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Solutions to the problems in Chapter 25 and 26

25.2 Classical electrons in a magnetic field

The spin degree-of-freedom does not occur in classical physics. The elementary
particles do neither exist, but accepting their existence, they only interact with
the electromagnetic fields because of their charges, and with the gravitational field
because of their masses. The classical Hamiltonian H of a many-body system (see
for instance Goldstein) is a function of the independent canonical variables (�ri, �pi)
of all the particles. The canonical impulse �pi, independent of �ri, is defined in terms
of the LagrangianL = L(�ri,�̇ri, · · ·) as �pi = ∂L/∂�̇ri (or, in terms of the Hamiltonian
theory, as the generator of an infinitesimal translation �ri → �ri + δ�ri).

(a) If the external constraints (fields) are independent of time, the Hamiltonian
is equal the total (kinetic plus potential) energy of the system. In this case the
classical partition function is

Z = e−βF =
1

hn

∫
d�r1d�p1 · · · d�rnd�pn e−βH(�r1,�p1,···,�rn,�pn) (1)

(b) In the presence of a time-independent electromagnetic field, �E only contributes
to the potential energy as determined by the scalar potential. The magnetic field
�B only affects the velocities of the particles via the vector potential �A = �A(�r),
where �B = ∇× �A. For the ith particle with mass mi and charge qi, the canonical
impulse is

�pi = mi�̇ri +
qi
c
�A ⇒ Ti =

1
2mi(�̇ri)

2 =
1

2mi

(
�pi −

qi
c
�A

)2

(2)

[The magnetic field needs not to be uniform in space, but only to be constant in
time – the case of a spatial uniform field is discussed in the next problem 25.4].

(c) The canonical impulse �pi appears in the Hamiltonian only via the kinetic energy
Ti. Assuming H in (1) to be the Hamiltonian function of the system, when the
magnetic field is zero (but including the potential energy contributions of the
electric field), then the introduction of the magnetic field implies that

H(�r1,�p1, · · · ,�rn,�pn) → H
(
�r1,�p1 −

q1
c
�A(�r1), · · · ,�rn,�pn − qn

c
�A(�rn)

)
(3)

The partition function Z in the presence of the magnetic field is then

Z(�B) =
1

hn

∫
d�r1d�p1 · · · d�rnd�pn e−βH

(
�r1,�p1−

q1
c
�A(�r1),···,�rn,�pn−

qn
c
�A(�rn)

)

=
1

hn

∫
d�r1d�p1

′ · · · d�rnd�pn′ e−βH(�r1,�p1
′,···,�rn,�pn′) = Z(�0)

(4)

The integration with respect to the canonical impulse �pi may be performed before

the �ri-integrations. Introducing the following change of variables �pi
′ = �pi− qi

c
�A(�ri),

then d�pi
′ = d�pi, since

�A(�ri) is independent of �pi. This transformation of variables

therefore leads to the same integral as in (1). The elimination of �B in the partition
function means, for instance, that the magnetic susceptibility of a classical equilib-
rium system is zero. This result is called the Bohr–van Leeuwen theorem. Notice,
that it is important for the argumentation that the system is in equilibrium (the
basis for the use of the partition function).
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25.4 Quantum electrons in a magnetic field

The Hamiltonian of an electron with charge −e in a magnetic field �B is

H =
1

2m

(
�p+

e

c
�A

)2

(1)

The choice of the “Landau gauge”

�A = (0, B x, 0) ⇒ �B = ∇× �A = (0, 0, B) , ∇ · �A = 0 (2)

i.e. this vector potential corresponds to a spatial uniform field �B in the z direction.
Since the divergence of �A is zero, the two quantum mechanical operators �A and �p
commute, �p = (�/i)∇ in the �r-representation. Introducing this choice of gauge in
(1), we get

H =
1

2m

[
p2x +

(
py +

eB

c
x

)2

+ p2z

]
(3)

The wave function of the electron is assumed to be

ψ(�r) = u(x) ei(yky+zkz) (4)

and the eigenvalue equation is

Hψ = ei(yky+zkz) 1

2m

[
p2x +

(
�ky +

eB

c
x

)2

+ (�kz)
2

]
u(x) (5)

When the common phase factor is deleted, this eigenvalue equation is reduced to
one, which only involves a determination of u(x), and the equation may be written:

