�k

= 0 because
∂f

∂�k
is parallel with �v�k , as

∂f

∂�k
=

∂f

∂ε�k

∂ε�k
∂�k

= −∂f

∂µ
��v�k (5)

(a) The geometry is the same as applied in problem 17.8, hence we define �B =
(0, 0, B) and assume the resulting �E = (Ex, Ey, 0) to be perpendicular to �B. In
this geometry, we guess that the solution has the form

g = f + a kx + b ky (6)

Introducing this in eq. (4) and utilizing (5), we get

e�

m∗
∂f

∂µ

(
Ex kx + Ey ky

)
− eB

m∗c

(
a ky − b kx

)
= −a kx + b ky

τ
(7)

Since kx and ky are independent variables, this equation leads to two independent
conditions, which determine a and b to be

a =
Ex − ωcτEy

1 + (ωcτ)2

(
−e�τ

m∗

)
∂f

∂µ
, b =

Ey + ωcτEx

1 + (ωcτ)2

(
−e�τ

m∗

)
∂f

∂µ
(8)

where we have introduced the cyclotron frequency ωc =
eB

m∗c
.

The α component of the current density �j is, according to Marder’s eq. (17.43),

jα = −e

∫
[d�k] v�kα(g�k − f�k) = −e

∫
[d�k] v�kα

(
a kx + b ky

)

= −em∗

�

∫
[d�k]

(
a v2�kxδαx + b v2�kyδαy

) (9)



23 Condensed matter physics 2

where the last equality sign follows because the off-diagonal terms vanish, when
the mass tensor is assumed to be diagonal (isotropic). Using the same procedure
as in Marder’s eqs. (17.44)-(17.50), we have

−em∗

�

∫
[d�k] v2�kα

(
−e�τ

m∗

)
∂f

∂µ
= e2τ

∫
[d�k] v2�kα

∂f

∂µ
=

ne2τ

m∗ ≡ σ0 (10)

and combining the three equations (8)-(10), we finally get

jx =
Ex − ωcτEy

1 + (ωcτ)2
σ0 , jy =

Ey + ωcτEx

1 + (ωcτ)2
σ0 (11)

In the case where �E is assumed to be along the z axis parallel to the field, we have
to add a term cz kz to the trial function g in (6). In this situation, the magnetic
field does not contribute to the Boltzmann equation, and we get jz = σ0Ez. Hence,
for a system with an isotropic mass m∗, the total conductivity tensor is found to
be

σ =
σ0

1 + (ωcτ)
2

⎛
⎝ 1 −ωcτ 0
ωcτ 1 0
0 0 1 + (ωcτ)

2

⎞
⎠ , ωc =

eB

m∗c
(12)

when the magnetic field B is applied along the z axis.

This result may also be expressed in terms of the Hall coefficient R, where

ωcτ = −RBσ0, or R = − 1

nec
(13)

The resistivity tensor ρ, defined by the relation �E = ρ�j, is the inverse of the
conductivity tensor and is particularly simple

ρ = σ −1 =
1

σ0

⎛
⎝ 1 ωcτ 0
−ωcτ 1 0
0 0 1

⎞
⎠ =

1

σ0

⎛
⎝ 1 −σ0RB 0
σ0RB 1 0

0 0 1

⎞
⎠ (14)

which is in perfect agreement with the results derived from the Drude model (prob-
lem 17.8). The calculations in section 17.4.8 assume ωcτ � 1, in which case the
diagonal elements of σ may be neglected in comparison with the off-diagonal ones,
σxx = σyy � 0 and σxy = −σyx � −(ωcτ)

−1.
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Solution to HS’s problem 3

Hall effect of a two-dimensional electron gas

A two-dimensional electron gas with an anisotropic dispersion

ε = a(k2x + k2y) + b(k4x + k4y), a > 0, b > 0 (1)

Introducing the polar angle θ in the (kx, ky)-coordinate system of the reciprocal
lattice, the dispersion relation may be written

ε = a k2 + 1
4b (3 + cos 4θ)k4, kx = k cos θ, ky = k sin θ (2)

reflecting directly the four-fold, cubic symmetry of the dispersion.