Hu(x) =

[
p2x
2m

+ 1
2mω2

c (x− x0)
2 + εz

]
u(x) (6)

where

ωc =
eB

mc
, x0 = − �ky

mωc

, εz =
�
2k2z
2m

(7)

Equation (6) is the eigenvalue equation for the one-dimensional harmonic oscillator,
displaced to be centered around x = x0 and shifted in energy by the constant (with
respect to x) energy εz. Hence, the final eigenstates are classified by (ky , kz) and
the occupation number ν, and the energy eigenvalues are

εν,ky ,kz =
(
ν + 1

2

)
�ωc +

�
2k2z
2m

, ν = 0, 1, 2, · · · (8)

This is the result (25.48) utilized in the analysis of the Landau diamagnetism.



The problems of 4th week (“magnetism”) 15

26.2 Ferromagnetic ground state

We are going to discuss the ferromagnetic ground state of the Heisenberg model
for an arbitrary integer/half-integer value of S. The Heisenberg Hamiltonian is

H = −
∑
〈ll′〉

Jll′�Sl · �Sl′ = −1
2

∑
l �=l′

Jll′�Sl · �Sl′ (1)

according to (26.21) in Marder. The possibility of Jll �= 0 may be excluded, since
such a term would contribute only by a constant term JllS(S + 1) to the energy.

The components of �Sl fulfill the usual spin-commutator relations

[Slx, Sl′y] = i δll′ Slz , [Sly, Sl′z] = i δll′ Slx , [Slz, Sl′x] = i δll′ Sly (2)

(a) Defining the following operator: Sz =
∑
l

Slz
(3)

then the commutator of this operator with a single term �Sl · �Sl′ in (1) is

[Sz ,
�Sl · �Sl′ ] = [Sz ,

�Sl] · �Sl′ + �Sl · [ Sz , �Sl′ ]
= [Slz , Slx]Sl′x + [Slz , Sly]Sl′y + Slx [Sl′z , Sl′x] + Sly [Sl′z , Sl′y]

= i SlySl′x − i SlxSl′y + i SlxSl′y − i SlySl′x = 0

(4)

showing that [Sz , H ] = 0. The Sz-representation for each site is defined by
Slz|ml〉 = ml|ml〉, whereml = −S,−S+1, . . . , S, and Sz

∏
l |ml〉 = (

∑
lml)

∏
l |ml〉.

Most of these eigenstates are highly degenerated except for the two “singlets”,∏
l |ml = ±S 〉 =

∏
l | + S 〉 or

∏
l | − S 〉. Because Sz and H commute the two

non-degenerate eigenstates of Sz are also eigenstates to H, and

H
∏
l

|ml = ±S 〉 = −1
2NJ(

�0)S2
∏
l

|ml = ±S 〉, J(�k) =
∑
l′
Jll′e

−i�k·(�rl−�rl′ ) (5)

(b) Defining �S = �S�R
+ �S �R′ and using �S2 = (�S�R

+ �S �R′)
2 = �S2

�R
+ �S2

�R′ + 2�S�R
· �S �R′

〈Ψ|�S2 |Ψ〉 =
{
S(S + 1) + S(S + 1) + 2〈Ψ|�S�R

· �S �R′ |Ψ〉
S(S+ 1), S = 0, 1, · · · , 2S (6)

which shows that 〈Ψ|�S�R
· �S �R′ |Ψ〉 attains its maximum value, when S = 2S, and

Max{〈Ψ|�S�R
· �S �R′ |Ψ〉} = 1

2 [2S(2S + 1)− 2S(S + 1)] = S2 (7)

(c) The eigenvalue of H in (5) for the fully polarized states requires that each pair
of operators in (1) contributes by their maximum. Hence, if all exchange constants
Jll′ ≥ 0, then the eigenvalue in (5) is the lowest possible value, i.e. the two fully
polarized states are the two degenerate ground states.