1) The equation determining the constant energy contour is obtained by solving
(2) with respect to k2

k2 = k2(ε) =
2a

b(3 + cos 4θ)

[(
1 +

bε

a2
(3 + cos 4θ)

)1/2

− 1

]
(3)

In the case of bε 	 a2, the square root may be expanded, and to second order
(
√
1 + x = 1 + 1

2x− 1
8x

2) the result is

k2(ε) � ε

a

(
1− 3bε

4a2

)
− bε2

4a3
cos 4θ (4)

In the figure below (to the left) I show a constant energy contour, which differs
visible from a circle. It is obtained by a numerical evaluation of (3) (Mathematica
program) in the case of a = b = 1 and ε = 2 (assuming dimensionless quantities).
The thin line shows the average length of �k(ε). The figure to the right show the
corresponding |∇�k

ε�k| as a function of the angle θ. The gradient, and hence the

velocity �v�k = ∇�k
ε�k/�, is perpendicular to the constant energy contour. Notice

that |�v�k| is smallest along the 〈11〉 directions, where |�k(ε)| has its maxima.

2) The Boltzmann equation in the relaxation-time approximation, (17.17)-(17.18),

dg

dt
=

∂g

∂t
+ �̇r · ∂g

∂�r
+ �̇k · ∂g

∂�k
= −g − f

τ
⇒ �̇k · ∂g

∂�k
= −g − f

τ
(5)
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when considering the steady state of a uniform system. The fields are assumed to
be �E = (E, 0, 0) and �B = (0, 0, B), and the semiclassical equation of motion is

��̇k = −e

(
�E +

1

c
�v�k × �B

)
, �v�k = �̇r =

1

�

∂ε�k
∂�k

(6)

Introducing this in the right-hand part of (5) we get

− e

�

(
�E +

1

c
�v�k × �B

)
·
(
∂(g − f)

∂�k
+

∂f

∂�k

)
= −g − f

τ
(7)

where
∂f

∂�k
=

∂f

∂ε�k

∂ε�k
∂�k

= ��v�k
∂f

∂ε�k
(8)

This gradient is perpendicular to �v�k × �B, and the linearized version of (7) is

−e�E · �v�k
∂f

∂ε�k
− e

�c
�v�k × �B · ∂(g − f)

∂�k
= −g − f

τ
(9)

Since (g − f) is going to scale with E, the term neglected, − e

�

�E · ∂(g − f)

∂�k
, is of

second order in E. Inserting �E = (E, 0, 0) and �B = (0, 0, B) in (9), we finally get

−evxE
∂f

∂ε�k
=

[
eB

�c

(
vy

∂

∂kx
− vx

∂

∂ky

)
− 1

τ

]
(g − f) (10)

3) With the assumption of g − f = kyF (ε), we find

vy
∂(g − f)

∂kx
− vx

∂(g − f)

∂ky
= vyky

dF

dε

∂ε

∂kx
− vxF − vxky

dF

dε

∂ε

∂ky

= vyky
dF

dε
�vx − vxF − vxky

dF

dε
�vy = −vxF

(11)

When introducing this result in (10) and neglecting 1/τ , we get

−evxE
∂f

∂ε�k
=

eB

�c
[−vxF (ε)] ⇒ F (ε) =

�cE

B

∂f

∂ε�k
(12)

The current in the y direction is then

jy = −e

∫
[d�k]vy(g − f) = −e�cE

B

∫
[d�k]vyky

∂f

∂ε�k

= −e�cE

B

∫
dkx

∫
dky D�k

∂ε�k
∂(�ky)

ky
∂f

∂ε�k
= −ecE

B

∫
dkx

∫
dky D�k

ky
∂f

∂ky

=
ecE

B

∫
dkx

∫
dky D�k

f =
ecE

B

∫
[d�k]f =

necE

B
= − 1

RB
E, R = − 1

nec

(13)

when performing the y integration by parts, where D�k
= 2/(2π)2 is a constant and

the boundaries of the integral is the boundaries of the first Brillouin zone. (13) is
the usual high-field result for the off-diagonal conductivity σyx = −1/(RB).