The lowest exited states are linear combination of the states, where all ml = S
except that ml = S− 1 for one particular site. Naming the product of these states
for |l〉, where l is the site at which ml = S − 1, then it is straightforward to show
that the eigenstates of H constructed from these states are the Fourier transforms
of |l〉. These excited states are characterized by the wave vector �k of the Fourier
transformation, and the energy difference between one excited �k-state and the
ground state is the spin wave energy, S[J(�0) − J(�k)]. Hence, these lowest excited
states, the one-magnon states, are exact solutions to the Heisenberg Hamiltonian
– but this is no longer the case if proceeding to the two-magnon states, where the
eigenvalue of Sz is NS − 2.
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26.4 Diagonalizing spin waves

The result derived in (26.62) may be written in a reduced form:

ĥ =
1

2z|J |S
(
H +Nz|J |S2

)
=

1

2z

∑
�δ�k

[
2a+�k

a�k +
(
a+�k
a+−�k

+ a�ka−�k

)
cos(�k ·�δ)

]

=
∑
�k

[
a+�k
a�k +

1
2

(
a+�k
a+−�k

+ a�ka−�k

)
B�k

]
, B�k

=
1

z

∑
�δ

cos(�k ·�δ)
(1)

The operators are defined by (26.51) in terms of al and its hermitean conjugate
a+l , which are the annihilation and creation operators, also named Bose operators,
of a harmonic oscillator at the site l. These operators obey the Bose commutator
relations [al, a

+
l′ ] = δll′ and [a+l , a

+
l′ ] = [al, al′ ] = 0, which imply

[a�k, a
+
�k′
] =

1

N

∑
ll′

[
al e

i�k·�rl, a+l′ e
−i�k′·�rl′

]
=

1

N

∑
ll′
δll′e

i�k·�rl−i�k′·�rl′ =
1

N

∑
l

ei(
�k−�k′)·�rl

(2)
or that the Fourier transforms of the Bose operators, diagonal with respect to the
site index, are Bose operators in reciprocal space

[a�k, a
+
�k′
] = δ�k�k′ , [a�k, a�k′ ] = 0 , [a+�k

, a+�k′
] = 0 (3)

which are diagonal with respect to the wave vector index (notice that the wave
vector �k is assumed to be a discrete variable). The Hamiltonian (1) is not diag-
onal in the number representations of the harmonic oscillators, since it involves
a+�k
a+−�k

+ a�ka−�k
. One way to solve an eigenvalue problem is to make a canonical

transformation of the Hamiltonian to one for which the eigenvalue equations have
been solved. In the present case, we want to find a new Bose operator γ�k, in

terms of which ĥ only depends on the number operators γ+�k
γ�k
, in which case ĥ is

“diagonal”. This procedure is called the Bogoliubov transformation:

a�k = u�kγ�k + v�kγ
+

−�k
, a+�k

= u∗�kγ
+
�k
+ v∗�kγ−�k

= u�kγ
+
�k
+ v�kγ−�k

(4)

The last equation indicates that u�k and v�k are assumed to be real functions. This
is a valid simplification in the present case, but it is not a general requirement.
The demand that the new operators should also be Bose operators implies

[a�k, a
+
�k′
] = [u�kγ�k + v�kγ

+

−�k
, u�k′γ

+
�k′
+ v�k′γ−�k′ ] = u�ku�k′δ�k�k′ − v�kv�k′δ−�k−�k′ = δ�k�k′ (5)

and, similarly, [a�k, a�k′ ] = u�kv�k′δ�k−�k′
− v�ku�k′δ−�k�k′

= 0. Hence, the fulfillment of the

Bose commutator relations for γ�k
requires

u2�k − v2�k = 1 , u�kv−�k
− v�ku−�k

= 0 (6)

Inserting (4) in (1) we get

ĥ =
∑
�k

[(
u�kγ

+
�k
+ v�kγ−�k

) (
u�kγ�k + v�kγ

+

−�k

)
+ 1

2B�k

{(
u�kγ

+
�k
+ v�kγ−�k

)

×
(
u−�k

γ+−�k
+ v−�k

γ�k

)
+
(
u�kγ�k + v�kγ

+

−�k

) (
u−�k

γ−�k
+ v−�k

γ+�k

)}] (7)
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Collecting corresponding terms and replacing −�k with �k in some of the terms
(utilizing B�k

= B−�k
and γ�k

γ−�k
= γ−�k

γ�k
), then (7) is reduced to

ĥ =
∑
�k

[ (
u2�k +B�k

u�kv−�k

)
γ+�k
γ�k +

(
v2−�k

+B�k
u�kv−�k

)
γ�kγ

+
�k

+
{
2u�kv�k +B�k

(
u�ku−�k

+ v�kv−�k

)}
1
2

(
γ+�k
γ+−�k

+ γ�kγ−�k

) ] (8)

In order to diagonalize this Hamiltonian we have to search for values of u�k
and

v�k
, where the last term in (8) vanishes and the requirements of (6) are fulfilled.

In order to simplify the search, we make the ansatz u−�k
= u�k

, which is consistent

with the different conditions only if v−�k
= v�k. In this case the equations are

2u�kv�k = −B�k

(
u2�k + v2�k

)
, u2�k − v2�k = 1 (9)

Introducing v2�k
= u2�k

− 1 in the squared version of the first equation, we get an

equation of second degree in u2�k. Determining the solution of this equation subject

to the condition v2�k
> 0 or u2�k

> 1, we get

u2�k =
1 + ε�k
2ε�k

, v2�k =
1− ε�k
2ε�k

, 2u�kv�k = −
B�k

ε�k
, ε�k =

√
1−B2

�k
(10)

According to the definition in (1), |B�k
| ≤ 1 implying 0 ≤ ε�k

≤ 1. This is the same

solution as given by equations (26.63) and (26.64) in Marder, since u�k = cosh (α�k)

and v�k = sinh (α�k) imply u2�k − v2�k = 1 and tanh (2α�k) = 2u�kv�k/(u
2
�k
+ v2�k) = −B�k

.

Introducing the solution (10) in (8) we finally get

ĥ =
∑
�k

[
1
2

(
ε�k + 1

)
γ+�k
γ�k +

1
2

(
ε�k − 1

)
γ�kγ

+
�k

]
=
∑
�k

[
1
2

(
ε�k − 1

)
+ ε�kγ

+
�k
γ�k

]

H = −Nz|J |S2 − z|J |S
∑
�k

(
1− ε�k

)
+
∑
�k

E�k γ
+
�k
γ�k

E�k = 2z|J |S ε�k , 〈γ+�k γ�k〉 = n�k = [eβE�k − 1]−1

(11)

The antiferromagnetic Néel state, where the spins of the two sublattices are either
+S or −S is not an eigenstate of the Hamiltonian. The second term of H, dis-
cussed by Marder, shows that the ground state energy is smaller than that derived
from the Néel state. Additionally, the magnitude |〈Sz(l)〉| is smaller than S at
zero temperature. This “zero-point” reduction of the antiferromagnetic moment
is determined by the site average of |〈0|Sz(l)|0〉| = S − 〈0|a+l al|0〉, where |0〉 is the
product ground state of the N independent harmonic oscillators, γ�k

|0〉 = 0,

∆S =
1

N

∑
l

〈0|a+l al|0〉 =
1

N

∑
�k

〈0|a+�k a�k|0〉 =

1

N

∑
�k

〈
0
∣∣∣ (u�kγ+�k + v�kγ−�k

) (
u�kγ�k + v�kγ

+

−�k

) ∣∣∣0〉 =
1

N

∑
�k

v2�k =
1

N

∑
�k

1− ε�k
2ε�k

(13)

which number is calculated [P.W. Anderson, Phys. Rev. 86, 694 (1952)] to be 0.078
in the case of a simple cubic lattice (z = 6).
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Solution to HS’s problem 4

Localized atoms: heat capacity and magnetic susceptibility

1) In the case of non-interacting atoms, the total energy is the sum of the con-
tributions from each site E =

∑
l El. This implies that the partition function is

the product of the partition functions determined for each site (see also the note
“Magnetic energy and domains”), and when the atoms are identical:

Z =
N∏
l=1

Zl = ZN , Zl = Z =
∑
i

e−βεi = eβ∆ + 1 + e−β∆ (1)

The free energy is

F = −kBT lnZ = −NkBT lnZ = −NkBT ln
(
eβ∆ + 1 + e−β∆

)
(2)

The internal energy is U = F + TS, where the entropy is

S = −∂F
∂T

= NkB lnZ +NkBT
1

Z

∂Z

∂T
⇒

U = F + TS = NkBT
2 1

Z

∂Z

∂T
= −N 1

Z

∂Z

∂β
= N

1

Z

∑
i

εie
−βεi

(3)

Introducing the population factor for the ith level (the probability that this level
is occupied):

pi ≡
e−βεi

Z
⇒ U = N

∑
i

εipi = −N∆
eβ∆ − e−β∆

eβ∆ + 1 + e−β∆
(4)

Notice, that
∑

i pi = 1. In terms of the population factors, the thermal expectation
value of any single site operator Â is 〈Â〉 =

∑
i〈i|Â|i〉pi, and the entropy is S =

−NkB
∑

i pi ln pi.

2) In the limit kBT 
 ∆ or β∆ � 1, we have from (1)

Z � 1 + β∆+ 1
2 (β∆)2 + 1 + 1− β∆+ 1

2(β∆)2 = 3 + (β∆)2 ⇒

F � −NkBT ln
[
3 + (β∆)2

]
= −NkBT ln 3

[
1 + 1

3 (β∆)2
]
= −NkBT ln 3− N∆2

3kBT

S = −∂F
∂T

= NkB ln 3− N∆2

3kBT 2
, U = F + TS = −2N∆2

3kBT
(5)

The heat capacity may be determined either as

C =
∂U

∂T
=

2N∆2

3kBT 2
or C = T

∂S

∂T
= T (−2)

(
− N∆2

3kBT 3

)
=

2N∆2

3kBT 2
(6)

3) The derivative of F with respect to ∆ is

∂F

∂∆
= −NkBT

1

Z

∂Z

∂∆
= −NkBT (βp1 + 0 · p2 − βp3) = N(p3 − p1) � − 2N∆

3kBT
(7)

The last equality is most simply obtained from F derived in (5). In the presence of
a magnetic field H, applied along the z axis, the Hamiltonian is specified in terms
of the Zeeman interaction

H =
∑
l

Hl = −gµBH
∑
l

Slz, S = 1 (8)
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The Hamiltonian of one of the sites is diagonal in the Sz-representation and the
eigenenergies are⎧⎨

⎩
|Sz = −1〉 ⇒ εi = gµBH = ∆ (i = 3)
|Sz = 0〉 ⇒ εi = 0 (i = 2)
|Sz = 1〉 ⇒ εi = −gµBH = −∆ (i = 1)

(9)

Hence the Hamiltonian (8) leads to the case considered when gµBH = ∆, and the
derivative of F with respect to ∆ is proportional to the magnetization, or

M = − 1

V

∂F

∂H
= −(gµB)

V

∂F

∂∆
� N

V

2 (gµB)
2

3kBT
H, χ =

M

H

∣∣∣∣
H→0

=
N

V

2 (gµB)
2

3kBT
(10)

The susceptibility is calculated in the limit of H or ∆ → 0, hence the expression
derived is valid at all T . Notice, that M may also be obtained from

MV = gµB
∑
l

〈Slz〉 = NgµB
∑
i

〈i|Sz |i〉 pi = NgµB(p1 − p3) (11)

The result for χ in (10) is Curie’s law in the case of S = 1, see (25.31)-(25.32).

4) Defining x = β∆ the heat capacity derived from U in (4) is

C =
∂U

∂T
= − ∆

kBT 2

∂U

∂x
= N

∆2

kBT 2

∂

∂x

(
ex − e−x

ex + 1 + e−x

)
= N

∆2

kBT 2

ex + e−x + 4

(ex + 1 + e−x)2

= N
∆2

kBT 2

eβ∆ + e−β∆ + 4

(eβ∆ + 1 + e−β∆)
2 → N

∆2

kBT 2
e−∆/(kBT ) for T → 0

(12)
The figure to the left shows the reduced heat capacity c = C/(NkB) as a function
of the reduced temperature t = kBT/∆ – the thin lines are the results for c(t) in
the high- and low-temperature limits, (6) and (12). This characteristic behaviour
of the heat capacity is called a Schottky anomaly. The number of levels involved in
the anomaly for an arbitrary value of S is (2S+1), i.e. 3 levels in the present case
of S = 1. This number may be determined from a heat capacity experiment by
evaluating the entropy in the high temperature limit, since S∞ = NkB ln(2S + 1)
for a general value of S. A measurement of C = T (∂S/∂T ) determines S, and

S =

∫ T

0

C

T
dT ⇒ s∞ =

S∞
NkB

=

∫ ∞

0

c

t
dt = ln(2S + 1) (13)
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